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Positive De�nite Functions

In the theory of integral equations, operators of the form

TKg(x) =

∫
K(x, y)g(y)dy

have an important role.

In 1909, James Mercer introduced the following notion

relating to this theory:

De�nition

K : R2 → C is said to be a positive de�nite kernel if for any collection (xk)nk=1, we have

n∑
k,l=1

K(xk, xl)ξk ξ̄l ≥ 0, ∀ξ = (ξ1, . . . , ξn) ∈ Cn.

The case K(x, y) = f(x− y) is of particular interest for the operators TK .

De�nition

A function f : R→ C is said to be positive de�nite if for any collection (xk)nk=1 we have

n∑
k,l=1

f(xk − xl)ξk ξ̄l ≥ 0, ∀ξ ∈ Cn.
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Polar Functions

De�nition

A function f : Λ ⊂ C→ C is said to be (co-)positive de�nite if for any
collection (zk)nk=1 satisfying zk ± z̄k ∈ Λ, we have

n∑
k,l=1

f(zk ± z̄l)ξk ξ̄l ≥ 0, ∀ξ = (ξ1, . . . , ξn) ∈ Cn.

De�nition

A function f : Λ ⊂ C→ C is called polar if it is (co-)positive de�nite or
(co-)negative de�nite.

Remarks:

A function f is positive de�nite in Λ if and only if the function
g(z) = f(iz) is co-positive de�nite in −iΛ.
We can always translate from the notion of positive de�niteness to the
notion of co-positive de�niteness.
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An Important Example

Recall the de�nition of the Gamma function:

Γ(z) =

∫ +∞

0

xz−1e−xdx, <(z) > 0.

This function is co-positive de�nite in this half plane.

n∑
k,l=1

Γ(zk + z̄l)ξk ξ̄l =

∫ +∞

0

e−x

x

∣∣∣∣∣
n∑
k=1

xzkξk

∣∣∣∣∣
2

dx ≥ 0.

Γ can be extended to a meromorphic function on C using the
relationship Γ(z + 1) = zΓ(z). The Gamma function has simple poles at
the nonpositive integers, with residues Res(Γ,−n) = (−1)n/n!.

In each vertical strip −n < <(z) < −n+ 1, we have the
Cauchy-Saalschütz formula

Γ(z) =

∫ +∞

0

xz−1

(
e−x −

∑
m<n

(−1)m

m!
xm

)
dx.
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Using the Cauchy-Saalschütz formula one can show that Γ is co-positive de�nite in

the strips −n < <(z) < −n+ 1 with n even, and co-negative de�nite in these strips

with n odd.

With the change of variables t = − log(x) we obtain, in the strip

−n < <(z) < −n+ 1, the representation

Γ(z) =

∫ +∞

−∞
e−ztdµ−n(t), dµ−n(t) = σ−n(t)dt,

where

σ−n(t) =
∑
m≥n

(−1)m

m!
e−mt.

Note that the transition from one density to the one on its left follows the simple

transition formula:

σ−n(t)− σ−(n+1)(t) =
(−1)n

n!
e−nt.
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Laplace-Fourier Transform

A well known result in harmonic analysis relates the Fourier transform
with positive de�nite functions.

Bochner's Theorem

A continuous function f : R→ C is positive de�nite if and only if there is a
unique �nite and nonnegative measure µ such that

f(x) =

∫
R
eitxdµ(t).

De�nition

The Laplace-Fourier transform of a measure µ and the Fourier-Laplace
transform are de�ned by

LF(µ)(z) =

∫
R
e−ztdµ(t), FL(µ)(z) =

∫
R
eiztdµ(t).
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Laplace-Fourier Transform

De�nition

A measure µ over the σ-algebra of measurable sets in R is exponentially �nite
with respect to a nonempty interval I, if∫

R
e−ytdµ(t) <∞,

for all y ∈ I.

We de�ne the strips Sa,b = {z ∈ C | a < =(z) < b} and
Ta,b = {z ∈ C | a < <(z) < b}.

Proposition

Let µ be a nonnegative measure which is exponentially �nite with respect to
]a, b[. Then, we can assume ]a, b[ is maximal and the function LF(µ) is
holomorphic and co-positive de�nite in Ta,b, with singularities in a and b, if
�nite.
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Laplace-Fourier Transform

Theorem

Let f : Ta,b → C be some holomorphic function. Then f is co-positive

de�nite if and only if it is the Laplace-Fourier transform of an

exponentially �nite measure with respect to ]a, b[. Furthermore, µ is

uniquely determined by f .

Remarks:

If ]α, β[ is the maximal interval with respect to
which µ is exponentially �nite, then f has an
analytic continuation LF to Tα,β .

There will be singularities at α and β if these are
�nite.

This result has a direct analog for positive
de�nite functions and Fourier-Laplace transforms.

Rodrigo Duarte Measure Transitions May 13, 2020 8 / 24



Laplace-Fourier Transform

Theorem

Let f : Ta,b → C be some holomorphic function. Then f is co-positive

de�nite if and only if it is the Laplace-Fourier transform of an

exponentially �nite measure with respect to ]a, b[. Furthermore, µ is

uniquely determined by f .

Remarks:

If ]α, β[ is the maximal interval with respect to
which µ is exponentially �nite, then f has an
analytic continuation LF to Tα,β .

There will be singularities at α and β if these are
�nite.

This result has a direct analog for positive
de�nite functions and Fourier-Laplace transforms.

Rodrigo Duarte Measure Transitions May 13, 2020 8 / 24



Laplace-Fourier Transform

Theorem

Let f : Ta,b → C be some holomorphic function. Then f is co-positive

de�nite if and only if it is the Laplace-Fourier transform of an

exponentially �nite measure with respect to ]a, b[. Furthermore, µ is

uniquely determined by f .

Remarks:

If ]α, β[ is the maximal interval with respect to
which µ is exponentially �nite, then f has an
analytic continuation LF to Tα,β .

There will be singularities at α and β if these are
�nite.

This result has a direct analog for positive
de�nite functions and Fourier-Laplace transforms.

Rodrigo Duarte Measure Transitions May 13, 2020 8 / 24



Laplace-Fourier Transform

Theorem

Let f : Ta,b → C be some holomorphic function. Then f is co-positive

de�nite if and only if it is the Laplace-Fourier transform of an

exponentially �nite measure with respect to ]a, b[. Furthermore, µ is

uniquely determined by f .

Remarks:

If ]α, β[ is the maximal interval with respect to
which µ is exponentially �nite, then f has an
analytic continuation LF to Tα,β .

There will be singularities at α and β if these are
�nite.

This result has a direct analog for positive
de�nite functions and Fourier-Laplace transforms.

Rodrigo Duarte Measure Transitions May 13, 2020 8 / 24



Laplace-Fourier Transform

Theorem

Let f : Ta,b → C be some holomorphic function. Then f is co-positive

de�nite if and only if it is the Laplace-Fourier transform of an

exponentially �nite measure with respect to ]a, b[. Furthermore, µ is

uniquely determined by f .

Remarks:

If ]α, β[ is the maximal interval with respect to
which µ is exponentially �nite, then f has an
analytic continuation LF to Tα,β .

There will be singularities at α and β if these are
�nite.

This result has a direct analog for positive
de�nite functions and Fourier-Laplace transforms.

Rodrigo Duarte Measure Transitions May 13, 2020 8 / 24



Examples

Function Strip pair and polarity Pole Transition of densities

Γ(z) T−n−1,−n, T−n,−n+1 z = −n σr(t)− σl(t) = (−1)n
n! e−nt

Z(z) = − ζ(z)z + in T0,1,− in T1,+∞ z = 1 σr(t)− σl(t) = −et

1
z(z+1)2 − in T−∞,−1,− in T−1,0 z = −1 σr(t)− σl(t) = −(1 + t)e−t

General f(z) Tα,c, Tc,β z = c σr(t)− σl(t) = P(t)ect?
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Short Detour Through Measure Theory

De�nition

Let (X,M) be a measurable space. A signed measure in X is a set function
µ :M→ [−∞,+∞] such that

µ(∅) = 0;

µ does not take more than one in�nite value;

If (An)n is a sequence of disjoint measurable sets then

µ(
⋃
n

An) =
∑
n

µ(An),

where the series converges absolutely if µ(
⋃
nAn) is �nite.

De�nition

A signed measure µ is σ-�nite if there is a countable family {An} ⊆ M of
measurable sets with �nite measure such that

X =
⋃
n

An.
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Short Detour Through Measure Theory

De�nition

Suppose we have two signed measures µ and ν in (X,M). We say that ν is
singular with respect to µ if there are measurable sets A,B such that
A ∩B = ∅, A ∪B = X, µ(A) = 0 and ν(B) = 0. This is written µ ⊥ ν.

De�nition

Let ν be a signed measure and µ a nonnegative measure in (X,M). We say
that ν is absolutely continuous with respect to µ if

µ(A) = 0 =⇒ ν(A) = 0, ∀A ∈M.

This is written ν � µ.
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Short Detour Through Measure Theory

Jordan Decomposition Theorem

Let µ be a signed measure. Then, there are unique nonnegative measures µ+

and µ−, such that
µ = µ+ − µ−,

and µ+ ⊥ µ−.

One of µ+, µ− is �nite;

One de�nes L1(µ) = L1(µ+) ∩ L1(µ−) and for f ∈ L1(µ),∫
fdµ :=

∫
fdµ+ −

∫
fdµ−.
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Short Detour Through Measure Theory

The Lebesgue-Radon-Nikodym Theorem

Let ν be a σ-�nite signed measure and µ a σ-�nite nonnegative measure on
(X,M). Then, there are unique σ-�nite measures νa and νs on (X,M) such
that

ν = νa + νs,

with νa � µ and νs ⊥ µ. Moreover, there is a unique (a.e.) extended
µ-integrable function f : X → R such that

νa(A) =

∫
A

fdµ, ∀A ∈M.

The splitting ν = νa + νs is called the Lebesgue Decomposition.

The relation

ν(A) =

∫
A

fdµ

is also written as dν = fdµ. In this case we call f the density associated
with ν.
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Exponentially Finite Signed Measures

De�nition

A measure µ on the σ-algebra of measurable sets in R is an exponentially �nite

signed measure (EFSM) with respect to a nonempty interval I if it is a signed
measure and

µy(A) =

∫
A

e−ytdµ(t)

is �nite for all measurable A ⊆ R and for all y ∈ I.

Proposition

Exponentially �nite signed measures are σ-�nite.

In particular, there is a Lebesgue decomposition

µ = µa + µs

of any EFSM µ, with respect to the Lebesgue measure on R.
Furthermore, there is a density σ(t) such that dµa(t) = σ(t)dt.
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Bilateral Polarization

De�nition

A measure µ is said to be polarized if it has a sign and it is

exponentially �nite with respect to some interval.

De�nition

A signed measure µ is said to be right polarized if there exists some

γ ∈ R such that the measure

µd(A) = µ(A∩]γ,+∞[)

is polarized.

We can analogously de�ne left polarized signed measures;

A signed measure is bilaterally polarized if it is both left and

right polarized.
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Measure Pairs

De�nition

Let α, β ∈ R and let c ∈ R be such that α < c < β

.

If µl is a polarized
measure with respect to ]α, c[ and µr is a polarized measure with respect to
]c, β[, then we say

(µl, µr)α,c,β

is a polarized measure pair if there is a polar function f meromorphic in
Tα,β with a single pole in z = c, such that

f(z) =

{
LF(µl)(z), z ∈ Tα,c
LF(µr)(z), z ∈ Tc,β .

We assume that ]α, c[ is the maximal interval for which µl is
exponentially �nite, and similarly for ]c, β[.

In particular, f has singularities at z = α and z = β, if these are �nite.
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Transition Polynomial

Consider a polarized measure pair (µl, µr)α,c,β , with associated meromorphic

function f .

Expanding in a Laurent series, we can write

f(z) =
m∑
k=1

bk

(z − c)k
+

∑
k≥0

ck(z − c)k =: fp(z) + fh0 (z), z ∈ BR(c) \ {c},

where R = min{|α− c|, |β − c|}.
fh0 can be extended analytically to a holomorphic function fh(z) in Tα,β such that

f(z) = fp(z) + fh(z), ∀z ∈ Tα,β \ {c}.

By direct computation one can verify that

1

(z − c)k
=

{
LF(µplk)(z), z ∈ T−∞,c
LF(µprk)(z), z ∈ Tc,+∞,

where dµp·k(t) = σp·k(t)dt and σplk(t) = − tk−1

(k−1)!
(1−H(t))ect

σprk(t) = tk−1

(k−1)!
H(t)ect.

Rodrigo Duarte Measure Transitions May 13, 2020 17 / 24



Transition Polynomial

Consider a polarized measure pair (µl, µr)α,c,β , with associated meromorphic

function f .

Expanding in a Laurent series, we can write

f(z) =
m∑
k=1

bk

(z − c)k
+

∑
k≥0

ck(z − c)k =: fp(z) + fh0 (z), z ∈ BR(c) \ {c},

where R = min{|α− c|, |β − c|}.
fh0 can be extended analytically to a holomorphic function fh(z) in Tα,β such that

f(z) = fp(z) + fh(z), ∀z ∈ Tα,β \ {c}.

By direct computation one can verify that

1

(z − c)k
=

{
LF(µplk)(z), z ∈ T−∞,c
LF(µprk)(z), z ∈ Tc,+∞,

where dµp·k(t) = σp·k(t)dt and σplk(t) = − tk−1

(k−1)!
(1−H(t))ect

σprk(t) = tk−1

(k−1)!
H(t)ect.

Rodrigo Duarte Measure Transitions May 13, 2020 17 / 24



Transition Polynomial

Consider a polarized measure pair (µl, µr)α,c,β , with associated meromorphic

function f .

Expanding in a Laurent series, we can write

f(z) =
m∑
k=1

bk

(z − c)k
+

∑
k≥0

ck(z − c)k =: fp(z) + fh0 (z), z ∈ BR(c) \ {c},

where R = min{|α− c|, |β − c|}.

fh0 can be extended analytically to a holomorphic function fh(z) in Tα,β such that

f(z) = fp(z) + fh(z), ∀z ∈ Tα,β \ {c}.

By direct computation one can verify that

1

(z − c)k
=

{
LF(µplk)(z), z ∈ T−∞,c
LF(µprk)(z), z ∈ Tc,+∞,

where dµp·k(t) = σp·k(t)dt and σplk(t) = − tk−1

(k−1)!
(1−H(t))ect

σprk(t) = tk−1

(k−1)!
H(t)ect.

Rodrigo Duarte Measure Transitions May 13, 2020 17 / 24



Transition Polynomial

Consider a polarized measure pair (µl, µr)α,c,β , with associated meromorphic

function f .

Expanding in a Laurent series, we can write

f(z) =
m∑
k=1

bk

(z − c)k
+

∑
k≥0

ck(z − c)k =: fp(z) + fh0 (z), z ∈ BR(c) \ {c},

where R = min{|α− c|, |β − c|}.
fh0 can be extended analytically to a holomorphic function fh(z) in Tα,β such that

f(z) = fp(z) + fh(z), ∀z ∈ Tα,β \ {c}.

By direct computation one can verify that

1

(z − c)k
=

{
LF(µplk)(z), z ∈ T−∞,c
LF(µprk)(z), z ∈ Tc,+∞,

where dµp·k(t) = σp·k(t)dt and σplk(t) = − tk−1

(k−1)!
(1−H(t))ect

σprk(t) = tk−1

(k−1)!
H(t)ect.

Rodrigo Duarte Measure Transitions May 13, 2020 17 / 24



Transition Polynomial

Consider a polarized measure pair (µl, µr)α,c,β , with associated meromorphic

function f .

Expanding in a Laurent series, we can write

f(z) =
m∑
k=1

bk

(z − c)k
+

∑
k≥0

ck(z − c)k =: fp(z) + fh0 (z), z ∈ BR(c) \ {c},

where R = min{|α− c|, |β − c|}.
fh0 can be extended analytically to a holomorphic function fh(z) in Tα,β such that

f(z) = fp(z) + fh(z), ∀z ∈ Tα,β \ {c}.

By direct computation one can verify that

1

(z − c)k
=

{
LF(µplk)(z), z ∈ T−∞,c
LF(µprk)(z), z ∈ Tc,+∞,

where dµp·k(t) = σp·k(t)dt and σplk(t) = − tk−1

(k−1)!
(1−H(t))ect

σprk(t) = tk−1

(k−1)!
H(t)ect.

Rodrigo Duarte Measure Transitions May 13, 2020 17 / 24



Transition Polynomial

Consider a polarized measure pair (µl, µr)α,c,β , with associated meromorphic

function f .

Expanding in a Laurent series, we can write

f(z) =
m∑
k=1

bk

(z − c)k
+

∑
k≥0

ck(z − c)k =: fp(z) + fh0 (z), z ∈ BR(c) \ {c},

where R = min{|α− c|, |β − c|}.
fh0 can be extended analytically to a holomorphic function fh(z) in Tα,β such that

f(z) = fp(z) + fh(z), ∀z ∈ Tα,β \ {c}.

By direct computation one can verify that

1

(z − c)k
=

{
LF(µplk)(z), z ∈ T−∞,c
LF(µprk)(z), z ∈ Tc,+∞,

where dµp·k(t) = σp·k(t)dt and σplk(t) = − tk−1

(k−1)!
(1−H(t))ect

σprk(t) = tk−1

(k−1)!
H(t)ect.

Rodrigo Duarte Measure Transitions May 13, 2020 17 / 24



Transition Polynomial

Adding these measures we de�ne

µp· =

m∑
k=1

bkµ
p
·k.

Then, we obtain

fp(z) =

{
LF(µpl )(z), z ∈ T−∞,c
LF(µpr)(z), z ∈ Tc,+∞.

One can check that indeed µp· is an EFSM with density

σp· (t) =

m∑
k=1

bkσ
p
·k(t).

De�nition

We de�ne the transition polynomial to be

P(t) =
m∑
k=1

bk
(k − 1)!

tk−1 = e−ct(σpr (t)− σpl (t)).
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Lemma

Let (µl, µr)α,c,β be a polarized measure pair with associated function f . Suppose
that µhrx0 := µrx0 − µprx0 is exponentially �nite with respect to ]α− x0, β − x0[, for
some x0 ∈]c, β[. Then,

f(z) = f(x+ iy) = LF(µplx + µhrx)(iy), z ∈ Tα,c.

Note that µhrx0 is a �nite signed measure exponentially �nite with respect to
]c− x0, β − x0[, even if µr − µpr is not a signed measure;

We have
f(z) = fp(z) + LF(µhrx0)(z − x0), z ∈ Tc,β .

By uniqueness of analytic continuation we must have this equality in the whole
strip Tα,β \ {c}.
Recalling that fp(z) = LF(µpl )(z) when z ∈ Tα,c, it follows that

f(z) = LF(µpl )(z) + LF(µ
h
rx0)(z − x0) = LF(µ

p
lx + µhrx)(iy).

Remark:

There is an analogous result using µl and going from Tα,c to Tc,β .
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Note that µhrx0 is a �nite signed measure exponentially �nite with respect to
]c− x0, β − x0[, even if µr − µpr is not a signed measure;

We have
f(z) = fp(z) + LF(µhrx0)(z − x0), z ∈ Tc,β .

By uniqueness of analytic continuation we must have this equality in the whole
strip Tα,β \ {c}.
Recalling that fp(z) = LF(µpl )(z) when z ∈ Tα,c, it follows that

f(z) = LF(µpl )(z) + LF(µ
h
rx0)(z − x0) = LF(µ

p
lx + µhrx)(iy).

Remark:

There is an analogous result using µl and going from Tα,c to Tc,β .
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Main Theorem

Theorem

Let (µl, µr)α,c,β be a polarized measure pair. The following are equivalent:

(i) µhrx0
:= µrx0 − µprx0

is exponentially �nite with respect to
]α− x0, β − x0[, for some x0 ∈]c, β[;

(ii) We have {
µsl = µsr
σr(t)− σl(t) = P(t)ect a.e. in R

where µsl , µ
s
r are exponentially �nite with respect to ]α, β[, and

dµa· (t) = σ·(t)dt;

(iii) µhr =: µr − µpr is a bilaterally polarized EFSM with respect to ]α, β[.

Remarks:

One could replace r by l in item (i) and (iii);

The implication (iii) =⇒ (i) is immediate.
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Proof of (i) =⇒ (ii)

By the lemma above we have

f(x+ iy) = LF(µlx)(iy) = LF(µplx + µhrx)(iy),

so µlx = µplx + µhrx, for x ∈]α, c[.

Considering the Lebesgue decomposition we obtain µslx = µhsrx = µsrx. So,

e−xtdµsl = dµslx = dµsrx = e−xtdµsr.

Thus, µsl = µsr.

Considering instead the absolutely continuous part we obtain
µalx = µpalx + µharx = µplx + µarx − µprx, so

µarx − µalx = µprx − µ
p
lx.

Thus,

e−xt(σr − σl)dt = d(µarx − µalx) = d(µprx − µ
p
lx) = e−xt(σpr − σ

p
l )dt

= e−xtP(t)ectdt.
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Open Questions

Can these results be generalised to Cn?

We assumed that the singularity at z = c is a pole. What happens at an
essential singularity?

f(z) =
∑
k≥1

bk
(z − c)k

+
∑
k≥0

ck(z − c)k, z ∈ BR(c) \ {c}.

� In this case, the argument for the existence of fh does not work.

� Moreover, in the construction of σpr , we would obtain an in�nite sum

σpr (t) = H(t)ect
∑
k≥1

bk
tk−1

(k − 1)!
.

� Decay properties of bk?
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