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Topological Phases - 1

Topological phases are classes of matter with long-range 
entanglement. They may exhibit the following properties:

• The ground-states are sensitive to the topology of the 
manifold we put them on

• Excitations with non-trivial braiding

In the 3D case we have:

• Loop-like excitations

• Bosonic/fermionic point-point braiding  



Topological Phases - 2

In 3D, braiding between point-like particles is bosonic or 
fermionic because a full braid is trivial:

Taking a particle all the way around another is equivalent 
to swapping twice. Therefore the exchange phase squares 
to 1.



Topological Phases - 3

The non-trivial braiding instead involves loops



Topological Phases - 4

One approach to studying these phases:

• We look at exactly solvable models

• See what kinds of phase are allowed

• We look at the ground states, the excitations and 
the braiding properties.

• Here we do this for a model based on “higher lattice 
gauge theory” found by Bullivant et al. [A. Bullivant
et al. Phys. Rev. B 95 (2017)]



Introduction

Structure of the talk:

• Consider higher lattice gauge theory (first discussing 
lattice gauge theory)

• Discuss a model for topological phases in 3D based on 
it

• Consider how to produce the excitations

• Look at the properties of the excitations

• Discuss the topological sectors



Lattice Gauge Theory



Lattice Gauge Theory - 1

Gauge theory in a continuum:

• Some matter field (e.g electron field)

• A “gauge” field (e.g potentials in E.M)

• A gauge symmetry: field configurations related by 
gauge transformations are equivalent

Let’s see how these translate to a lattice



Lattice Gauge Theory -2

• We have a “matter” field on the vertices (which we 
later take to be trivial)

• A gauge field on edges, valued in some group G

• The gauge field describes parallel transport of the 
matter field across edges

• We can compose edges into paths



Lattice Gauge Theory – 3

• The gauge symmetry is a set of local operators on 
each vertex

• The operators act like transporting the vertex (and 
all attached edges) along an edge

• For a gauge transform labelled by 𝐴𝑣
𝑔
:



Lattice Gauge Theory - 4

Physical quantities are gauge-invariant

• Consider a closed loop. Its label is at most 
conjugated by a gauge transform.

• The conjugacy class is a gauge-invariant quantity



Lattice Gauge Theory - 5

As an example, consider electromagnetism:

• The group is U(1), i.e a phase

• We have the Aharanov-Bohm effect when a charge 
is taken around a magnetic flux

• This results in a phase:

• A non-trivial phase for a closed cycle therefore 
indicates a non-zero magnetic flux



Lattice Gauge Theory - 6

• For some gauge configurations (sets of labels of the 
gauge field on each edge), we can make every edge 
label the identity label 1𝐺 by applying gauge transforms

• Then it is physically equivalent to the case where the 
parallel transport is trivial

• Therefore the parallel transport of the original 
configuration must only describe a change of basis

• A non-trivial gauge field describes both a change of 
basis and a physical “flux”



Quantum Double Model - 1

Now consider making an Hamiltonian model from this theory

• We demote the gauge symmetry to an energetic constraint, 
with an energy term at each vertex enforcing gauge symmetry

• This is done by averaging over all gauge transforms at the 
vertex: 𝐴𝑣 =

1

|𝐺|
σ𝑔 𝐴𝑣

𝑔

• We also punish small loops (plaquettes) with non-trivial group 
label energetically

• The Hamiltonian is



Quantum Double Model - 2

The model obtained by doing this is Kitaev’s Quantum 
Double model [A. Kitaev Annals of Physics 303 (2003)]

• It is an established model for 2D topological phases

• The excitations are charge-like and flux-like

• The fluxes (magnetic excitations) are associated to 
plaquettes

• The “charges” (electric excitations) are associated to 
vertices



Quantum Double Model - 3

We can see how the GSD depends on topology

• On a sphere the plaquette term enforces all closed 
loops be trivial in the ground state



Quantum Double Model - 4

However on a torus there are non-contractible cycles

• The plaquette terms do not affect these

• This means more ways to satisfy the energy terms

• Indeed the flux around  the handles labels the 
ground-states



Higher Lattice Gauge Theory



Higher Lattice Gauge Theory - 1

Now we look at Higher Lattice Gauge Theory. We want to 
generalize Lattice Gauge Theory

In LGT we:

• Consider parallel transport along paths

• Label paths with group elements in G

• We are labelling geometric objects with algebraic ones. 
So a natural generalization is to label more of the 
geometry. We already have points and paths. The next 
objects are therefore surfaces.



Higher Lattice Gauge Theory - 2

• If paths describe the parallel transport of points, 
then surfaces describe the parallel transport of 
paths themselves

• That is, they describe parallel transport of extended 
objects

source

target

surface



Higher Lattice Gauge Theory - 3

Just as paths may be composed, so may surfaces. They 
can be composed in two ways

• Vertically:



Higher Lattice Gauge Theory - 4

• Horizontally:

• Surfaces can also be composed with edges or paths. 
This is called whiskering

A B C A C

A B C A C



Higher Lattice Gauge Theory - 5

Then we need to determine the correct algebraic 
structure to describe this.

• The edges are still labelled by the group G as before

• The surfaces will be labelled by a new group E

• This gives a new gauge-field, the 2-gauge field, that 
lives on the surfaces

• We also have maps between the groups to describe 
the effect of the various parallel transports



Higher Lattice Gauge Theory - 6

First look back at our parallel transport of paths, adding 
the labels

• The source path is transported into the target

• The base-point is the vertex at the start of each path

• ∂ is a group homomorphism from E to G



Higher Lattice Gauge Theory - 7

• We can combine surfaces vertically

• We describe this with the group multiplication

• Consistency under vertical composition requires ∂
be an homomorphism



Higher Lattice Gauge Theory - 8

• Whiskering requires a new map, ⊳.

• Whiskering can be thought of as parallel transport 
of the base-point along an edge

• The group G describes transport along edges, so we 
have some action of G on E



Higher Lattice Gauge Theory - 9

• The consistency of various diagrams demands that

• This is a group action of G on E.

• We also have other consistency conditions, called the 
Peiffer conditions.

• This algebraic structure                         , satisfying these 
conditions, is called a crossed module



HLGT Gauge Transforms - 1

Now we consider the gauge transforms.

Ordinary gauge transforms:

• change labels around a vertex

• act like parallel transport along edge

2-gauge transforms:

• change labels around edge

• act like parallel transport along surface



HLGT Gauge Transforms - 2

We have a gauge transform on the vertices, labelled

• As before (in lattice gauge theory) it acts like 
parallel transport along an edge

• It acts as before on edges, but also affects surfaces 
based at that vertex



HLGT Gauge Transforms - 3

• In addition to the gauge transforms on the vertices, 
we have 2-gauge transforms on the edges, labelled

• This acts like parallel transport along a surface

• Recall for the vertex transforms we add an edge and 
combine it, here we add a surface



HLGT Gauge Invariants - 1

We saw in ordinary gauge theory that gauge invariant 
quantities could be built out of loops.

What is the equivalent here?

• Loops

• Closed surfaces



HLGT Gauge Invariants - 2

Closed loop:

• We modify the group element associated to a loop:

• This is due to the parallel transport rules – we have 
to compare paths at the same position



HLGT Gauge Invariants - 3

• As before, this element is only changed within 
conjugacy classes by the gauge transforms

• The identity element is in a class of its own, so that 
a trivial flux is left invariant by the gauge transforms

●For example under a vertex transform:



HLGT Gauge Invariants - 4

Closed surface:

• We call the surface label the 2-flux

• The surface label is only changed within a class (not 
a conjugacy class exactly) by the gauge transforms

• These classes are therefore gauge-invariant 
quantities

• The identity element is in a class of its own



HLGT Gauge Invariants - 5

The 2-flux on a closed surface 
corresponds to the process 
where we nucleate a small 
loop and pull it over the 
surface before re-collapsing it



HLGT Hamiltonian Model - 1

Now we consider a Hamiltonian model based on Higher 
Lattice Gauge Theory

• We work on a “lattice” with directed edges and 
surfaces with given base-points and orientations

• We put labels from the group G on the edges and from 
the group E on the plaquettes

• The different possible sets of labels for each edge and 
plaquette of the lattice are configurations and these 
form a basis for the Hilbert space



HLGT Hamiltonian Model - 2

Consider the Hamiltonian

• We demote the gauge transforms to energy terms

• We do this by putting energy terms that average 
over all of these transforms



HLGT Hamiltonian Model - 3

We will also assign energy terms to the closed loops 
and surfaces we considered earlier, enforcing that they 
have trivial label

• These energy terms are gauge-invariant, so they 
commute with the other terms

• Excitations of these terms will correspond to non-
trivial fluxes and 2-fluxes



HLGT Hamiltonian Model - 4

We have an energy term on each plaquette

• We impose the parallel transport rules as an 
energetic constraint

• This means that we enforce trivial flux for each 
plaquette



HLGT Hamiltonian Model - 5

Finally we add an energy term associated to the blobs 
(3-cells) of the lattice

• These punish closed surfaces (boundaries of blobs) 
with non-trivial group label



HLGT Hamiltonian Model - 6

To summarize

The first two terms enforce gauge symmetry, the latter two 
restrict the fluxes of closed loops and closed surfaces

The ground state degeneracy depends on the topology of the 
lattice, as can be seen from the fact that the last two terms are 
sensitive to the contractible cycles and surfaces



Excitations



Excitations

There are four types of excitations, corresponding to 
the four energy terms

• Two of the types are point-like

• Two are loop-like

• General excitations are combinations of these four 
types



“Electric” Excitations - 1

• The “electric” excitations are point-like

• They are created by measuring the value of a path 
element and applying a weight depending on that 
value:

• The excitations are associated to the ends of the 
path



“Electric” Excitations - 2

• µ  is an irreducible representation of G

• 𝐷𝜇 𝑔 are the representative matrices

• 𝑎 and  𝑏 are the matrix indices

• The irrep labels a conserved charge, we say it 
describes a topological sector

• The matrix indices describe non-conserved local 
degrees of freedom.



“Blob” Excitations - 1

The other point-like excitations are the “blob” excitations

• They are labelled by group elements of E

• The blob energy terms essentially enforce that a 
product of surface elements over a blob is trivial

• Then to create excitations, we try changing one 
plaquette at a time.

• This will create two excitations at the end of an 
(invisible) string of plaquettes



“Blob” Excitations - 2

• We change the plaquette between blobs 1 and 2

• This leads to excitations of both blobs

• We can correct blob 2 by changing another plaquette

• This excites the third blob, leaving blobs 1 and 3 
excited.

• The excitations are produced in pairs

• They are produced by ribbon operators



E-valued Loops - 1

The remaining excitations are loop-like.

First we have the E-valued loops

• These are produced by measuring the surface label 
of a membrane and applying a weight to each 
possible label

• For a membrane m, the membrane operator is



E-valued Loops - 2

• The edges on the boundary of the membrane are 
excited

• One of the vertices may also be excited



Flux Tubes -1

The final excitations (plaquette excitations) are the 
most complicated

These excitations are simpler in the  ⊳ trivial case ( 
where 𝑔 ⊳ 𝑒 = 𝑒):

• We change the edges cut by a membrane (the “dual 
membrane”)

• We multiply the edge labels by  𝑔 𝑡 −1ℎ𝑔(𝑡) where 
g(t) is the path from a privileged start point to the 
edge being changed



Flux Tubes - 2

• This excites the plaquettes in a loop around the 
membrane



Condensation and Confinement



Confinement

Normally the excitations can be separated freely, with 
energy cost only to create them

Here we see confinement of some of the point particles

That is, there is an energy cost to move the excitations

• The electric excitations are confined if their irrep µ 
has a non-trivial matrix for some element in the 
image of ∂, that is if  𝐷𝜇 𝜕 𝑒 ≠ 𝐼 for some e in E.

• The blob excitations are confined if their element is 
not in the kernel of ∂, that is if 𝜕(𝑒) ≠ 1𝐺



Condensation

Another important feature is condensation

A condensation transition is where topologically non-
trivial excitations become topologically trivial as the 
Hamiltonian is changed (condensed excitations)

During this process, other excitations become confined



Condensation - 2

We can consider many HLGT models with the image of 
∂ non-trivial as having undergone a condensation/ 
confinement transition from one with 𝜕 ∶ 𝐸 → 1𝐺

Some of the loop excitations condense, so that they 
carry trivial topological charge

This means that some of the loop excitations can be 
produced by operators that act only near the loop, 
rather than across a whole membrane.



Condensation - 3

The magnetic excitations with label in the image of 
𝜕 are condensed.

The E-valued loops with representations that have 
trivial restriction to the kernel are condensed. That is 
an irrep µ is condensed if  𝐷𝜇 𝑒𝑘 = 𝐼 for all 𝑒𝑘 in the 
kernel of 𝜕

Both condensation and confinement are controlled by
𝜕



Braiding



Braiding- 1

Next we consider the braiding

Recall that the non-trivial braiding always involves 
loops



Braiding - 2

We obtain the braiding relations by using the 
membrane operators

We can relate braiding to a commutation of the 
operators



Braiding - 3

In the ⊳ trivial case (where all g ⊳ , the braiding is 
fairly simple:

• There is non-trivial braiding between electric and 
magnetic excitations

• There is similar braiding between the blobs and E-
valued loops

• There is also non-trivial loop-loop braiding between 
magnetic excitations when G is non-Abelian

• We see braiding is only between the G labelled 
excitations and between the E labelled ones.



Braiding - 4

• For an electric excitation labelled by an irrep µ of G
braiding with a magnetic excitation labelled by h, 
we have a transformation  𝐷𝜇(ℎ) which is a phase 
µ(h) if the irrep is 1D.

• Similarly for a blob excitation labelled by e braiding 
with a loop excitation labelled by irrep. α of E, we 
gain a transformation of 𝐷𝛼(𝑒). 

• Two magnetic loops braid by conjugation of one of 
the loops.



Braiding - 5

In the ⊳ non-trivial case (but still a special case where E is 
Abelian and ∂ maps onto the centre of G), the magnetic 
excitations braid non-trivially with everything else.

• In this case, they are labelled by two group elements, 
one from G and one from E

• Then the excitations are labelled by pairs (g,e).

• We find that two loop excitations (g,e) and (h,f) now 
braid to become (ℎ𝑔ℎ−1, ℎ ⊳ 𝑒) and (ℎ, 𝑒𝑓ℎ ⊳ 𝑒−1). 



Topological Sectors



Topological Sectors - 1

Next we consider topological charge

• Topological charge is a conserved quantum number 
associated with the excitations

• The charge held within a surface can only be 
changed by moving charge from inside to outside, 
not by operators within the surface



Topological Sectors - 2

We measure the charge within a surface, using 
operators on that surface.

For example, we can measure the charge of a loop by 
putting an operator on a torus around it.



Topological Sectors - 3

We use closed versions of our membrane operators to 
measure the charge, following Bombin et al. [H. Bombin
and M. A. Martin-Delgado Phys. Rev. B 78, 115421 (2008)]

We choose a surface to measure on, then apply every 
independent operator we can – closed ribbon operators 
on cycles and membrane operators on the surface itself-
subject to restrictions.

The measurement operator must not create excitations, 
and deforming it without crossing an excitation must not 
affect the value of charge



Topological Sectors - 4

We can do this on any orientable surface. The charge 
within a torus is sensitive to loop-like and point-like 
charge.

• We apply ribbon operators around the two cycles

• We apply membrane operators on the surface



Topological Sectors - 5

The number of allowed measurement operators gives the 
number of types of topological charge.

• We find that this number is equal to the ground-state 
degeneracy on the 3-torus

• This is an extension of the 2D result that the number of 
topological charges is equal to the ground-state 
degeneracy on a 2-torus (given sufficiently non-trivial 
braiding)

• This was also found by Bullivant et al. [A. Bullivant and 
C. Delcamp arXiv: 1909.07937v1 (2019)]

We can explicitly construct the charge measurement 
operators.



Future Work

Future steps: see where the model fits into the 
landscape of topological phases as a whole

There have been recent suggestions that a large class 
of models in 3D (including this one) should relate to a 
“twisted” version of lattice 1-gauge theory

See under what circumstances the ground-state 
degeneracy and charge are related for more general 
models
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Higher Lattice Gauge Theory

The map ⊳ has properties fixed by these extra 
diagrams



Higher Lattice Gauge Theory - 7

We also have consistency under composition of edges


