Polar Functions and Measure Transitions

Rodrigo Duarte
Instituto Superior Técnico

May 13, 2020

Positive Definite Functions

- In the theory of integral equations, operators of the form

$$
T_{K} g(x)=\int K(x, y) g(y) d y
$$

have an important role.

Positive Definite Functions

- In the theory of integral equations, operators of the form

$$
T_{K} g(x)=\int K(x, y) g(y) d y
$$

have an important role. In 1909, James Mercer introduced the following notion relating to this theory:

Positive Definite Functions

- In the theory of integral equations, operators of the form

$$
T_{K} g(x)=\int K(x, y) g(y) d y
$$

have an important role. In 1909, James Mercer introduced the following notion relating to this theory:

Definition

$K: \mathbb{R}^{2} \rightarrow \mathbb{C}$ is said to be a positive definite kernel if for any collection $\left(x_{k}\right)_{k=1}^{n}$, we have

$$
\sum_{k, l=1}^{n} K\left(x_{k}, x_{l}\right) \xi_{k} \bar{\xi}_{l} \geq 0, \forall \xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{C}^{n}
$$

Positive Definite Functions

- In the theory of integral equations, operators of the form

$$
T_{K} g(x)=\int K(x, y) g(y) d y
$$

have an important role. In 1909, James Mercer introduced the following notion relating to this theory:

Definition

$K: \mathbb{R}^{2} \rightarrow \mathbb{C}$ is said to be a positive definite kernel if for any collection $\left(x_{k}\right)_{k=1}^{n}$, we have

$$
\sum_{k, l=1}^{n} K\left(x_{k}, x_{l}\right) \xi_{k} \bar{\xi}_{l} \geq 0, \forall \xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{C}^{n}
$$

- The case $K(x, y)=f(x-y)$ is of particular interest for the operators T_{K}.

Positive Definite Functions

- In the theory of integral equations, operators of the form

$$
T_{K} g(x)=\int K(x, y) g(y) d y
$$

have an important role. In 1909, James Mercer introduced the following notion relating to this theory:

Definition

$K: \mathbb{R}^{2} \rightarrow \mathbb{C}$ is said to be a positive definite kernel if for any collection $\left(x_{k}\right)_{k=1}^{n}$, we have

$$
\sum_{k, l=1}^{n} K\left(x_{k}, x_{l}\right) \xi_{k} \bar{\xi}_{l} \geq 0, \forall \xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{C}^{n}
$$

- The case $K(x, y)=f(x-y)$ is of particular interest for the operators T_{K}.

Definition

A function $f: \mathbb{R} \rightarrow \mathbb{C}$ is said to be positive definite if for any collection $\left(x_{k}\right)_{k=1}^{n}$ we have

$$
\sum_{k, l=1}^{n} f\left(x_{k}-x_{l}\right) \xi_{k} \bar{\xi}_{l} \geq 0, \quad \forall \xi \in \mathbb{C}^{n}
$$

Polar Functions

Polar Functions

Definition

A function $f: \Lambda \subset \mathbb{C} \rightarrow \mathbb{C}$ is said to be (co-)positive definite if for any collection $\left(z_{k}\right)_{k=1}^{n}$ satisfying $z_{k} \pm \bar{z}_{k} \in \Lambda$, we have

$$
\sum_{k, l=1}^{n} f\left(z_{k} \pm \bar{z}_{l}\right) \xi_{k} \bar{\xi}_{l} \geq 0, \forall \xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{C}^{n}
$$

Polar Functions

Definition

A function $f: \Lambda \subset \mathbb{C} \rightarrow \mathbb{C}$ is said to be (co-)positive definite if for any collection $\left(z_{k}\right)_{k=1}^{n}$ satisfying $z_{k} \pm \bar{z}_{k} \in \Lambda$, we have

$$
\sum_{k, l=1}^{n} f\left(z_{k} \pm \bar{z}_{l}\right) \xi_{k} \bar{\xi}_{l} \geq 0, \forall \xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{C}^{n}
$$

Definition

A function $f: \Lambda \subset \mathbb{C} \rightarrow \mathbb{C}$ is called polar if it is (co-)positive definite or (co-)negative definite.

Polar Functions

Definition

A function $f: \Lambda \subset \mathbb{C} \rightarrow \mathbb{C}$ is said to be (co-)positive definite if for any collection $\left(z_{k}\right)_{k=1}^{n}$ satisfying $z_{k} \pm \bar{z}_{k} \in \Lambda$, we have

$$
\sum_{k, l=1}^{n} f\left(z_{k} \pm \bar{z}_{l}\right) \xi_{k} \bar{\xi}_{l} \geq 0, \quad \forall \xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{C}^{n}
$$

Definition

A function $f: \Lambda \subset \mathbb{C} \rightarrow \mathbb{C}$ is called polar if it is (co-)positive definite or (co-)negative definite.

Remarks:

- A function f is positive definite in Λ if and only if the function $g(z)=f(i z)$ is co-positive definite in $-i \Lambda$.

Polar Functions

Definition

A function $f: \Lambda \subset \mathbb{C} \rightarrow \mathbb{C}$ is said to be (co-)positive definite if for any collection $\left(z_{k}\right)_{k=1}^{n}$ satisfying $z_{k} \pm \bar{z}_{k} \in \Lambda$, we have

$$
\sum_{k, l=1}^{n} f\left(z_{k} \pm \bar{z}_{l}\right) \xi_{k} \bar{\xi}_{l} \geq 0, \forall \xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{C}^{n}
$$

Definition

A function $f: \Lambda \subset \mathbb{C} \rightarrow \mathbb{C}$ is called polar if it is (co-)positive definite or (co-)negative definite.

Remarks:

- A function f is positive definite in Λ if and only if the function $g(z)=f(i z)$ is co-positive definite in $-i \Lambda$.
- We can always translate from the notion of positive definiteness to the notion of co-positive definiteness.

An Important Example

An Important Example

- Recall the definition of the Gamma function:

$$
\Gamma(z)=\int_{0}^{+\infty} x^{z-1} e^{-x} d x, \Re(z)>0 .
$$

An Important Example

- Recall the definition of the Gamma function:

$$
\Gamma(z)=\int_{0}^{+\infty} x^{z-1} e^{-x} d x, \Re(z)>0 .
$$

- This function is co-positive definite in this half plane.

$$
\sum_{k, l=1}^{n} \Gamma\left(z_{k}+\bar{z}_{l}\right) \xi_{k} \bar{\xi}_{l}=\int_{0}^{+\infty} \frac{e^{-x}}{x}\left|\sum_{k=1}^{n} x^{z_{k}} \xi_{k}\right|^{2} d x \geq 0
$$

An Important Example

- Recall the definition of the Gamma function:

$$
\Gamma(z)=\int_{0}^{+\infty} x^{z-1} e^{-x} d x, \Re(z)>0 .
$$

- This function is co-positive definite in this half plane.

$$
\sum_{k, l=1}^{n} \Gamma\left(z_{k}+\bar{z}_{l}\right) \xi_{k} \bar{\xi}_{l}=\int_{0}^{+\infty} \frac{e^{-x}}{x}\left|\sum_{k=1}^{n} x^{z_{k}} \xi_{k}\right|^{2} d x \geq 0
$$

- Γ can be extended to a meromorphic function on \mathbb{C} using the relationship $\Gamma(z+1)=z \Gamma(z)$. The Gamma function has simple poles at the nonpositive integers, with residues $\operatorname{Res}(\Gamma,-n)=(-1)^{n} / n$!.

An Important Example

- Recall the definition of the Gamma function:

$$
\Gamma(z)=\int_{0}^{+\infty} x^{z-1} e^{-x} d x, \Re(z)>0 .
$$

- This function is co-positive definite in this half plane.

$$
\sum_{k, l=1}^{n} \Gamma\left(z_{k}+\bar{z}_{l}\right) \xi_{k} \bar{\xi}_{l}=\int_{0}^{+\infty} \frac{e^{-x}}{x}\left|\sum_{k=1}^{n} x^{z_{k}} \xi_{k}\right|^{2} d x \geq 0
$$

- Γ can be extended to a meromorphic function on \mathbb{C} using the relationship $\Gamma(z+1)=z \Gamma(z)$. The Gamma function has simple poles at the nonpositive integers, with residues $\operatorname{Res}(\Gamma,-n)=(-1)^{n} / n$!.
- In each vertical strip $-n<\Re(z)<-n+1$, we have the Cauchy-Saalschütz formula

$$
\Gamma(z)=\int_{0}^{+\infty} x^{z-1}\left(e^{-x}-\sum_{m<n} \frac{(-1)^{m}}{m!} x^{m}\right) d x
$$

- Using the Cauchy-Saalschütz formula one can show that Γ is co-positive definite in the strips $-n<\Re(z)<-n+1$ with n even, and co-negative definite in these strips with n odd.
- Using the Cauchy-Saalschütz formula one can show that Γ is co-positive definite in the strips $-n<\Re(z)<-n+1$ with n even, and co-negative definite in these strips with n odd.

- Using the Cauchy-Saalschütz formula one can show that Γ is co-positive definite in the strips $-n<\Re(z)<-n+1$ with n even, and co-negative definite in these strips with n odd.

- With the change of variables $t=-\log (x)$ we obtain, in the strip $-n<\Re(z)<-n+1$, the representation
- Using the Cauchy-Saalschütz formula one can show that Γ is co-positive definite in the strips $-n<\Re(z)<-n+1$ with n even, and co-negative definite in these strips with n odd.

- With the change of variables $t=-\log (x)$ we obtain, in the strip $-n<\Re(z)<-n+1$, the representation

$$
\Gamma(z)=\int_{-\infty}^{+\infty} e^{-z t} d \mu_{-n}(t)
$$

- Using the Cauchy-Saalschütz formula one can show that Γ is co-positive definite in the strips $-n<\Re(z)<-n+1$ with n even, and co-negative definite in these strips with n odd.

- With the change of variables $t=-\log (x)$ we obtain, in the strip $-n<\Re(z)<-n+1$, the representation

$$
\Gamma(z)=\int_{-\infty}^{+\infty} e^{-z t} d \mu_{-n}(t), d \mu_{-n}(t)=\sigma_{-n}(t) d t
$$

- Using the Cauchy-Saalschütz formula one can show that Γ is co-positive definite in the strips $-n<\Re(z)<-n+1$ with n even, and co-negative definite in these strips with n odd.

- With the change of variables $t=-\log (x)$ we obtain, in the strip $-n<\Re(z)<-n+1$, the representation

$$
\Gamma(z)=\int_{-\infty}^{+\infty} e^{-z t} d \mu_{-n}(t), d \mu_{-n}(t)=\sigma_{-n}(t) d t
$$

where

$$
\sigma_{-n}(t)=\sum_{m \geq n} \frac{(-1)^{m}}{m!} e^{-m t}
$$

- Using the Cauchy-Saalschütz formula one can show that Γ is co-positive definite in the strips $-n<\Re(z)<-n+1$ with n even, and co-negative definite in these strips with n odd.

- With the change of variables $t=-\log (x)$ we obtain, in the strip $-n<\Re(z)<-n+1$, the representation

$$
\Gamma(z)=\int_{-\infty}^{+\infty} e^{-z t} d \mu_{-n}(t), d \mu_{-n}(t)=\sigma_{-n}(t) d t
$$

where

$$
\sigma_{-n}(t)=\sum_{m \geq n} \frac{(-1)^{m}}{m!} e^{-m t}
$$

- Note that the transition from one density to the one on its left follows the simple transition formula:

$$
\sigma_{-n}(t)-\sigma_{-(n+1)}(t)=\frac{(-1)^{n}}{n!} e^{-n t} .
$$

Laplace-Fourier Transform

Laplace-Fourier Transform

- A well known result in harmonic analysis relates the Fourier transform with positive definite functions.

Laplace-Fourier Transform

- A well known result in harmonic analysis relates the Fourier transform with positive definite functions.

Bochner's Theorem

A continuous function $f: \mathbb{R} \rightarrow \mathbb{C}$ is positive definite if and only if there is a unique finite and nonnegative measure μ such that

$$
f(x)=\int_{\mathbb{R}} e^{i t x} d \mu(t)
$$

Laplace-Fourier Transform

- A well known result in harmonic analysis relates the Fourier transform with positive definite functions.

Bochner's Theorem

A continuous function $f: \mathbb{R} \rightarrow \mathbb{C}$ is positive definite if and only if there is a unique finite and nonnegative measure μ such that

$$
f(x)=\int_{\mathbb{R}} e^{i t x} d \mu(t)
$$

Definition

The Laplace-Fourier transform of a measure μ and the Fourier-Laplace transform are defined by

$$
\mathcal{L} \mathcal{F}(\mu)(z)=\int_{\mathbb{R}} e^{-z t} d \mu(t), \mathcal{F} \mathcal{L}(\mu)(z)=\int_{\mathbb{R}} e^{i z t} d \mu(t)
$$

Laplace-Fourier Transform

Laplace-Fourier Transform

Definition

A measure μ over the σ-algebra of measurable sets in \mathbb{R} is exponentially finite with respect to a nonempty interval I, if

$$
\int_{\mathbb{R}} e^{-y t} d \mu(t)<\infty,
$$

for all $y \in I$.

Laplace-Fourier Transform

Definition

A measure μ over the σ-algebra of measurable sets in \mathbb{R} is exponentially finite with respect to a nonempty interval I, if

$$
\int_{\mathbb{R}} e^{-y t} d \mu(t)<\infty,
$$

for all $y \in I$.

- We define the strips $S_{a, b}=\{z \in \mathbb{C} \mid a<\Im(z)<b\}$ and $T_{a, b}=\{z \in \mathbb{C} \mid a<\Re(z)<b\}$.

Laplace-Fourier Transform

Definition

A measure μ over the σ-algebra of measurable sets in \mathbb{R} is exponentially finite with respect to a nonempty interval I, if

$$
\int_{\mathbb{R}} e^{-y t} d \mu(t)<\infty,
$$

for all $y \in I$.

- We define the strips $S_{a, b}=\{z \in \mathbb{C} \mid a<\Im(z)<b\}$ and $T_{a, b}=\{z \in \mathbb{C} \mid a<\Re(z)<b\}$.

Proposition

Let μ be a nonnegative measure which is exponentially finite with respect to $] a, b[$. Then, we can assume $] a, b[$ is maximal and the function $\mathcal{L} \mathcal{F}(\mu)$ is holomorphic and co-positive definite in $T_{a, b}$, with singularities in a and b, if finite.

Laplace-Fourier Transform

Laplace-Fourier Transform

Theorem

Let $f: T_{a, b} \rightarrow \mathbb{C}$ be some holomorphic function. Then f is co-positive definite if and only if it is the Laplace-Fourier transform of an exponentially finite measure with respect to $] a, b[$. Furthermore, μ is uniquely determined by f.

Laplace-Fourier Transform

Theorem

Let $f: T_{a, b} \rightarrow \mathbb{C}$ be some holomorphic function. Then f is co-positive definite if and only if it is the Laplace-Fourier transform of an exponentially finite measure with respect to $] a, b[$. Furthermore, μ is uniquely determined by f.

Remarks:

- If] α, β [is the maximal interval with respect to which μ is exponentially finite, then f has an analytic continuation $\mathcal{L \mathcal { F }}$ to $T_{\alpha, \beta}$.

Laplace-Fourier Transform

Theorem

Let $f: T_{a, b} \rightarrow \mathbb{C}$ be some holomorphic function. Then f is co-positive definite if and only if it is the Laplace-Fourier transform of an exponentially finite measure with respect to $] a, b[$. Furthermore, μ is uniquely determined by f.

Remarks:

- If] α, β [is the maximal interval with respect to which μ is exponentially finite, then f has an analytic continuation $\mathcal{L \mathcal { F }}$ to $T_{\alpha, \beta}$.
- There will be singularities at α and β if these are finite.

Laplace-Fourier Transform

Theorem

Let $f: T_{a, b} \rightarrow \mathbb{C}$ be some holomorphic function. Then f is co-positive definite if and only if it is the Laplace-Fourier transform of an exponentially finite measure with respect to $] a, b[$. Furthermore, μ is uniquely determined by f.

Remarks:

- If $] \alpha, \beta$ is the maximal interval with respect to which μ is exponentially finite, then f has an analytic continuation $\mathcal{L \mathcal { F }}$ to $T_{\alpha, \beta}$.
- There will be singularities at α and β if these are finite.
- This result has a direct analog for positive definite functions and Fourier-Laplace transforms.

Examples			
Function	Strip pair and polarity	Pole	Transition of densities

Examples			
Function	Strip pair and polarity	Pole	Transition of densities
$\Gamma(z)$			

Examples			
Function	Strip pair and polarity	Pole	Transition of densities
$\Gamma(z)$	$T_{-n-1,-n}, T_{-n,-n+1}$		

Examples			
Function	Strip pair and polarity	Pole	Transition of densities
$\Gamma(z)$	$T_{-n-1,-n}, T_{-n,-n+1}$	$z=-n$	

Examples			
Function	Strip pair and polarity	Pole	Transition of densities
$\Gamma(z)$	$T_{-n-1,-n}, T_{-n,-n+1}$	$z=-n$	$\sigma_{r}(t)-\sigma_{l}(t)=\frac{(-1)^{n}}{n!} e^{-n t}$

Examples			
Function	Strip pair and polarity	Pole	Transition of densities
$\mathcal{Z}(z)=-\frac{\zeta(z)}{z}$			
$\Gamma(z)$	$T_{-n-1,-n}, T_{-n,-n+1}$	$z=-n$	$\sigma_{r}(t)-\sigma_{l}(t)=\frac{(-1)^{n}}{n!} e^{-n t}$

Examples			
Function	Strip pair and polarity	Pole	Transition of densities
$\Gamma(z)$	$T_{-n-1,-n}, T_{-n,-n+1}$	$z=-n$	$\sigma_{r}(t)-\sigma_{l}(t)=\frac{(-1)^{n}}{n!} e^{-n t}$
$\mathcal{Z}(z)=-\frac{\zeta(z)}{z}$	+ in $T_{0,1},-$ in $T_{1,+\infty}$		

Examples			
Function	Strip pair and polarity	Pole	Transition of densities
$\Gamma(z)$	$T_{-n-1,-n}, T_{-n,-n+1}$	$z=-n$	$\sigma_{r}(t)-\sigma_{l}(t)=\frac{(-1)^{n}}{n!} e^{-n t}$
$\mathcal{Z}(z)=-\frac{\zeta(z)}{z}$	+ in $T_{0,1},-$ in $T_{1,+\infty}$	$z=1$	

Examples			
Function	Strip pair and polarity	Pole	Transition of densities
$\Gamma(z)$	$T_{-n-1,-n}, T_{-n,-n+1}$	$z=-n$	$\sigma_{r}(t)-\sigma_{l}(t)=\frac{(-1)^{n}}{n!} e^{-n t}$
$\mathcal{Z}(z)=-\frac{\zeta(z)}{z}$	+ in $T_{0,1},-$ in $T_{1,+\infty}$	$z=1$	$\sigma_{r}(t)-\sigma_{l}(t)=-e^{t}$

Examples			
Function	Strip pair and polarity	Pole	Transition of densities
$\mathcal{Z}(z)=-\frac{\zeta(z)}{z}$	$\begin{aligned} & T_{-n-1,-n}, T_{-n,-n+1} \\ & + \text { in } T_{0,1},- \text { in } T_{1,+\infty} \end{aligned}$	$\begin{gathered} z=-n \\ z=1 \end{gathered}$	$\sigma_{r}(t)-\sigma_{l}(t)=\frac{(-1)^{n}}{n!} e^{-n t}$ $\sigma_{r}(t)-\sigma_{l}(t)=-e^{t}$
$\frac{1}{z(z+1)^{2}}$			

Examples			
Function	Strip pair and polarity	Pole	Transition of densities
$\Gamma(z)$	$T_{-n-1,-n}, T_{-n,-n+1}$	$z=-n$	$\sigma_{r}(t)-\sigma_{l}(t)=\frac{(-1)^{n}}{n!} e^{-n t}$
$\mathcal{Z}(z)=-\frac{\zeta(z)}{z}$	+ in $T_{0,1},-$ in $T_{1,+\infty}$	$z=1$	$\sigma_{r}(t)-\sigma_{l}(t)=-e^{t}$
$\frac{1}{z(z+1)^{2}}$	- in $T_{-\infty,-1},-$ in $T_{-1,0}$		

Examples			
Function	Strip pair and polarity	Pole	Transition of densities
$\Gamma(z)$	$T_{-n-1,-n}, T_{-n,-n+1}$	$z=-n$	$\sigma_{r}(t)-\sigma_{l}(t)=\frac{(-1)^{n}}{n!} e^{-n t}$
$\mathcal{Z}(z)=-\frac{\zeta(z)}{z}$	+ in $T_{0,1},-$ in $T_{1,+\infty}$	$z=1$	$\sigma_{r}(t)-\sigma_{l}(t)=-e^{t}$
$\frac{1}{z(z+1)^{2}}$	- in $T_{-\infty,-1},-$ in $T_{-1,0}$	$z=-1$	

Examples			
Function	Strip pair and polarity	Pole	Transition of densities
$\Gamma(z)$	$T_{-n-1,-n}, T_{-n,-n+1}$	$z=-n$	$\sigma_{r}(t)-\sigma_{l}(t)=\frac{(-1)^{n}}{n!} e^{-n t}$
$\mathcal{Z}(z)=-\frac{\zeta(z)}{z}$	+ in $T_{0,1},-$ in $T_{1,+\infty}$	$z=1$	$\sigma_{r}(t)-\sigma_{l}(t)=-e^{t}$
$\frac{1}{z(z+1)^{2}}$	- in $T_{-\infty,-1},-$ in $T_{-1,0}$	$z=-1$	$\sigma_{r}(t)-\sigma_{l}(t)=-(1+t) e^{-t}$

Examples			
Function	Strip pair and polarity	Pole	Transition of densities
$\Gamma(z)$	$T_{-n-1,-n}, T_{-n,-n+1}$	$z=-n$	$\sigma_{r}(t)-\sigma_{l}(t)=\frac{(-1)^{n}}{n!} e^{-n t}$
$\mathcal{Z}(z)=-\frac{\zeta(z)}{z}$	+ in $T_{0,1},-$ in $T_{1,+\infty}$	$z=1$	$\sigma_{r}(t)-\sigma_{l}(t)=-e^{t}$
$\frac{1}{z(z+1)^{2}}$	- in $T_{-\infty,-1},-$ in $T_{-1,0}$	$z=-1$	$\sigma_{r}(t)-\sigma_{l}(t)=-(1+t) e^{-t}$
General $f(z)$			

Examples			
Function	Strip pair and polarity	Pole	Transition of densities
$\Gamma(z)$	$T_{-n-1,-n}, T_{-n,-n+1}$	$z=-n$	$\sigma_{r}(t)-\sigma_{l}(t)=\frac{(-1)^{n}}{n!} e^{-n t}$
$\mathcal{Z}(z)=-\frac{\zeta(z)}{z}$	+ in $T_{0,1},-$ in $T_{1,+\infty}$	$z=1$	$\sigma_{r}(t)-\sigma_{l}(t)=-e^{t}$
$\frac{1}{z(z+1)^{2}}$	- in $T_{-\infty,-1},-$ in $T_{-1,0}$	$z=-1$	$\sigma_{r}(t)-\sigma_{l}(t)=-(1+t) e^{-t}$
General $f(z)$			

Examples			
Function	Strip pair and polarity	Pole	Transition of densities
$\Gamma(z)$	$T_{-n-1,-n}, T_{-n,-n+1}$	$z=-n$	$\sigma_{r}(t)-\sigma_{l}(t)=\frac{(-1)^{n}}{n!} e^{-n t}$
$\mathcal{Z}(z)=-\frac{\zeta(z)}{z}$	+ in $T_{0,1},-$ in $T_{1,+\infty}$	$z=1$	$\sigma_{r}(t)-\sigma_{l}(t)=-e^{t}$
$\frac{1}{z(z+1)^{2}}$	- in $T_{-\infty,-1},-$ in $T_{-1,0}$	$z=-1$	$\sigma_{r}(t)-\sigma_{l}(t)=-(1+t) e^{-t}$
General $f(z)$		$z=c$	

Examples			
Function	Strip pair and polarity	Pole	Transition of densities
$\Gamma(z)$	$T_{-n-1,-n}, T_{-n,-n+1}$	$z=-n$	$\sigma_{r}(t)-\sigma_{l}(t)=\frac{(-1)^{n}}{n!} e^{-n t}$
$\mathcal{Z}(z)=-\frac{\zeta(z)}{z}$	+ in $T_{0,1},-$ in $T_{1,+\infty}$	$z=1$	$\sigma_{r}(t)-\sigma_{l}(t)=-e^{t}$
$\frac{1}{z(z+1)^{2}}$	- in $T_{-\infty,-1},-$ in $T_{-1,0}$	$z=-1$	$\sigma_{r}(t)-\sigma_{l}(t)=-(1+t) e^{-t}$
General $f(z)$		$z=c$	$\sigma_{r}(t)-\sigma_{l}(t)=\mathcal{P}(t) e^{c t} ?$

Short Detour Through Measure Theory

Short Detour Through Measure Theory

Definition

Let (X, \mathcal{M}) be a measurable space. A signed measure in X is a set function $\mu: \mathcal{M} \rightarrow[-\infty,+\infty]$ such that

Short Detour Through Measure Theory

Definition

Let (X, \mathcal{M}) be a measurable space. A signed measure in X is a set function $\mu: \mathcal{M} \rightarrow[-\infty,+\infty]$ such that

- $\mu(\varnothing)=0$;

Short Detour Through Measure Theory

Definition

Let (X, \mathcal{M}) be a measurable space. A signed measure in X is a set function $\mu: \mathcal{M} \rightarrow[-\infty,+\infty]$ such that

- $\mu(\varnothing)=0$;
- μ does not take more than one infinite value;

Short Detour Through Measure Theory

Definition

Let (X, \mathcal{M}) be a measurable space. A signed measure in X is a set function $\mu: \mathcal{M} \rightarrow[-\infty,+\infty]$ such that

- $\mu(\varnothing)=0$;
- μ does not take more than one infinite value;
- If $\left(A_{n}\right)_{n}$ is a sequence of disjoint measurable sets then

$$
\mu\left(\bigcup_{n} A_{n}\right)=\sum_{n} \mu\left(A_{n}\right),
$$

where the series converges absolutely if $\mu\left(\bigcup_{n} A_{n}\right)$ is finite.

Short Detour Through Measure Theory

Definition

Let (X, \mathcal{M}) be a measurable space. A signed measure in X is a set function $\mu: \mathcal{M} \rightarrow[-\infty,+\infty]$ such that

- $\mu(\varnothing)=0$;
- μ does not take more than one infinite value;
- If $\left(A_{n}\right)_{n}$ is a sequence of disjoint measurable sets then

$$
\mu\left(\bigcup_{n} A_{n}\right)=\sum_{n} \mu\left(A_{n}\right),
$$

where the series converges absolutely if $\mu\left(\bigcup_{n} A_{n}\right)$ is finite.

Definition

A signed measure μ is σ-finite if there is a countable family $\left\{A_{n}\right\} \subseteq \mathcal{M}$ of measurable sets with finite measure such that

$$
X=\bigcup_{n} A_{n}
$$

Short Detour Through Measure Theory

Short Detour Through Measure Theory

Definition

Suppose we have two signed measures μ and ν in (X, \mathcal{M}). We say that ν is singular with respect to μ if there are measurable sets A, B such that $A \cap B=\varnothing, A \cup B=X, \mu(A)=0$ and $\nu(B)=0$. This is written $\mu \perp \nu$.

Short Detour Through Measure Theory

Definition

Suppose we have two signed measures μ and ν in (X, \mathcal{M}). We say that ν is singular with respect to μ if there are measurable sets A, B such that $A \cap B=\varnothing, A \cup B=X, \mu(A)=0$ and $\nu(B)=0$. This is written $\mu \perp \nu$.

Definition

Let ν be a signed measure and μ a nonnegative measure in (X, \mathcal{M}). We say that ν is absolutely continuous with respect to μ if

$$
\mu(A)=0 \Longrightarrow \nu(A)=0, \forall A \in \mathcal{M}
$$

This is written $\nu \ll \mu$.

Short Detour Through Measure Theory

Short Detour Through Measure Theory

Jordan Decomposition Theorem

Let μ be a signed measure. Then, there are unique nonnegative measures μ^{+} and μ^{-}, such that

$$
\mu=\mu^{+}-\mu^{-},
$$

and $\mu^{+} \perp \mu^{-}$.

Short Detour Through Measure Theory

Jordan Decomposition Theorem

Let μ be a signed measure. Then, there are unique nonnegative measures μ^{+} and μ^{-}, such that

$$
\mu=\mu^{+}-\mu^{-},
$$

and $\mu^{+} \perp \mu^{-}$.

- One of μ^{+}, μ^{-}is finite;

Short Detour Through Measure Theory

Jordan Decomposition Theorem

Let μ be a signed measure. Then, there are unique nonnegative measures μ^{+} and μ^{-}, such that

$$
\mu=\mu^{+}-\mu^{-},
$$

and $\mu^{+} \perp \mu^{-}$.

- One of μ^{+}, μ^{-}is finite;
- One defines $L^{1}(\mu)=L^{1}\left(\mu^{+}\right) \cap L^{1}\left(\mu^{-}\right)$and for $f \in L^{1}(\mu)$,

$$
\int f d \mu:=\int f d \mu^{+}-\int f d \mu^{-} .
$$

Short Detour Through Measure Theory

Short Detour Through Measure Theory

The Lebesgue-Radon-Nikodym Theorem
Let ν be a σ-finite signed measure and μ a σ-finite nonnegative measure on (X, \mathcal{M}).

Short Detour Through Measure Theory

The Lebesgue-Radon-Nikodym Theorem

Let ν be a σ-finite signed measure and μ a σ-finite nonnegative measure on (X, \mathcal{M}). Then, there are unique σ-finite measures ν^{a} and ν^{s} on (X, \mathcal{M}) such that

$$
\nu=\nu^{a}+\nu^{s}
$$

with $\nu^{a} \ll \mu$ and $\nu^{s} \perp \mu$.

Short Detour Through Measure Theory

The Lebesgue-Radon-Nikodym Theorem

Let ν be a σ-finite signed measure and μ a σ-finite nonnegative measure on (X, \mathcal{M}). Then, there are unique σ-finite measures ν^{a} and ν^{s} on (X, \mathcal{M}) such that

$$
\nu=\nu^{a}+\nu^{s}
$$

with $\nu^{a} \ll \mu$ and $\nu^{s} \perp \mu$. Moreover, there is a unique (a.e.) extended μ-integrable function $f: X \rightarrow \mathbb{R}$ such that

$$
\nu^{a}(A)=\int_{A} f d \mu, \forall A \in \mathcal{M}
$$

Short Detour Through Measure Theory

The Lebesgue-Radon-Nikodym Theorem

Let ν be a σ-finite signed measure and μ a σ-finite nonnegative measure on (X, \mathcal{M}). Then, there are unique σ-finite measures ν^{a} and ν^{s} on (X, \mathcal{M}) such that

$$
\nu=\nu^{a}+\nu^{s}
$$

with $\nu^{a} \ll \mu$ and $\nu^{s} \perp \mu$. Moreover, there is a unique (a.e.) extended μ-integrable function $f: X \rightarrow \mathbb{R}$ such that

$$
\nu^{a}(A)=\int_{A} f d \mu, \forall A \in \mathcal{M}
$$

- The splitting $\nu=\nu^{a}+\nu^{s}$ is called the Lebesgue Decomposition.

Short Detour Through Measure Theory

The Lebesgue-Radon-Nikodym Theorem

Let ν be a σ-finite signed measure and μ a σ-finite nonnegative measure on (X, \mathcal{M}). Then, there are unique σ-finite measures ν^{a} and ν^{s} on (X, \mathcal{M}) such that

$$
\nu=\nu^{a}+\nu^{s}
$$

with $\nu^{a} \ll \mu$ and $\nu^{s} \perp \mu$. Moreover, there is a unique (a.e.) extended μ-integrable function $f: X \rightarrow \mathbb{R}$ such that

$$
\nu^{a}(A)=\int_{A} f d \mu, \forall A \in \mathcal{M}
$$

- The splitting $\nu=\nu^{a}+\nu^{s}$ is called the Lebesgue Decomposition.
- The relation

$$
\nu(A)=\int_{A} f d \mu
$$

is also written as $d \nu=f d \mu$. In this case we call f the density associated with ν.

Exponentially Finite Signed Measures

Exponentially Finite Signed Measures

Definition

A measure μ on the σ-algebra of measurable sets in \mathbb{R} is an exponentially finite signed measure (EFSM) with respect to a nonempty interval I if it is a signed measure and

$$
\mu_{y}(A)=\int_{A} e^{-y t} d \mu(t)
$$

is finite for all measurable $A \subseteq \mathbb{R}$ and for all $y \in I$.

Exponentially Finite Signed Measures

Definition

A measure μ on the σ-algebra of measurable sets in \mathbb{R} is an exponentially finite signed measure (EFSM) with respect to a nonempty interval I if it is a signed measure and

$$
\mu_{y}(A)=\int_{A} e^{-y t} d \mu(t)
$$

is finite for all measurable $A \subseteq \mathbb{R}$ and for all $y \in I$.

Proposition

Exponentially finite signed measures are σ-finite.

Exponentially Finite Signed Measures

Definition

A measure μ on the σ-algebra of measurable sets in \mathbb{R} is an exponentially finite signed measure (EFSM) with respect to a nonempty interval I if it is a signed measure and

$$
\mu_{y}(A)=\int_{A} e^{-y t} d \mu(t)
$$

is finite for all measurable $A \subseteq \mathbb{R}$ and for all $y \in I$.

Proposition

Exponentially finite signed measures are σ-finite.

- In particular, there is a Lebesgue decomposition

$$
\mu=\mu^{a}+\mu^{s}
$$

of any EFSM μ, with respect to the Lebesgue measure on \mathbb{R}.

Exponentially Finite Signed Measures

Definition

A measure μ on the σ-algebra of measurable sets in \mathbb{R} is an exponentially finite signed measure (EFSM) with respect to a nonempty interval I if it is a signed measure and

$$
\mu_{y}(A)=\int_{A} e^{-y t} d \mu(t)
$$

is finite for all measurable $A \subseteq \mathbb{R}$ and for all $y \in I$.

Proposition

Exponentially finite signed measures are σ-finite.

- In particular, there is a Lebesgue decomposition

$$
\mu=\mu^{a}+\mu^{s}
$$

of any EFSM μ, with respect to the Lebesgue measure on \mathbb{R}.

- Furthermore, there is a density $\sigma(t)$ such that $d \mu^{a}(t)=\sigma(t) d t$.

Bilateral Polarization

Bilateral Polarization

Definition

A measure μ is said to be polarized if it has a sign and it is exponentially finite with respect to some interval.

Bilateral Polarization

Definition

A measure μ is said to be polarized if it has a sign and it is exponentially finite with respect to some interval.

Definition

A signed measure μ is said to be right polarized if there exists some $\gamma \in \mathbb{R}$ such that the measure

$$
\mu^{d}(A)=\mu(A \cap] \gamma,+\infty[)
$$

is polarized.

Bilateral Polarization

Definition

A measure μ is said to be polarized if it has a sign and it is exponentially finite with respect to some interval.

Definition

A signed measure μ is said to be right polarized if there exists some $\gamma \in \mathbb{R}$ such that the measure

$$
\mu^{d}(A)=\mu(A \cap] \gamma,+\infty[)
$$

is polarized.

- We can analogously define left polarized signed measures;

Bilateral Polarization

Definition

A measure μ is said to be polarized if it has a sign and it is exponentially finite with respect to some interval.

Definition

A signed measure μ is said to be right polarized if there exists some $\gamma \in \mathbb{R}$ such that the measure

$$
\mu^{d}(A)=\mu(A \cap] \gamma,+\infty[)
$$

is polarized.

- We can analogously define left polarized signed measures;
- A signed measure is bilaterally polarized if it is both left and right polarized.

Measure Pairs

Measure Pairs

Definition

Let $\alpha, \beta \in \overline{\mathbb{R}}$ and let $c \in \mathbb{R}$ be such that $\alpha<c<\beta$.

Measure Pairs

Definition

Let $\alpha, \beta \in \overline{\mathbb{R}}$ and let $c \in \mathbb{R}$ be such that $\alpha<c<\beta$. If μ_{l} is a polarized measure with respect to $] \alpha, c\left[\right.$ and μ_{r} is a polarized measure with respect to]c, β [,

Measure Pairs

Definition

Let $\alpha, \beta \in \overline{\mathbb{R}}$ and let $c \in \mathbb{R}$ be such that $\alpha<c<\beta$. If μ_{l} is a polarized measure with respect to $] \alpha, c\left[\right.$ and μ_{r} is a polarized measure with respect to $] c, \beta[$, then we say

$$
\left(\mu_{l}, \mu_{r}\right)_{\alpha, c, \beta}
$$

is a polarized measure pair if there is a polar function f meromorphic in $T_{\alpha, \beta}$ with a single pole in $z=c$,

Measure Pairs

Definition

Let $\alpha, \beta \in \overline{\mathbb{R}}$ and let $c \in \mathbb{R}$ be such that $\alpha<c<\beta$. If μ_{l} is a polarized measure with respect to $] \alpha, c\left[\right.$ and μ_{r} is a polarized measure with respect to $] c, \beta[$, then we say

$$
\left(\mu_{l}, \mu_{r}\right)_{\alpha, c, \beta}
$$

is a polarized measure pair if there is a polar function f meromorphic in $T_{\alpha, \beta}$ with a single pole in $z=c$, such that

$$
f(z)= \begin{cases}\mathcal{L F}\left(\mu_{l}\right)(z), & z \in T_{\alpha, c} \\ \mathcal{L F}\left(\mu_{r}\right)(z), & z \in T_{c, \beta} .\end{cases}
$$

Measure Pairs

Definition

Let $\alpha, \beta \in \overline{\mathbb{R}}$ and let $c \in \mathbb{R}$ be such that $\alpha<c<\beta$. If μ_{l} is a polarized measure with respect to $] \alpha, c\left[\right.$ and μ_{r} is a polarized measure with respect to $] c, \beta[$, then we say

$$
\left(\mu_{l}, \mu_{r}\right)_{\alpha, c, \beta}
$$

is a polarized measure pair if there is a polar function f meromorphic in $T_{\alpha, \beta}$ with a single pole in $z=c$, such that

$$
f(z)= \begin{cases}\mathcal{L F}\left(\mu_{l}\right)(z), & z \in T_{\alpha, c} \\ \mathcal{L F}\left(\mu_{r}\right)(z), & z \in T_{c, \beta} .\end{cases}
$$

- We assume that $] \alpha, c\left[\right.$ is the maximal interval for which μ_{l} is exponentially finite, and similarly for $] c, \beta[$.

Measure Pairs

Definition

Let $\alpha, \beta \in \overline{\mathbb{R}}$ and let $c \in \mathbb{R}$ be such that $\alpha<c<\beta$. If μ_{l} is a polarized measure with respect to $] \alpha, c\left[\right.$ and μ_{r} is a polarized measure with respect to $] c, \beta[$, then we say

$$
\left(\mu_{l}, \mu_{r}\right)_{\alpha, c, \beta}
$$

is a polarized measure pair if there is a polar function f meromorphic in $T_{\alpha, \beta}$ with a single pole in $z=c$, such that

$$
f(z)= \begin{cases}\mathcal{L F}\left(\mu_{l}\right)(z), & z \in T_{\alpha, c} \\ \mathcal{L F}\left(\mu_{r}\right)(z), & z \in T_{c, \beta}\end{cases}
$$

- We assume that $] \alpha, c\left[\right.$ is the maximal interval for which μ_{l} is exponentially finite, and similarly for $] c, \beta[$.
- In particular, f has singularities at $z=\alpha$ and $z=\beta$, if these are finite.

Transition Polynomial

Transition Polynomial

- Consider a polarized measure pair $\left(\mu_{l}, \mu_{r}\right)_{\alpha, c, \beta}$, with associated meromorphic function f.

Transition Polynomial

- Consider a polarized measure pair $\left(\mu_{l}, \mu_{r}\right)_{\alpha, c, \beta}$, with associated meromorphic function f.
- Expanding in a Laurent series, we can write

$$
f(z)=\sum_{k=1}^{m} \frac{b_{k}}{(z-c)^{k}}+\sum_{k \geq 0} c_{k}(z-c)^{k}=: f^{p}(z)+f_{0}^{h}(z), z \in B_{R}(c) \backslash\{c\}
$$

where $R=\min \{|\alpha-c|,|\beta-c|\}$.

Transition Polynomial

- Consider a polarized measure pair $\left(\mu_{l}, \mu_{r}\right)_{\alpha, c, \beta}$, with associated meromorphic function f.
- Expanding in a Laurent series, we can write

$$
f(z)=\sum_{k=1}^{m} \frac{b_{k}}{(z-c)^{k}}+\sum_{k \geq 0} c_{k}(z-c)^{k}=: f^{p}(z)+f_{0}^{h}(z), z \in B_{R}(c) \backslash\{c\}
$$

where $R=\min \{|\alpha-c|,|\beta-c|\}$.

- f_{0}^{h} can be extended analytically to a holomorphic function $f^{h}(z)$ in $T_{\alpha, \beta}$ such that

$$
f(z)=f^{p}(z)+f^{h}(z), \forall z \in T_{\alpha, \beta} \backslash\{c\}
$$

Transition Polynomial

- Consider a polarized measure pair $\left(\mu_{l}, \mu_{r}\right)_{\alpha, c, \beta}$, with associated meromorphic function f.
- Expanding in a Laurent series, we can write

$$
f(z)=\sum_{k=1}^{m} \frac{b_{k}}{(z-c)^{k}}+\sum_{k \geq 0} c_{k}(z-c)^{k}=: f^{p}(z)+f_{0}^{h}(z), z \in B_{R}(c) \backslash\{c\}
$$

where $R=\min \{|\alpha-c|,|\beta-c|\}$.

- f_{0}^{h} can be extended analytically to a holomorphic function $f^{h}(z)$ in $T_{\alpha, \beta}$ such that

$$
f(z)=f^{p}(z)+f^{h}(z), \forall z \in T_{\alpha, \beta} \backslash\{c\}
$$

- By direct computation one can verify that

$$
\frac{1}{(z-c)^{k}}= \begin{cases}\mathcal{L} \mathcal{F}\left(\mu_{l k}^{p}\right)(z), & z \in T_{-\infty, c} \\ \mathcal{L F}\left(\mu_{r k}^{p}\right)(z), & z \in T_{c,+\infty}\end{cases}
$$

Transition Polynomial

- Consider a polarized measure pair $\left(\mu_{l}, \mu_{r}\right)_{\alpha, c, \beta}$, with associated meromorphic function f.
- Expanding in a Laurent series, we can write

$$
f(z)=\sum_{k=1}^{m} \frac{b_{k}}{(z-c)^{k}}+\sum_{k \geq 0} c_{k}(z-c)^{k}=: f^{p}(z)+f_{0}^{h}(z), z \in B_{R}(c) \backslash\{c\}
$$

where $R=\min \{|\alpha-c|,|\beta-c|\}$.

- f_{0}^{h} can be extended analytically to a holomorphic function $f^{h}(z)$ in $T_{\alpha, \beta}$ such that

$$
f(z)=f^{p}(z)+f^{h}(z), \forall z \in T_{\alpha, \beta} \backslash\{c\}
$$

- By direct computation one can verify that

$$
\frac{1}{(z-c)^{k}}= \begin{cases}\mathcal{L} \mathcal{F}\left(\mu_{l k}^{p}\right)(z), & z \in T_{-\infty, c} \\ \mathcal{L} \mathcal{F}\left(\mu_{r k}^{p}\right)(z), & z \in T_{c,+\infty}\end{cases}
$$

where $d \mu_{. k}^{p}(t)=\sigma_{. k}^{p}(t) d t$ and

$$
\left\{\begin{array}{l}
\sigma_{l k}^{p}(t)=-\frac{t^{k-1}}{(k-1)!}(1-H(t)) e^{c t} \\
\sigma_{r k}^{p}(t)=\frac{t^{k-1}}{(k-1)!} H(t) e^{c t}
\end{array}\right.
$$

Transition Polynomial

Transition Polynomial

- Adding these measures we define

$$
\mu_{\cdot}^{p}=\sum_{k=1}^{m} b_{k} \mu_{\cdot k}^{p}
$$

Transition Polynomial

- Adding these measures we define

$$
\mu_{\cdot}^{p}=\sum_{k=1}^{m} b_{k} \mu_{\cdot k}^{p}
$$

- Then, we obtain

$$
f^{p}(z)= \begin{cases}\mathcal{L} \mathcal{F}\left(\mu_{l}^{p}\right)(z), & z \in T_{-\infty, c} \\ \mathcal{L F}\left(\mu_{r}^{p}\right)(z), & z \in T_{c,+\infty}\end{cases}
$$

Transition Polynomial

- Adding these measures we define

$$
\mu_{\cdot}^{p}=\sum_{k=1}^{m} b_{k} \mu_{\cdot k}^{p}
$$

- Then, we obtain

$$
f^{p}(z)= \begin{cases}\mathcal{L} \mathcal{F}\left(\mu_{l}^{p}\right)(z), & z \in T_{-\infty, c} \\ \mathcal{L F}\left(\mu_{r}^{p}\right)(z), & z \in T_{c,+\infty}\end{cases}
$$

- One can check that indeed $\mu_{\text {. }}^{p}$ is an EFSM with density

$$
\sigma_{\cdot}^{p}(t)=\sum_{k=1}^{m} b_{k} \sigma_{\cdot k}^{p}(t)
$$

Transition Polynomial

- Adding these measures we define

$$
\mu_{\cdot}^{p}=\sum_{k=1}^{m} b_{k} \mu_{\cdot k}^{p}
$$

- Then, we obtain

$$
f^{p}(z)= \begin{cases}\mathcal{L} \mathcal{F}\left(\mu_{l}^{p}\right)(z), & z \in T_{-\infty, c} \\ \mathcal{L} \mathcal{F}\left(\mu_{r}^{p}\right)(z), & z \in T_{c,+\infty}\end{cases}
$$

- One can check that indeed μ^{p} is an EFSM with density

$$
\sigma_{\cdot}^{p}(t)=\sum_{k=1}^{m} b_{k} \sigma_{\cdot k}^{p}(t)
$$

Definition

We define the transition polynomial to be

$$
\mathcal{P}(t)=\sum_{k=1}^{m} \frac{b_{k}}{(k-1)!} t^{k-1}=e^{-c t}\left(\sigma_{r}^{p}(t)-\sigma_{l}^{p}(t)\right)
$$

Lemma

Let $\left(\mu_{l}, \mu_{r}\right)_{\alpha, c, \beta}$ be a polarized measure pair with associated function f. Suppose that $\mu_{r x_{0}}^{h}:=\mu_{r x_{0}}-\mu_{r x_{0}}^{p}$ is exponentially finite with respect to $] \alpha-x_{0}, \beta-x_{0}[$, for some $\left.x_{0} \in\right] c, \beta[$. Then,

$$
f(z)=f(x+i y)=\mathcal{L} \mathcal{F}\left(\mu_{l x}^{p}+\mu_{r x}^{h}\right)(i y), z \in T_{\alpha, c} .
$$

Lemma

Let $\left(\mu_{l}, \mu_{r}\right)_{\alpha, c, \beta}$ be a polarized measure pair with associated function f. Suppose that $\mu_{r x_{0}}^{h}:=\mu_{r x_{0}}-\mu_{r x_{0}}^{p}$ is exponentially finite with respect to $] \alpha-x_{0}, \beta-x_{0}[$, for some $\left.x_{0} \in\right] c, \beta[$. Then,

$$
f(z)=f(x+i y)=\mathcal{L} \mathcal{F}\left(\mu_{l x}^{p}+\mu_{r x}^{h}\right)(i y), z \in T_{\alpha, c}
$$

- Note that $\mu_{r x_{0}}^{h}$ is a finite signed measure exponentially finite with respect to] $c-x_{0}, \beta-x_{0}$ [, even if $\mu_{r}-\mu_{r}^{p}$ is not a signed measure;

Lemma

Let $\left(\mu_{l}, \mu_{r}\right)_{\alpha, c, \beta}$ be a polarized measure pair with associated function f. Suppose that $\mu_{r x_{0}}^{h}:=\mu_{r x_{0}}-\mu_{r x_{0}}^{p}$ is exponentially finite with respect to $] \alpha-x_{0}, \beta-x_{0}[$, for some $\left.x_{0} \in\right] c, \beta[$. Then,

$$
f(z)=f(x+i y)=\mathcal{L} \mathcal{F}\left(\mu_{l x}^{p}+\mu_{r x}^{h}\right)(i y), z \in T_{\alpha, c}
$$

- Note that $\mu_{r x_{0}}^{h}$ is a finite signed measure exponentially finite with respect to $] c-x_{0}, \beta-x_{0}$ [, even if $\mu_{r}-\mu_{r}^{p}$ is not a signed measure;
- We have

$$
f(z)=f^{p}(z)+\mathcal{L} \mathcal{F}\left(\mu_{r x_{0}}^{h}\right)\left(z-x_{0}\right), z \in T_{c, \beta} .
$$

Lemma

Let $\left(\mu_{l}, \mu_{r}\right)_{\alpha, c, \beta}$ be a polarized measure pair with associated function f. Suppose that $\mu_{r x_{0}}^{h}:=\mu_{r x_{0}}-\mu_{r x_{0}}^{p}$ is exponentially finite with respect to $] \alpha-x_{0}, \beta-x_{0}[$, for some $\left.x_{0} \in\right] c, \beta[$. Then,

$$
f(z)=f(x+i y)=\mathcal{L} \mathcal{F}\left(\mu_{l x}^{p}+\mu_{r x}^{h}\right)(i y), z \in T_{\alpha, c} .
$$

- Note that $\mu_{r x_{0}}^{h}$ is a finite signed measure exponentially finite with respect to] $c-x_{0}, \beta-x_{0}$ [, even if $\mu_{r}-\mu_{r}^{p}$ is not a signed measure;
- We have

$$
f(z)=f^{p}(z)+\mathcal{L} \mathcal{F}\left(\mu_{r x_{0}}^{h}\right)\left(z-x_{0}\right), z \in T_{c, \beta} .
$$

- By uniqueness of analytic continuation we must have this equality in the whole strip $T_{\alpha, \beta} \backslash\{c\}$.

Lemma

Let $\left(\mu_{l}, \mu_{r}\right)_{\alpha, c, \beta}$ be a polarized measure pair with associated function f. Suppose that $\mu_{r x_{0}}^{h}:=\mu_{r x_{0}}-\mu_{r x_{0}}^{p}$ is exponentially finite with respect to $] \alpha-x_{0}, \beta-x_{0}[$, for some $\left.x_{0} \in\right] c, \beta[$. Then,

$$
f(z)=f(x+i y)=\mathcal{L} \mathcal{F}\left(\mu_{l x}^{p}+\mu_{r x}^{h}\right)(i y), z \in T_{\alpha, c} .
$$

- Note that $\mu_{r x_{0}}^{h}$ is a finite signed measure exponentially finite with respect to $] c-x_{0}, \beta-x_{0}$ [, even if $\mu_{r}-\mu_{r}^{p}$ is not a signed measure;
- We have

$$
f(z)=f^{p}(z)+\mathcal{L} \mathcal{F}\left(\mu_{r x_{0}}^{h}\right)\left(z-x_{0}\right), z \in T_{c, \beta} .
$$

- By uniqueness of analytic continuation we must have this equality in the whole strip $T_{\alpha, \beta} \backslash\{c\}$.
- Recalling that $f^{p}(z)=\mathcal{L F}\left(\mu_{l}^{p}\right)(z)$ when $z \in T_{\alpha, c}$, it follows that

$$
f(z)=\mathcal{L} \mathcal{F}\left(\mu_{l}^{p}\right)(z)+\mathcal{L} \mathcal{F}\left(\mu_{r x_{0}}^{h}\right)\left(z-x_{0}\right)=\mathcal{L} \mathcal{F}\left(\mu_{l x}^{p}+\mu_{r x}^{h}\right)(i y)
$$

Lemma

Let $\left(\mu_{l}, \mu_{r}\right)_{\alpha, c, \beta}$ be a polarized measure pair with associated function f. Suppose that $\mu_{r x_{0}}^{h}:=\mu_{r x_{0}}-\mu_{r x_{0}}^{p}$ is exponentially finite with respect to $] \alpha-x_{0}, \beta-x_{0}[$, for some $\left.x_{0} \in\right] c, \beta[$. Then,

$$
f(z)=f(x+i y)=\mathcal{L} \mathcal{F}\left(\mu_{l x}^{p}+\mu_{r x}^{h}\right)(i y), z \in T_{\alpha, c}
$$

- Note that $\mu_{r x_{0}}^{h}$ is a finite signed measure exponentially finite with respect to $] c-x_{0}, \beta-x_{0}$ [, even if $\mu_{r}-\mu_{r}^{p}$ is not a signed measure;
- We have

$$
f(z)=f^{p}(z)+\mathcal{L} \mathcal{F}\left(\mu_{r x_{0}}^{h}\right)\left(z-x_{0}\right), z \in T_{c, \beta} .
$$

- By uniqueness of analytic continuation we must have this equality in the whole strip $T_{\alpha, \beta} \backslash\{c\}$.
- Recalling that $f^{p}(z)=\mathcal{L F}\left(\mu_{l}^{p}\right)(z)$ when $z \in T_{\alpha, c}$, it follows that

$$
f(z)=\mathcal{L} \mathcal{F}\left(\mu_{l}^{p}\right)(z)+\mathcal{L} \mathcal{F}\left(\mu_{r x_{0}}^{h}\right)\left(z-x_{0}\right)=\mathcal{L} \mathcal{F}\left(\mu_{l x}^{p}+\mu_{r x}^{h}\right)(i y)
$$

Remark:

- There is an analogous result using μ_{l} and going from $T_{\alpha, c}$ to $T_{c, \beta}$.

Main Theorem

Main Theorem

Theorem

Let $\left(\mu_{l}, \mu_{r}\right)_{\alpha, c, \beta}$ be a polarized measure pair. The following are equivalent:

Main Theorem

Theorem

Let $\left(\mu_{l}, \mu_{r}\right)_{\alpha, c, \beta}$ be a polarized measure pair. The following are equivalent:
(i) $\mu_{r x_{0}}^{h}:=\mu_{r x_{0}}-\mu_{r x_{0}}^{p}$ is exponentially finite with respect to $] \alpha-x_{0}, \beta-x_{0}\left[\right.$, for some $\left.x_{0} \in\right] c, \beta[$;

Main Theorem

Theorem

Let $\left(\mu_{l}, \mu_{r}\right)_{\alpha, c, \beta}$ be a polarized measure pair. The following are equivalent:
(i) $\mu_{r x_{0}}^{h}:=\mu_{r x_{0}}-\mu_{r x_{0}}^{p}$ is exponentially finite with respect to
$] \alpha-x_{0}, \beta-x_{0}\left[\right.$, for some $\left.x_{0} \in\right] c, \beta[$;
(ii) We have

$$
\left\{\begin{array}{l}
\mu_{l}^{s}=\mu_{r}^{s} \\
\sigma_{r}(t)-\sigma_{l}(t)=\mathcal{P}(t) e^{c t} \text { a.e. in } \mathbb{R}
\end{array}\right.
$$

where μ_{l}^{s}, μ_{r}^{s} are exponentially finite with respect to $] \alpha, \beta[$, and $d \mu_{.}^{a}(t)=\sigma .(t) d t ;$

Main Theorem

Theorem

Let $\left(\mu_{l}, \mu_{r}\right)_{\alpha, c, \beta}$ be a polarized measure pair. The following are equivalent:
(i) $\mu_{r x_{0}}^{h}:=\mu_{r x_{0}}-\mu_{r x_{0}}^{p}$ is exponentially finite with respect to
$] \alpha-x_{0}, \beta-x_{0}\left[\right.$, for some $\left.x_{0} \in\right] c, \beta[$;
(ii) We have

$$
\left\{\begin{array}{l}
\mu_{l}^{s}=\mu_{r}^{s} \\
\sigma_{r}(t)-\sigma_{l}(t)=\mathcal{P}(t) e^{c t} \text { a.e. in } \mathbb{R}
\end{array}\right.
$$

where μ_{l}^{s}, μ_{r}^{s} are exponentially finite with respect to $] \alpha, \beta[$, and $d \mu .(t)=\sigma .(t) d t ;$
(iii) $\mu_{r}^{h}=: \mu_{r}-\mu_{r}^{p}$ is a bilaterally polarized EFSM with respect to $] \alpha, \beta[$.

Main Theorem

Theorem

Let $\left(\mu_{l}, \mu_{r}\right)_{\alpha, c, \beta}$ be a polarized measure pair. The following are equivalent:
(i) $\mu_{r x_{0}}^{h}:=\mu_{r x_{0}}-\mu_{r x_{0}}^{p}$ is exponentially finite with respect to
$] \alpha-x_{0}, \beta-x_{0}\left[\right.$, for some $\left.x_{0} \in\right] c, \beta[$;
(ii) We have

$$
\left\{\begin{array}{l}
\mu_{l}^{s}=\mu_{r}^{s} \\
\sigma_{r}(t)-\sigma_{l}(t)=\mathcal{P}(t) e^{c t} \text { a.e. in } \mathbb{R}
\end{array}\right.
$$

where μ_{l}^{s}, μ_{r}^{s} are exponentially finite with respect to $] \alpha, \beta[$, and $d \mu .(t)=\sigma .(t) d t ;$
(iii) $\mu_{r}^{h}=: \mu_{r}-\mu_{r}^{p}$ is a bilaterally polarized EFSM with respect to $] \alpha, \beta[$.

Remarks:

- One could replace r by l in item (i) and (iii);

Main Theorem

Theorem

Let $\left(\mu_{l}, \mu_{r}\right)_{\alpha, c, \beta}$ be a polarized measure pair. The following are equivalent:
(i) $\mu_{r x_{0}}^{h}:=\mu_{r x_{0}}-\mu_{r x_{0}}^{p}$ is exponentially finite with respect to
$] \alpha-x_{0}, \beta-x_{0}\left[\right.$, for some $\left.x_{0} \in\right] c, \beta[$;
(ii) We have

$$
\left\{\begin{array}{l}
\mu_{l}^{s}=\mu_{r}^{s} \\
\sigma_{r}(t)-\sigma_{l}(t)=\mathcal{P}(t) e^{c t} \text { a.e. in } \mathbb{R}
\end{array}\right.
$$

where μ_{l}^{s}, μ_{r}^{s} are exponentially finite with respect to $] \alpha, \beta[$, and $d \mu_{.}^{a}(t)=\sigma .(t) d t ;$
(iii) $\mu_{r}^{h}=: \mu_{r}-\mu_{r}^{p}$ is a bilaterally polarized EFSM with respect to $] \alpha, \beta[$.

Remarks:

- One could replace r by l in item (i) and (iii);
- The implication (iii) \Longrightarrow (i) is immediate.

Proof of (i) \Longrightarrow (ii)

Proof of (i) \Longrightarrow (ii)

- By the lemma above we have

$$
f(x+i y)=\mathcal{L} \mathcal{F}\left(\mu_{l x}\right)(i y)=\mathcal{L} \mathcal{F}\left(\mu_{l x}^{p}+\mu_{r x}^{h}\right)(i y)
$$

$$
\text { so } \left.\mu_{l x}=\mu_{l x}^{p}+\mu_{r x}^{h} \text {, for } x \in\right] \alpha, c[\text {. }
$$

Proof of (i) \Longrightarrow (ii)

- By the lemma above we have

$$
f(x+i y)=\mathcal{L} \mathcal{F}\left(\mu_{l x}\right)(i y)=\mathcal{L} \mathcal{F}\left(\mu_{l x}^{p}+\mu_{r x}^{h}\right)(i y),
$$

so $\mu_{l x}=\mu_{l x}^{p}+\mu_{r x}^{h}$, for $\left.x \in\right] \alpha, c[$.

- Considering the Lebesgue decomposition we obtain $\mu_{l x}^{s}=\mu_{r x}^{h s}=\mu_{r x}^{s}$. So,

$$
e^{-x t} d \mu_{l}^{s}=d \mu_{l x}^{s}=d \mu_{r x}^{s}=e^{-x t} d \mu_{r}^{s} .
$$

Thus, $\mu_{l}^{s}=\mu_{r}^{s}$.

Proof of (i) \Longrightarrow (ii)

- By the lemma above we have

$$
f(x+i y)=\mathcal{L} \mathcal{F}\left(\mu_{l x}\right)(i y)=\mathcal{L} \mathcal{F}\left(\mu_{l x}^{p}+\mu_{r x}^{h}\right)(i y),
$$

so $\mu_{l x}=\mu_{l x}^{p}+\mu_{r x}^{h}$, for $\left.x \in\right] \alpha, c[$.

- Considering the Lebesgue decomposition we obtain $\mu_{l x}^{s}=\mu_{r x}^{h s}=\mu_{r x}^{s}$. So,

$$
e^{-x t} d \mu_{l}^{s}=d \mu_{l x}^{s}=d \mu_{r x}^{s}=e^{-x t} d \mu_{r}^{s} .
$$

Thus, $\mu_{l}^{s}=\mu_{r}^{s}$.

- Considering instead the absolutely continuous part we obtain $\mu_{l x}^{a}=\mu_{l x}^{p a}+\mu_{r x}^{h a}=\mu_{l x}^{p}+\mu_{r x}^{a}-\mu_{r x}^{p}$, so

$$
\mu_{r x}^{a}-\mu_{l x}^{a}=\mu_{r x}^{p}-\mu_{l x}^{p} .
$$

Proof of (i) \Longrightarrow (ii)

- By the lemma above we have

$$
f(x+i y)=\mathcal{L} \mathcal{F}\left(\mu_{l x}\right)(i y)=\mathcal{L} \mathcal{F}\left(\mu_{l x}^{p}+\mu_{r x}^{h}\right)(i y)
$$

so $\mu_{l x}=\mu_{l x}^{p}+\mu_{r x}^{h}$, for $\left.x \in\right] \alpha, c[$.

- Considering the Lebesgue decomposition we obtain $\mu_{l x}^{s}=\mu_{r x}^{h s}=\mu_{r x}^{s}$. So,

$$
e^{-x t} d \mu_{l}^{s}=d \mu_{l x}^{s}=d \mu_{r x}^{s}=e^{-x t} d \mu_{r}^{s} .
$$

Thus, $\mu_{l}^{s}=\mu_{r}^{s}$.

- Considering instead the absolutely continuous part we obtain

$$
\mu_{l x}^{a}=\mu_{l x}^{p a}+\mu_{r x}^{h a}=\mu_{l x}^{p}+\mu_{r x}^{a}-\mu_{r x}^{p}, \text { so }
$$

$$
\mu_{r x}^{a}-\mu_{l x}^{a}=\mu_{r x}^{p}-\mu_{l x}^{p} .
$$

- Thus,

$$
\begin{aligned}
e^{-x t}\left(\sigma_{r}-\sigma_{l}\right) d t & =d\left(\mu_{r x}^{a}-\mu_{l x}^{a}\right)=d\left(\mu_{r x}^{p}-\mu_{l x}^{p}\right)=e^{-x t}\left(\sigma_{r}^{p}-\sigma_{l}^{p}\right) d t \\
& =e^{-x t} \mathcal{P}(t) e^{c t} d t
\end{aligned}
$$

Open Questions

Open Questions

- Can these results be generalised to \mathbb{C}^{n} ?

Open Questions

- Can these results be generalised to \mathbb{C}^{n} ?
- We assumed that the singularity at $z=c$ is a pole. What happens at an essential singularity?

$$
f(z)=\sum_{k \geq 1} \frac{b_{k}}{(z-c)^{k}}+\sum_{k \geq 0} c_{k}(z-c)^{k}, z \in B_{R}(c) \backslash\{c\} .
$$

Open Questions

- Can these results be generalised to \mathbb{C}^{n} ?
- We assumed that the singularity at $z=c$ is a pole. What happens at an essential singularity?

$$
f(z)=\sum_{k \geq 1} \frac{b_{k}}{(z-c)^{k}}+\sum_{k \geq 0} c_{k}(z-c)^{k}, z \in B_{R}(c) \backslash\{c\} .
$$

- In this case, the argument for the existence of f^{h} does not work.

Open Questions

- Can these results be generalised to \mathbb{C}^{n} ?
- We assumed that the singularity at $z=c$ is a pole. What happens at an essential singularity?

$$
f(z)=\sum_{k \geq 1} \frac{b_{k}}{(z-c)^{k}}+\sum_{k \geq 0} c_{k}(z-c)^{k}, z \in B_{R}(c) \backslash\{c\} .
$$

- In this case, the argument for the existence of f^{h} does not work.
- Moreover, in the construction of σ_{r}^{p}, we would obtain an infinite sum

$$
\sigma_{r}^{p}(t)=H(t) e^{c t} \sum_{k \geq 1} b_{k} \frac{t^{k-1}}{(k-1)!}
$$

Open Questions

- Can these results be generalised to \mathbb{C}^{n} ?
- We assumed that the singularity at $z=c$ is a pole. What happens at an essential singularity?

$$
f(z)=\sum_{k \geq 1} \frac{b_{k}}{(z-c)^{k}}+\sum_{k \geq 0} c_{k}(z-c)^{k}, z \in B_{R}(c) \backslash\{c\} .
$$

- In this case, the argument for the existence of f^{h} does not work.
- Moreover, in the construction of σ_{r}^{p}, we would obtain an infinite sum

$$
\sigma_{r}^{p}(t)=H(t) e^{c t} \sum_{k \geq 1} b_{k} \frac{t^{k-1}}{(k-1)!}
$$

- Decay properties of b_{k} ?

References I

國 J. Buescu, A. C. Paixão.
The Measure Transition Problem for Meromorphic Polar Functions.
Submitted, 2019.
R. J. Buescu, A. C. Paixão.

Complex Variable Positive Definite Functions.
Complex Anal. Oper. Theory, DOI 10.1007/s11785-013-0319-1.

J. Buescu, A. C. Paixão, A. Symeonides.

Complex Positive Definite Functions on Strips.
Complex Anal. Oper. Theory, DOI 10.1007/s11785-015-0527-y.
Eugene Lukacs.
Characteristic Functions.
Charles Griffin \& Company Limited, 1970.
T
J. Mercer.

Functions of Positive and Negative Type, and their Connection with the Theory of Integral Equations.
https://doi.org/10.1098/rsta.1909.0016

References II

James Stewart.
Positive Definite Functions and Generalizations, an Historical Survey . Rocky Mountain Journal of Mathematics, Volume 6, Number 3, Summer 1976.
J. Buescu, A. C. Paixão.

Real and complex variable positive definite functions.
São Paulo Journal of Mathematical Sciences, 6, 2 (2012), 155-169.
Q Gerald B. Folland.
Real Analysis: Modern Techniques and Their Applications.
John Wiley \& Sons, Inc. 1999.
Gerald B. Folland.
A Course in Abstract Harmonic Analysis.
CRC Press, 2015.

