Hawking's Singularity Theorem in General Relativity

Pedro F. C. Oliveira

LisMath Seminar

Complexo Interdisciplinar da Universidade de Lisboa Lisbon, 13th March 2015

Acknowledgements: Prof. José Natário (IST, U. Lisbon)

Pedro Oliveira (IST, U. Lisbon)

Hawking's Singularity Theorem

Lisbon, 13th March 2015

本部 지 여러 지 여러 지 모네요

Outline

Fundamentals of Lorentzian geometry

Fundamentals of general relativity

- The Einstein field equations
- Spacetimes with timelike singularities

3 Causality

・部・・モト ・ヨト 三日

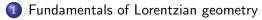
ÉCNICO

2 Fundamentals of general relativity

- The Einstein field equations
- Spacetimes with timelike singularities

Causality

▲圖▶ ▲ 문▶ ▲ 문▶ 문[님



2 Fundamentals of general relativity

- The Einstein field equations
- Spacetimes with timelike singularities

3 Causality

Pedro Oliveira (IST, U. Lisbon)

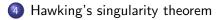
▲圖▶ ▲ 문▶ ▲ 문▶ 문[님



2 Fundamentals of general relativity

- The Einstein field equations
- Spacetimes with timelike singularities

3 Causality



周下 소문도 소문도 문법

Lorentzian manifolds

- A Lorentzian manifold is a pair (M, g), where M is a differentiable manifold and g is a nondegenerate symmetric 2-tensor with signature (-+...+) (called the metric).
- *M* admits a Lorentzian metric iff it is noncompact or $\chi(M) = 0$.
- The simplest example is the Minkowski spacetime:

 $M = \mathbb{R}^{n+1}, \quad g = -dx^0 \otimes dx^0 + dx^1 \otimes dx^1 + \ldots + dx^n \otimes dx^n$

3/19

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

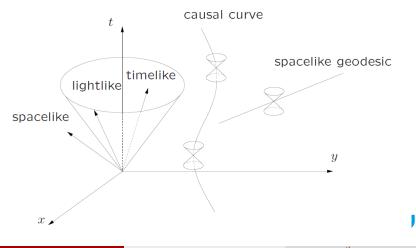
Comparison with Riemannian geometry

- Most classic results from Riemannian geometry are valid.
- But not all:
 - Triangle inequality (twin paradox);
 - Hopf-Rinow theorem (geodesic completeness);
 - Vectors v come in three types:
 - Timelike: g(v, v) < 0
 - Lightlike: g(v, v) = 0
 - Spacelike: g(v, v) > 0

```
(v is causal if it is not spacelike).
```

Comparison with Riemannian geometry

(Minkowski spacetime)



TÉCNICO LISBOA

Basic concepts

- A curve c : I ⊂ ℝ → M is called timelike, lightlike, spacelike or causal if so is c.
- If c is a **geodesic**, then its type cannot change.
- τ (c), the length of the timelike curve c: [a, b] → M, is the proper time between events c (a) and c (b).

Definition

(M, g) is singular if it is not geodesically complete.

(日) (周) (日) (日) (日)

Einstein field equations

- Einstein postulated the equation system $Ric \frac{S}{2}g = T$ and Hilbert derived it from the variational principle.
- The spherically symmetric vacuum (T = 0) case is the Schwarzschild solution. In 1 + 3 dimensions,

$$egin{aligned} g &= -\left(1-rac{2M}{r}
ight)dt\otimes dt + \left(1-rac{2M}{r}
ight)^{-1}dr\otimes dr + \ &+ r^2\left(d heta\otimes d heta + \sin^2 heta darphi\otimes darphi
ight) \end{aligned}$$

The surface $\{r = 2M\}$ is the **black hole** horizon. In the inner region, **every** timelike geodesic reaches the curvature singularity r = 0 in **finite time**.

Pedro Oliveira (IST, U. Lisbon)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Einstein field equations

- Consider the Riemannian 3-manifold (Σ, h) with constant curvature k. $(\mathbb{R} \times \Sigma, -dt \otimes dt + a^2(t)h)$ is the FLRW universe.
- Friedmann used the Einstein equations to obtain

$$\frac{\dot{a}^2}{2} - \frac{\alpha}{a} = -\frac{k}{2}$$

where the density is $\rho = \frac{6\alpha}{a^3}$.

• If $\alpha > 0$, then *a* either blows up or goes to zero in finite time (**Big Bang**).

Pedro Oliveira (IST, U. Lisbon)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

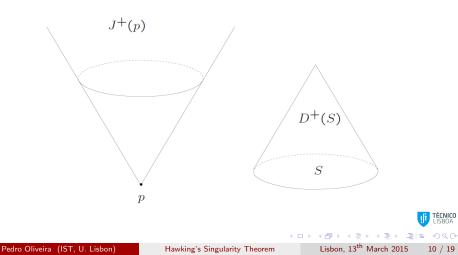
Basic concepts

- Timelike v and w have the same time orientation if $\langle v, w \rangle < 0$.
- (M,g) is time-orientable if ∃ nonvanishing timelike T ∈ X(M).
 A timelike vector v ∈ T_pM is future-pointing if it has the same time orientation as T_p. A timelike curve c is future-directed if c is future-pointing.
- Chronological future of p ∈ M set l⁺(p) of all points to which p can be connected by a by a future-directed timelike curve.
 Causal future of p ∈ M set J⁺(p) of all points to which p can be connected by a by a future-directed causal curve.

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ 三回 ののの

Basic concepts

(Minkowski spacetime)



Main results

Proposition

Locally, the **topological properties** of a time-oriented Lorentzian manifold are similar to those of the Minkowski spacetime. In particular:

- $q \in I^+(p)$ and $r \in I^+(q) \Rightarrow r \in I^+(p)$;
- $I^+(p)$ is open.

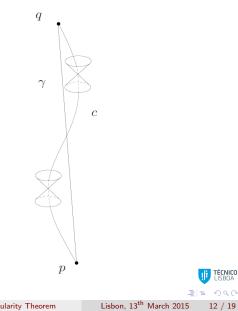
Proposition (twin paradox)

Let (M, g) be time-oriented. Every $p_0 \in M$ has a geodesically convex open neighbourhood $V \subset M$ such that, in $(V, g_{|V})$, timelike geodesics have maximal length.

(日) (周) (日) (日) (日)

Causality

The twin paradox



 $\tau(\gamma) > \tau(c)$

Pedro Oliveira (IST, U. Lisbon)

Hawking's Singularity Theorem

Causality

Some further concepts

- (*M*, *g*) satisfies the **chronology condition** if it does not contain closed timelike curves (cannot be compact).
- (M,g) is stably causal if \exists a global time function, i.e., a smooth function $t: M \to \mathbb{R}$ such that grad t is timelike.
- A future-directed causal curve $c:]a, b[\to M \text{ is future-inextendible if } \lim_{t \to b} c(t) \text{ does not exist.}$
- The future domain of dependence of $S \subset M$ is

 $D^+(S) = \{p \in M \mid \text{every past-directed inextendible} \}$

causal curve intersects S}

Proposition

If $p \in D^+(S)$, then $D^+(S) \cap J^-(p)$ is compact.

Pedro Oliveira (IST, U. Lisbon)

비로 시로에 시로에 시험에 시험에

Essential conditions

Definition

(M,g) is said to be **globally hyperbolic** if it is stably causal and all time slices $S_a = t^{-1}(a)$ satisfy $D(S_a) = M$.

- (M, g) will always be assumed to be globally hyperbolic and S will always denote a time slice.
- Strong energy condition: $Ric(V, V) \ge 0$ for every timelike V.
- Let n be the future-pointing unit normal of S and cp the geodesic orthogonal to S and tangent to n at p ∈ S.
 The critical values of the exponential map (exp(t, p) = cp(t)) are said to be conjugate points to S.

Main results

If c_p has no conjugate points between c_p(0) = p and c_p(t₀), ∃ an open neighbourhood V of c_p ([0, t₀]) where ∃ a family of timelike geodesics tangent to a unit vector field X = -grad t.

• $\theta = \operatorname{div} X$ is called the **expansion**.

Proposition Let (M, g) satisfy the SEC, $p \in S$ and $\theta = \theta_0 < 0$. Then, if c_p can be extended to a length $\tau_0 = -n/\theta_0$ to the future of S, it has a conjugate point.

Pedro Oliveira (IST, U. Lisbon)

Main results

Proposition

Let c be a geodesic through $p \in M$ orthogonal to S. Then, if \exists a conjugate point between S and p, c does not maximize length.

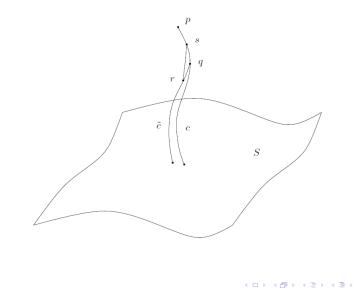
Proposition

 \exists a timelike curve connecting *S* to *p* which has maximal length. This curve is a geodesic.

A B < A B <</p>

Hawking's singularity theorem

Conjugate points and (non)-maximizing geodesics



FÉCNICO LISBOA

Hawking's singularity theorem

Theorem

If (M, g) satisfies the SEC and $\theta \leq \theta_0 < 0$, then it is singular.

Proof

- Suppose \exists future-directed timelike geodesic *c* orthogonal to *S*, extendible to proper time $\tau(c) = \tau_0 + \epsilon > \tau_0 = -\frac{n}{\theta_0}$;
- Then, \exists maximal timelike geodesic γ connecting S to $c(\tau_0 + \epsilon)$;
- As such, $\tau(\gamma) \geq \tau_0 + \epsilon$;
- However, γ has a conjugate point at a distance of at most τ_0 and ceases to be maximizing beyond this point;
- Hence, this yields a contradiction.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

References

- Papers:
 - S. Hawking, The Occurrence of Singularities in Cosmology. III. Causality and singularities, Proc. Roy. Soc. Lon. A 300 (1967), 187201.
- Books:
 - G. Naber, Spacetime and Singularities: An Introduction, Cambridge University Press, 1988.
 - 2 L. Godinho and J. Natário, An Introduction to Riemannian Geometry: With Applications to Mechanics and Relativity (Universitext), Springer, 2014.

비로 서로에 서로에 사람에 수많이 수많이 좋다.