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Fundamentals of Lorentzian geometry

Lorentzian manifolds

A Lorentzian manifold is a pair (M, g), where M is a differentiable
manifold and g is a nondegenerate symmetric 2-tensor with signature
(−+ . . .+) (called the metric).

M admits a Lorentzian metric iff it is noncompact or χ (M) = 0.

The simplest example is the Minkowski spacetime:

M = Rn+1, g = −dx0 ⊗ dx0 + dx1 ⊗ dx1 + . . .+ dxn ⊗ dxn
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Fundamentals of Lorentzian geometry

Comparison with Riemannian geometry

Most classic results from Riemannian geometry are valid.

But not all:

Triangle inequality (twin paradox);
Hopf-Rinow theorem (geodesic completeness);
Vectors v come in three types:

Timelike: g(v , v) < 0
Lightlike: g(v , v) = 0
Spacelike: g(v , v) > 0

(v is causal if it is not spacelike).
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Fundamentals of Lorentzian geometry

Comparison with Riemannian geometry
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Fundamentals of Lorentzian geometry

Basic concepts

A curve c : I ⊂ R→ M is called timelike, lightlike, spacelike or
causal if so is ċ.

If c is a geodesic, then its type cannot change.

τ (c), the length of the timelike curve c : [a, b]→ M, is the proper
time between events c (a) and c (b).

Definition

(M, g) is singular if it is not geodesically complete.
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Fundamentals of general relativity The Einstein field equations

Einstein field equations

Einstein postulated the equation system Ric − S
2 g = T and Hilbert

derived it from the variational principle.

The spherically symmetric vacuum (T = 0) case is the
Schwarzschild solution. In 1 + 3 dimensions,

g = −
(

1− 2M

r

)
dt ⊗ dt +

(
1− 2M

r

)−1

dr ⊗ dr+

+r 2
(
dθ ⊗ dθ + sin2 θdϕ⊗ dϕ

)
The surface {r = 2M} is the black hole horizon. In the inner region,
every timelike geodesic reaches the curvature singularity r = 0 in
finite time.
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Fundamentals of general relativity Spacetimes with timelike singularities

Einstein field equations

Consider the Riemannian 3-manifold (Σ, h) with constant curvature k.(
R× Σ,−dt ⊗ dt + a2(t)h

)
is the FLRW universe.

Friedmann used the Einstein equations to obtain

ȧ2

2
− α

a
= −k

2

where the density is ρ = 6α
a3 .

If α > 0, then a either blows up or goes to zero in finite time
(Big Bang).
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Causality

Basic concepts

Timelike v and w have the same time orientation if 〈v ,w〉 < 0.

(M, g) is time-orientable if ∃ nonvanishing timelike T ∈ X(M).
A timelike vector v ∈ TpM is future-pointing if it has the same time
orientation as Tp. A timelike curve c is future-directed if ċ is
future-pointing.

Chronological future of p ∈ M – set I +(p) of all points to which p
can be connected by a by a future-directed timelike curve.
Causal future of p ∈ M – set J+(p) of all points to which p can be
connected by a by a future-directed causal curve.
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Causality

Basic concepts
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Causality

Main results

Proposition

Locally, the topological properties of a time-oriented Lorentzian
manifold are similar to those of the Minkowski spacetime. In particular:

q ∈ I +(p) and r ∈ I +(q) ⇒ r ∈ I +(p);

I +(p) is open.

Proposition (twin paradox)

Let (M, g) be time-oriented. Every p0 ∈ M has a geodesically convex open
neighbourhood V ⊂ M such that, in (V , g|V ), timelike geodesics have
maximal length.
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Causality

The twin paradox
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Causality

Some further concepts

(M, g) satisfies the chronology condition if it does not contain
closed timelike curves (cannot be compact).

(M, g) is stably causal if ∃ a global time function, i.e., a smooth
function t : M → R such that grad t is timelike.

A future-directed causal curve c : ]a, b[→ M is future-inextendible if
limt→b c(t) does not exist.

The future domain of dependence of S ⊂ M is

D+(S) = {p ∈ M | every past-directed inextendible

causal curve intersects S}

Proposition

If p ∈ D+(S), then D+(S) ∩ J−(p) is compact.
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Hawking’s singularity theorem

Essential conditions

Definition

(M,g) is said to be globally hyperbolic if it is stably causal and all time
slices Sa = t−1(a) satisfy D(Sa) = M.

(M, g) will always be assumed to be globally hyperbolic and S will
always denote a time slice.

Strong energy condition: Ric(V ,V ) ≥ 0 for every timelike V .

Let n be the future-pointing unit normal of S and cp the geodesic
orthogonal to S and tangent to n at p ∈ S .
The critical values of the exponential map (exp(t, p) = cp(t)) are
said to be conjugate points to S .
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Hawking’s singularity theorem

Main results

If cp has no conjugate points between cp(0) = p and cp(t0), ∃ an
open neighbourhood V of cp ([0, t0]) where ∃ a family of timelike
geodesics tangent to a unit vector field X = −grad t.

θ = div X is called the expansion.

Proposition

Let (M, g) satisfy the SEC, p ∈ S and θ = θ0 < 0.
Then, if cp can be extended to a length τ0 = −n/θ0 to the future of S, it
has a conjugate point.
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Hawking’s singularity theorem

Main results

Proposition

Let c be a geodesic through p ∈ M orthogonal to S.
Then, if ∃ a conjugate point between S and p, c does not maximize length.

Proposition

∃ a timelike curve connecting S to p which has maximal length.
This curve is a geodesic.
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Hawking’s singularity theorem

Conjugate points and (non)-maximizing geodesics
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Hawking’s singularity theorem

Hawking’s singularity theorem

Theorem

If (M, g) satisfies the SEC and θ ≤ θ0 < 0, then it is singular.

Proof

Suppose ∃ future-directed timelike geodesic c orthogonal to S ,
extendible to proper time τ(c) = τ0 + ε > τ0 = − n

θ0
;

Then, ∃ maximal timelike geodesic γ connecting S to c(τ0 + ε);

As such, τ(γ) ≥ τ0 + ε;

However, γ has a conjugate point at a distance of at most τ0 and
ceases to be maximizing beyond this point;

Hence, this yields a contradiction.

Pedro Oliveira (IST, U. Lisbon) Hawking’s Singularity Theorem Lisbon, 13th March 2015 18 / 19



References

References

Papers:
1 S. Hawking, The Occurrence of Singularities in Cosmology. III.

Causality and singularities, Proc. Roy. Soc. Lon. A 300 (1967),
187201.

Books:
1 G. Naber, Spacetime and Singularities: An Introduction, Cambridge

University Press, 1988.

2 L. Godinho and J. Natário, An Introduction to Riemannian Geometry:
With Applications to Mechanics and Relativity (Universitext), Springer,
2014.

Pedro Oliveira (IST, U. Lisbon) Hawking’s Singularity Theorem Lisbon, 13th March 2015 19 / 19


	Fundamentals of Lorentzian geometry
	Fundamentals of general relativity
	The Einstein field equations
	Spacetimes with timelike singularities

	Causality
	Hawking's singularity theorem
	Appendix

