Polar Functions and Measure Transitions

Rodrigo Duarte

Instituto Superior Técnico

May 13, 2020

• In the theory of integral equations, operators of the form

$$T_K g(x) = \int K(x, y) g(y) dy$$

have an important role.

• In the theory of integral equations, operators of the form

$$T_K g(x) = \int K(x, y) g(y) dy$$

have an important role. In 1909, James Mercer introduced the following notion relating to this theory:

• In the theory of integral equations, operators of the form

$$T_K g(x) = \int K(x, y) g(y) dy$$

have an important role. In 1909, James Mercer introduced the following notion relating to this theory:

Definition

 $K: \mathbb{R}^2 \to \mathbb{C}$ is said to be a **positive definite kernel** if for any collection $(x_k)_{k=1}^n$, we have

$$\sum_{k,l=1}^{n} K(x_k, x_l) \xi_k \overline{\xi}_l \ge 0, \ \forall \xi = (\xi_1, \dots, \xi_n) \in \mathbb{C}^n.$$

• In the theory of integral equations, operators of the form

$$T_K g(x) = \int K(x, y) g(y) dy$$

have an important role. In 1909, James Mercer introduced the following notion relating to this theory:

Definition

 $K: \mathbb{R}^2 \to \mathbb{C}$ is said to be a **positive definite kernel** if for any collection $(x_k)_{k=1}^n$, we have

$$\sum_{k,l=1}^n K(x_k, x_l) \xi_k \bar{\xi}_l \ge 0, \ \forall \xi = (\xi_1, \dots, \xi_n) \in \mathbb{C}^n.$$

• The case K(x, y) = f(x - y) is of particular interest for the operators T_K .

• In the theory of integral equations, operators of the form

$$T_K g(x) = \int K(x, y) g(y) dy$$

have an important role. In 1909, James Mercer introduced the following notion relating to this theory:

Definition

 $K: \mathbb{R}^2 \to \mathbb{C}$ is said to be a **positive definite kernel** if for any collection $(x_k)_{k=1}^n$, we have

$$\sum_{k,l=1}^{n} K(x_k, x_l) \xi_k \bar{\xi}_l \ge 0, \ \forall \xi = (\xi_1, \dots, \xi_n) \in \mathbb{C}^n.$$

• The case K(x, y) = f(x - y) is of particular interest for the operators T_K .

Definition

A function $f: \mathbb{R} \to \mathbb{C}$ is said to be **positive definite** if for any collection $(x_k)_{k=1}^n$ we have

$$\sum_{k,l=1}^n f(x_k - x_l) \xi_k \bar{\xi}_l \ge 0, \ \forall \xi \in \mathbb{C}^n.$$

Rodrigo Duarte

æ

< D > < </p>

Definition

A function $f : \Lambda \subset \mathbb{C} \to \mathbb{C}$ is said to be (co-)**positive definite** if for any collection $(z_k)_{k=1}^n$ satisfying $z_k \pm \bar{z}_k \in \Lambda$, we have

$$\sum_{k,l=1}^n f(z_k \pm \bar{z}_l)\xi_k \bar{\xi}_l \ge 0, \ \forall \xi = (\xi_1, \dots, \xi_n) \in \mathbb{C}^n.$$

Definition

A function $f : \Lambda \subset \mathbb{C} \to \mathbb{C}$ is said to be (co-)**positive definite** if for any collection $(z_k)_{k=1}^n$ satisfying $z_k \pm \bar{z}_k \in \Lambda$, we have

$$\sum_{k,l=1}^n f(z_k \pm \bar{z}_l)\xi_k \bar{\xi}_l \ge 0, \ \forall \xi = (\xi_1, \dots, \xi_n) \in \mathbb{C}^n.$$

Definition

A function $f : \Lambda \subset \mathbb{C} \to \mathbb{C}$ is called **polar** if it is (co-)positive definite or (co-)negative definite.

Definition

A function $f : \Lambda \subset \mathbb{C} \to \mathbb{C}$ is said to be (co-)**positive definite** if for any collection $(z_k)_{k=1}^n$ satisfying $z_k \pm \bar{z}_k \in \Lambda$, we have

$$\sum_{k,l=1}^n f(z_k \pm \bar{z}_l)\xi_k \bar{\xi}_l \ge 0, \ \forall \xi = (\xi_1, \dots, \xi_n) \in \mathbb{C}^n.$$

Definition

A function $f : \Lambda \subset \mathbb{C} \to \mathbb{C}$ is called **polar** if it is (co-)positive definite or (co-)negative definite.

Remarks:

• A function f is positive definite in Λ if and only if the function g(z) = f(iz) is co-positive definite in $-i\Lambda$.

Definition

A function $f : \Lambda \subset \mathbb{C} \to \mathbb{C}$ is said to be (co-)**positive definite** if for any collection $(z_k)_{k=1}^n$ satisfying $z_k \pm \bar{z}_k \in \Lambda$, we have

$$\sum_{k,l=1}^n f(z_k \pm \bar{z}_l)\xi_k \bar{\xi}_l \ge 0, \ \forall \xi = (\xi_1, \dots, \xi_n) \in \mathbb{C}^n.$$

Definition

A function $f : \Lambda \subset \mathbb{C} \to \mathbb{C}$ is called **polar** if it is (co-)positive definite or (co-)negative definite.

Remarks:

- A function f is positive definite in Λ if and only if the function g(z) = f(iz) is co-positive definite in $-i\Lambda$.
- We can always translate from the notion of positive definiteness to the notion of co-positive definiteness.

Rodrigo Duarte

Measure Transitions

May 13, 2020 3/24

• Recall the definition of the Gamma function:

$$\Gamma(z) = \int_0^{+\infty} x^{z-1} e^{-x} dx, \ \Re(z) > 0.$$

• Recall the definition of the Gamma function:

$$\Gamma(z) = \int_0^{+\infty} x^{z-1} e^{-x} dx, \ \Re(z) > 0.$$

• This function is co-positive definite in this half plane.

$$\sum_{k,l=1}^{n} \Gamma(z_k + \bar{z}_l) \xi_k \bar{\xi}_l = \int_0^{+\infty} \frac{e^{-x}}{x} \left| \sum_{k=1}^{n} x^{z_k} \xi_k \right|^2 dx \ge 0.$$

• Recall the definition of the Gamma function:

$$\Gamma(z) = \int_0^{+\infty} x^{z-1} e^{-x} dx, \ \Re(z) > 0.$$

• This function is co-positive definite in this half plane.

$$\sum_{k,l=1}^{n} \Gamma(z_k + \bar{z}_l) \xi_k \bar{\xi}_l = \int_0^{+\infty} \frac{e^{-x}}{x} \left| \sum_{k=1}^{n} x^{z_k} \xi_k \right|^2 dx \ge 0.$$

• Γ can be extended to a meromorphic function on \mathbb{C} using the relationship $\Gamma(z+1) = z\Gamma(z)$. The Gamma function has simple poles at the nonpositive integers, with residues $\operatorname{Res}(\Gamma, -n) = (-1)^n/n!$.

• Recall the definition of the Gamma function:

$$\Gamma(z) = \int_0^{+\infty} x^{z-1} e^{-x} dx, \ \Re(z) > 0.$$

• This function is co-positive definite in this half plane.

$$\sum_{k,l=1}^{n} \Gamma(z_k + \bar{z}_l) \xi_k \bar{\xi}_l = \int_0^{+\infty} \frac{e^{-x}}{x} \left| \sum_{k=1}^{n} x^{z_k} \xi_k \right|^2 dx \ge 0.$$

- Γ can be extended to a meromorphic function on \mathbb{C} using the relationship $\Gamma(z+1) = z\Gamma(z)$. The Gamma function has simple poles at the nonpositive integers, with residues $\operatorname{Res}(\Gamma, -n) = (-1)^n/n!$.
- In each vertical strip $-n < \Re(z) < -n + 1$, we have the Cauchy-Saalschütz formula

$$\Gamma(z) = \int_0^{+\infty} x^{z-1} \left(e^{-x} - \sum_{m < n} \frac{(-1)^m}{m!} x^m \right) dx.$$

Rodrigo Duarte

2

イロト イヨト イヨト イヨト

ъ

 With the change of variables t = − log(x) we obtain, in the strip −n < ℜ(z) < −n + 1, the representation

 With the change of variables t = − log(x) we obtain, in the strip −n < ℜ(z) < −n + 1, the representation

$$\Gamma(z) = \int_{-\infty}^{+\infty} e^{-zt} d\mu_{-n}(t),$$

 With the change of variables t = − log(x) we obtain, in the strip −n < ℜ(z) < −n + 1, the representation

$$\Gamma(z) = \int_{-\infty}^{+\infty} e^{-zt} d\mu_{-n}(t), \ d\mu_{-n}(t) = \sigma_{-n}(t) dt$$

 With the change of variables t = − log(x) we obtain, in the strip −n < ℜ(z) < −n + 1, the representation

$$\Gamma(z) = \int_{-\infty}^{+\infty} e^{-zt} d\mu_{-n}(t), \ d\mu_{-n}(t) = \sigma_{-n}(t) dt,$$

where

$$\sigma_{-n}(t) = \sum_{m \ge n} \frac{(-1)^m}{m!} e^{-mt}.$$

 With the change of variables t = − log(x) we obtain, in the strip −n < ℜ(z) < −n + 1, the representation

$$\Gamma(z) = \int_{-\infty}^{+\infty} e^{-zt} d\mu_{-n}(t), \ d\mu_{-n}(t) = \sigma_{-n}(t) dt,$$

where

$$\sigma_{-n}(t) = \sum_{m \ge n} \frac{(-1)^m}{m!} e^{-mt}.$$

• Note that the transition from one density to the one on its left follows the simple transition formula:

$$\sigma_{-n}(t) - \sigma_{-(n+1)}(t) = \frac{(-1)^n}{n!} e^{-nt}$$

Laplace-Fourier Transform

• A well known result in harmonic analysis relates the Fourier transform with positive definite functions.

• A well known result in harmonic analysis relates the Fourier transform with positive definite functions.

Bochner's Theorem

A continuous function $f : \mathbb{R} \to \mathbb{C}$ is positive definite if and only if there is a unique finite and nonnegative measure μ such that

$$f(x) = \int_{\mathbb{R}} e^{itx} d\mu(t).$$

• A well known result in harmonic analysis relates the Fourier transform with positive definite functions.

Bochner's Theorem

A continuous function $f : \mathbb{R} \to \mathbb{C}$ is positive definite if and only if there is a unique finite and nonnegative measure μ such that

$$f(x) = \int_{\mathbb{R}} e^{itx} d\mu(t).$$

Definition

The Laplace-Fourier transform of a measure μ and the Fourier-Laplace transform are defined by

$$\mathcal{LF}(\mu)(z) = \int_{\mathbb{R}} e^{-zt} d\mu(t), \ \mathcal{FL}(\mu)(z) = \int_{\mathbb{R}} e^{izt} d\mu(t).$$

Rodrigo Duarte

Definition

A measure μ over the σ -algebra of measurable sets in \mathbb{R} is exponentially finite with respect to a nonempty interval I, if

$$\int_{\mathbb{R}} e^{-yt} d\mu(t) < \infty,$$

for all $y \in I$.

Definition

A measure μ over the σ -algebra of measurable sets in \mathbb{R} is exponentially finite with respect to a nonempty interval I, if

$$\int_{\mathbb{R}} e^{-yt} d\mu(t) < \infty,$$

for all $y \in I$.

• We define the strips $S_{a,b} = \{z \in \mathbb{C} \mid a < \Im(z) < b\}$ and $T_{a,b} = \{z \in \mathbb{C} \mid a < \Re(z) < b\}.$

Definition

A measure μ over the σ -algebra of measurable sets in \mathbb{R} is exponentially finite with respect to a nonempty interval I, if

$$\int_{\mathbb{R}} e^{-yt} d\mu(t) < \infty,$$

for all $y \in I$.

• We define the strips $S_{a,b} = \{z \in \mathbb{C} \mid a < \Im(z) < b\}$ and $T_{a,b} = \{z \in \mathbb{C} \mid a < \Re(z) < b\}.$

Proposition

Let μ be a nonnegative measure which is exponentially finite with respect to]a, b[. Then, we can assume]a, b[is maximal and the function $\mathcal{LF}(\mu)$ is holomorphic and co-positive definite in $T_{a,b}$, with singularities in a and b, if finite.

Theorem

Let $f: T_{a,b} \to \mathbb{C}$ be some holomorphic function. Then f is co-positive definite if and only if it is the Laplace-Fourier transform of an exponentially finite measure with respect to]a, b[. Furthermore, μ is uniquely determined by f.

Theorem

Let $f: T_{a,b} \to \mathbb{C}$ be some holomorphic function. Then f is co-positive definite if and only if it is the Laplace-Fourier transform of an exponentially finite measure with respect to]a, b[. Furthermore, μ is uniquely determined by f.

Remarks:

If]α, β[is the maximal interval with respect to which μ is exponentially finite, then f has an analytic continuation *LF* to T_{α,β}.

Theorem

Let $f: T_{a,b} \to \mathbb{C}$ be some holomorphic function. Then f is co-positive definite if and only if it is the Laplace-Fourier transform of an exponentially finite measure with respect to]a, b[. Furthermore, μ is uniquely determined by f.

Remarks:

- If]α, β[is the maximal interval with respect to which μ is exponentially finite, then f has an analytic continuation *LF* to T_{α,β}.
- There will be singularities at α and β if these are finite.

Theorem

Let $f: T_{a,b} \to \mathbb{C}$ be some holomorphic function. Then f is co-positive definite if and only if it is the Laplace-Fourier transform of an exponentially finite measure with respect to]a, b[. Furthermore, μ is uniquely determined by f.

Remarks:

- If]α, β[is the maximal interval with respect to which μ is exponentially finite, then f has an analytic continuation *LF* to T_{α,β}.
- There will be singularities at α and β if these are finite.
- This result has a direct analog for positive definite functions and Fourier-Laplace transforms.

	Examples					
Function	Strip pair and polarity	Pole	Transition of densities			

	Examples					
Function	Strip pair and polarity	Pole	Transition of densities			
$\Gamma(z)$						

	Examples					
Function	Strip pair and polarity	Pole	Transition of densities			
$\Gamma(z)$	$T_{-n-1,-n}, T_{-n,-n+1}$					

	Examples					
Function	Strip pair and polarity	Pole	Transition of densities			
$\Gamma(z)$	$T_{-n-1,-n}, T_{-n,-n+1}$	z = -n				

Function	Strip pair and polarity	Pole	Transition of densities
$\Gamma(z)$	$T_{-n-1,-n}, T_{-n,-n+1}$	z = -n	$\sigma_r(t) - \sigma_l(t) = \frac{(-1)^n}{n!} e^{-nt}$

	Rod	rigo	Duart	e
--	-----	------	-------	---

	Examp	oles	
Function	Strip pair and polarity	Pole	Transition of densities
$\Gamma(z)$	$T_{-n-1,-n}, T_{-n,-n+1}$	z = -n	$\sigma_r(t) - \sigma_l(t) = \frac{(-1)^n}{n!} e^{-nt}$
$\mathcal{Z}(z) = -\frac{\zeta(z)}{z}$			

	Rod	rigo	Duart	e
--	-----	------	-------	---

	Examp	oles	
Function	Strip pair and polarity	Pole	Transition of densities
$\Gamma(z)$	$T_{-n-1,-n}, T_{-n,-n+1}$	z = -n	$\sigma_r(t) - \sigma_l(t) = \frac{(-1)^n}{n!} e^{-nt}$
$\mathcal{Z}(z) = -\frac{\zeta(z)}{z}$	+ in $T_{0,1}$, - in $T_{1,+\infty}$		

reourigo Duario	Rod	lrigo	Duarte
-----------------	-----	-------	--------

	Examp	oles	
Function	Strip pair and polarity	Pole	Transition of densities
$\Gamma(z)$	$T_{-n-1,-n}, T_{-n,-n+1}$	z = -n	$\sigma_r(t) - \sigma_l(t) = \frac{(-1)^n}{n!} e^{-nt}$
$\mathcal{Z}(z) = -\frac{\zeta(z)}{z}$	+ in $T_{0,1}$, - in $T_{1,+\infty}$	z = 1	

		uar	

Examples				
Function	Strip pair and polarity	Pole	Transition of densities	
$\Gamma(z)$	$T_{-n-1,-n}, T_{-n,-n+1}$	z = -n	$\sigma_r(t) - \sigma_l(t) = \frac{(-1)^n}{n!} e^{-nt}$	
$\mathcal{Z}(z) = -\frac{\zeta(z)}{z}$	+ in $T_{0,1}$, - in $T_{1,+\infty}$	z = 1	$\sigma_r(t) - \sigma_l(t) = -e^t$	

Rod	lrigo	Dua	$rt\epsilon$
-----	-------	-----	--------------

Examples				
Function	Strip pair and polarity	Pole	Transition of densities	
$\Gamma(z)$	$T_{-n-1,-n}, T_{-n,-n+1}$	z = -n	$\sigma_r(t) - \sigma_l(t) = \frac{(-1)^n}{n!} e^{-nt}$	
$\mathcal{Z}(z) = -\frac{\zeta(z)}{z}$	+ in $T_{0,1}$, - in $T_{1,+\infty}$	z = 1	$\sigma_r(t) - \sigma_l(t) = -e^t$	
$\frac{1}{z(z+1)^2}$				

Examples				
Function	Strip pair and polarity	Pole	Transition of densities	
$\Gamma(z)$	$T_{-n-1,-n}, T_{-n,-n+1}$	z = -n	$\sigma_r(t) - \sigma_l(t) = \frac{(-1)^n}{n!} e^{-nt}$	
$\mathcal{Z}(z) = -\frac{\zeta(z)}{z}$	+ in $T_{0,1}$, - in $T_{1,+\infty}$	z = 1	$\sigma_r(t) - \sigma_l(t) = -e^t$	
$\frac{1}{z(z+1)^2}$	$-$ in $T_{-\infty,-1}$, $-$ in $T_{-1,0}$			

Examples				
Function	Strip pair and polarity	Pole	Transition of densities	
$\Gamma(z)$	$T_{-n-1,-n}, T_{-n,-n+1}$	z = -n	$\sigma_r(t) - \sigma_l(t) = \frac{(-1)^n}{n!} e^{-nt}$	
$\mathcal{Z}(z) = -\frac{\zeta(z)}{z}$	+ in $T_{0,1}$, - in $T_{1,+\infty}$	z = 1	$\sigma_r(t) - \sigma_l(t) = -e^t$	
	$-$ in $T_{-\infty,-1}$, $-$ in $T_{-1,0}$			

Examples				
Function	Strip pair and polarity	Pole	Transition of densities	
$\Gamma(z)$	$T_{-n-1,-n}, T_{-n,-n+1}$	z = -n	$\sigma_r(t) - \sigma_l(t) = \frac{(-1)^n}{n!} e^{-nt}$	
$\mathcal{Z}(z) = -\frac{\zeta(z)}{z}$	+ in $T_{0,1}$, - in $T_{1,+\infty}$	z = 1	$\sigma_r(t) - \sigma_l(t) = -e^t$	
$\frac{1}{z(z+1)^2}$	$-$ in $T_{-\infty,-1}$, $-$ in $T_{-1,0}$	z = -1	$\sigma_r(t) - \sigma_l(t) = -(1+t)e^{-t}$	

Examples				
Function	Strip pair and polarity	Pole	Transition of densities	
$\Gamma(z)$	$T_{-n-1,-n}, T_{-n,-n+1}$	z = -n	$\sigma_r(t) - \sigma_l(t) = \frac{(-1)^n}{n!} e^{-nt}$	
$\mathcal{Z}(z) = -\frac{\zeta(z)}{z}$	+ in $T_{0,1}$, - in $T_{1,+\infty}$	z = 1	$\sigma_r(t) - \sigma_l(t) = -e^t$	
$\frac{1}{z(z+1)^2}$	$- \text{ in } T_{-\infty,-1}, - \text{ in } T_{-1,0}$	z = -1	$\sigma_r(t) - \sigma_l(t) = -(1+t)e^{-t}$	
General $f(z)$				

Examples				
Function	Strip pair and polarity	Pole	Transition of densities	
$\Gamma(z)$	$T_{-n-1,-n}, T_{-n,-n+1}$	z = -n	$\sigma_r(t) - \sigma_l(t) = \frac{(-1)^n}{n!} e^{-nt}$	
$\mathcal{Z}(z) = -\frac{\zeta(z)}{z}$	+ in $T_{0,1}$, - in $T_{1,+\infty}$	z = 1	$\sigma_r(t) - \sigma_l(t) = -e^t$	
$\frac{1}{z(z+1)^2}$	$-$ in $T_{-\infty,-1},-$ in $T_{-1,0}$	z = -1	$\sigma_r(t) - \sigma_l(t) = -(1+t)e^{-t}$	
General $f(z)$	$T_{lpha,c}, T_{c,eta}$			

Rodrigo Duarte

2

Examples				
Function	Strip pair and polarity	Pole	Transition of densities	
$\Gamma(z)$	$T_{-n-1,-n}, T_{-n,-n+1}$	z = -n	$\sigma_r(t) - \sigma_l(t) = \frac{(-1)^n}{n!} e^{-nt}$	
$\mathcal{Z}(z) = -\frac{\zeta(z)}{z}$	+ in $T_{0,1}$, - in $T_{1,+\infty}$	z = 1	$\sigma_r(t) - \sigma_l(t) = -e^t$	
$\frac{1}{z(z+1)^2}$	$-$ in $T_{-\infty,-1},-$ in $T_{-1,0}$	z = -1	$\sigma_r(t) - \sigma_l(t) = -(1+t)e^{-t}$	
General $f(z)$	$T_{lpha,c}, T_{c,eta}$	z = c		

Examples				
Function	Strip pair and polarity	Pole	Transition of densities	
$\Gamma(z)$	$T_{-n-1,-n}, T_{-n,-n+1}$	z = -n	$\sigma_r(t) - \sigma_l(t) = \frac{(-1)^n}{n!} e^{-nt}$	
$\mathcal{Z}(z) = -\frac{\zeta(z)}{z}$	+ in $T_{0,1}$, - in $T_{1,+\infty}$	z = 1	$\sigma_r(t) - \sigma_l(t) = -e^t$	
$\frac{1}{z(z+1)^2}$	$-$ in $T_{-\infty,-1},-$ in $T_{-1,0}$	z = -1	$\sigma_r(t) - \sigma_l(t) = -(1+t)e^{-t}$	
General $f(z)$	$T_{lpha,c}, T_{c,eta}$	z = c	$\sigma_r(t) - \sigma_l(t) = \mathcal{P}(t)e^{ct}?$	

Rodrigo Duarte

Measure Transitions

May 13, 2020

Definition

Let (X, \mathcal{M}) be a measurable space. A signed measure in X is a set function $\mu : \mathcal{M} \to [-\infty, +\infty]$ such that

Definition

Let (X, \mathcal{M}) be a measurable space. A signed measure in X is a set function $\mu : \mathcal{M} \to [-\infty, +\infty]$ such that

•
$$\mu(\varnothing) = 0;$$

Definition

Let (X, \mathcal{M}) be a measurable space. A signed measure in X is a set function $\mu : \mathcal{M} \to [-\infty, +\infty]$ such that

- $\mu(\varnothing) = 0;$
- μ does not take more than one infinite value;

Definition

Let (X, \mathcal{M}) be a measurable space. A signed measure in X is a set function $\mu : \mathcal{M} \to [-\infty, +\infty]$ such that

- $\mu(\varnothing) = 0;$
- μ does not take more than one infinite value;
- If $(A_n)_n$ is a sequence of disjoint measurable sets then

$$\mu(\bigcup_n A_n) = \sum_n \mu(A_n),$$

where the series converges absolutely if $\mu(\bigcup_n A_n)$ is finite.

Definition

Let (X, \mathcal{M}) be a measurable space. A signed measure in X is a set function $\mu : \mathcal{M} \to [-\infty, +\infty]$ such that

- $\mu(\varnothing) = 0;$
- μ does not take more than one infinite value;
- If $(A_n)_n$ is a sequence of disjoint measurable sets then

$$\mu(\bigcup_n A_n) = \sum_n \mu(A_n),$$

where the series converges absolutely if $\mu(\bigcup_n A_n)$ is finite.

Definition

A signed measure μ is σ -finite if there is a countable family $\{A_n\} \subseteq \mathcal{M}$ of measurable sets with finite measure such that

$$X = \bigcup_{n} A_n.$$

Rodrigo Duarte

Rodrigo Duarte

Measure Transitions

May 13, 2020

Definition

Suppose we have two signed measures μ and ν in (X, \mathcal{M}) . We say that ν is **singular** with respect to μ if there are measurable sets A, B such that $A \cap B = \emptyset, A \cup B = X, \mu(A) = 0$ and $\nu(B) = 0$. This is written $\mu \perp \nu$.

Definition

Suppose we have two signed measures μ and ν in (X, \mathcal{M}) . We say that ν is **singular** with respect to μ if there are measurable sets A, B such that $A \cap B = \emptyset, A \cup B = X, \mu(A) = 0$ and $\nu(B) = 0$. This is written $\mu \perp \nu$.

Definition

Let ν be a signed measure and μ a nonnegative measure in (X, \mathcal{M}) . We say that ν is **absolutely continuous** with respect to μ if

$$\mu(A) = 0 \implies \nu(A) = 0, \ \forall A \in \mathcal{M}.$$

This is written $\nu \ll \mu$.

Rodrigo Duarte

Measure Transitions

May 13, 2020

Jordan Decomposition Theorem

Let μ be a signed measure. Then, there are unique nonnegative measures μ^+ and μ^- , such that

$$\mu = \mu^+ - \mu^-,$$

and $\mu^+ \perp \mu^-$.

Jordan Decomposition Theorem

Let μ be a signed measure. Then, there are unique nonnegative measures μ^+ and μ^- , such that

$$\mu = \mu^+ - \mu^-,$$

and $\mu^+ \perp \mu^-$.

• One of μ^+ , μ^- is finite;

Jordan Decomposition Theorem

Let μ be a signed measure. Then, there are unique nonnegative measures μ^+ and μ^- , such that

$$\mu = \mu^+ - \mu^-,$$

and $\mu^+ \perp \mu^-$.

- One of μ^+ , μ^- is finite;
- One defines $L^1(\mu) = L^1(\mu^+) \cap L^1(\mu^-)$ and for $f \in L^1(\mu)$,

$$\int f d\mu := \int f d\mu^+ - \int f d\mu^-.$$

Rodrigo Duarte

Rodrigo Duarte

Measure Transitions

May 13, 2020

3/24

The Lebesgue-Radon-Nikodym Theorem

Let ν be a σ -finite signed measure and μ a σ -finite nonnegative measure on (X, \mathcal{M}) .

The Lebesgue-Radon-Nikodym Theorem

Let ν be a σ -finite signed measure and μ a σ -finite nonnegative measure on (X, \mathcal{M}) . Then, there are unique σ -finite measures ν^a and ν^s on (X, \mathcal{M}) such that

$$\nu = \nu^a + \nu^s,$$

with $\nu^a \ll \mu$ and $\nu^s \perp \mu$.

The Lebesgue-Radon-Nikodym Theorem

Let ν be a σ -finite signed measure and μ a σ -finite nonnegative measure on (X, \mathcal{M}) . Then, there are unique σ -finite measures ν^a and ν^s on (X, \mathcal{M}) such that

$$\nu = \nu^a + \nu^s,$$

with $\nu^a \ll \mu$ and $\nu^s \perp \mu$. Moreover, there is a unique (a.e.) extended μ -integrable function $f: X \to \mathbb{R}$ such that

$$\nu^a(A) = \int_A f d\mu, \ \forall A \in \mathcal{M}.$$

The Lebesgue-Radon-Nikodym Theorem

Let ν be a σ -finite signed measure and μ a σ -finite nonnegative measure on (X, \mathcal{M}) . Then, there are unique σ -finite measures ν^a and ν^s on (X, \mathcal{M}) such that

$$\nu = \nu^a + \nu^s,$$

with $\nu^a \ll \mu$ and $\nu^s \perp \mu$. Moreover, there is a unique (a.e.) extended μ -integrable function $f: X \to \mathbb{R}$ such that

$$\nu^a(A) = \int_A f d\mu, \ \forall A \in \mathcal{M}.$$

• The splitting $\nu = \nu^a + \nu^s$ is called the **Lebesgue Decomposition**.

The Lebesgue-Radon-Nikodym Theorem

Let ν be a σ -finite signed measure and μ a σ -finite nonnegative measure on (X, \mathcal{M}) . Then, there are unique σ -finite measures ν^a and ν^s on (X, \mathcal{M}) such that

$$\nu = \nu^a + \nu^s,$$

with $\nu^a \ll \mu$ and $\nu^s \perp \mu$. Moreover, there is a unique (a.e.) extended μ -integrable function $f: X \to \mathbb{R}$ such that

$$\nu^{a}(A) = \int_{A} f d\mu, \ \forall A \in \mathcal{M}.$$

- The splitting $\nu = \nu^a + \nu^s$ is called the **Lebesgue Decomposition**.
- The relation

$$\nu(A) = \int_A f d\mu$$

is also written as $d\nu = f d\mu$. In this case we call f the **density** associated with ν .

Rodrigo Duarte

Rodrigo Duarte

Measure Transitions

May 13, 2020 14

A measure μ on the σ -algebra of measurable sets in \mathbb{R} is an **exponentially finite** signed measure (EFSM) with respect to a nonempty interval I if it is a signed measure and

$$\mu_y(A) = \int_A e^{-yt} d\mu(t)$$

is finite for all measurable $A \subseteq \mathbb{R}$ and for all $y \in I$.

A measure μ on the σ -algebra of measurable sets in \mathbb{R} is an **exponentially finite** signed measure (EFSM) with respect to a nonempty interval I if it is a signed measure and

$$\mu_y(A) = \int_A e^{-yt} d\mu(t)$$

is finite for all measurable $A \subseteq \mathbb{R}$ and for all $y \in I$.

Proposition

Exponentially finite signed measures are σ -finite.

A measure μ on the σ -algebra of measurable sets in \mathbb{R} is an **exponentially finite** signed measure (EFSM) with respect to a nonempty interval I if it is a signed measure and

$$\mu_y(A) = \int_A e^{-yt} d\mu(t)$$

is finite for all measurable $A \subseteq \mathbb{R}$ and for all $y \in I$.

Proposition

Exponentially finite signed measures are σ -finite.

• In particular, there is a Lebesgue decomposition

$$\mu = \mu^a + \mu^s$$

of any EFSM μ , with respect to the Lebesgue measure on \mathbb{R} .

A measure μ on the σ -algebra of measurable sets in \mathbb{R} is an **exponentially finite** signed measure (EFSM) with respect to a nonempty interval I if it is a signed measure and

$$\mu_y(A) = \int_A e^{-yt} d\mu(t)$$

is finite for all measurable $A \subseteq \mathbb{R}$ and for all $y \in I$.

Proposition

Exponentially finite signed measures are σ -finite.

• In particular, there is a Lebesgue decomposition

$$\mu = \mu^a + \mu^s$$

of any EFSM μ , with respect to the Lebesgue measure on \mathbb{R} .

• Furthermore, there is a density $\sigma(t)$ such that $d\mu^a(t) = \sigma(t)dt$.

Bilateral Polarization

	uarte

A measure μ is said to be **polarized** if it has a sign and it is exponentially finite with respect to some interval.

A measure μ is said to be **polarized** if it has a sign and it is exponentially finite with respect to some interval.

Definition

A signed measure μ is said to be **right polarized** if there exists some $\gamma \in \mathbb{R}$ such that the measure

$$\mu^d(A) = \mu(A \cap]\gamma, +\infty[)$$

is polarized.

A measure μ is said to be **polarized** if it has a sign and it is exponentially finite with respect to some interval.

Definition

A signed measure μ is said to be **right polarized** if there exists some $\gamma \in \mathbb{R}$ such that the measure

$$\mu^d(A) = \mu(A \cap]\gamma, +\infty[)$$

is polarized.

• We can analogously define left polarized signed measures;

A measure μ is said to be **polarized** if it has a sign and it is exponentially finite with respect to some interval.

Definition

A signed measure μ is said to be **right polarized** if there exists some $\gamma \in \mathbb{R}$ such that the measure

$$\mu^d(A) = \mu(A \cap]\gamma, +\infty[)$$

is polarized.

- We can analogously define left polarized signed measures;
- A signed measure is **bilaterally polarized** if it is both left and right polarized.

Rodrigo Duarte

Image: A math black

3

Let $\alpha, \beta \in \overline{\mathbb{R}}$ and let $c \in \mathbb{R}$ be such that $\alpha < c < \beta$.

Let $\alpha, \beta \in \mathbb{R}$ and let $c \in \mathbb{R}$ be such that $\alpha < c < \beta$. If μ_l is a polarized measure with respect to $]\alpha, c[$ and μ_r is a polarized measure with respect to $]c, \beta[$,

Let $\alpha, \beta \in \mathbb{R}$ and let $c \in \mathbb{R}$ be such that $\alpha < c < \beta$. If μ_l is a polarized measure with respect to $]\alpha, c[$ and μ_r is a polarized measure with respect to $]c, \beta[$, then we say

 $(\mu_l,\mu_r)_{lpha,c,eta}$

is a **polarized measure pair** if there is a polar function f meromorphic in $T_{\alpha,\beta}$ with a single pole in z = c,

Let $\alpha, \beta \in \mathbb{R}$ and let $c \in \mathbb{R}$ be such that $\alpha < c < \beta$. If μ_l is a polarized measure with respect to $]\alpha, c[$ and μ_r is a polarized measure with respect to $]c, \beta[$, then we say

 $(\mu_l,\mu_r)_{\alpha,c,\beta}$

is a **polarized measure pair** if there is a polar function f meromorphic in $T_{\alpha,\beta}$ with a single pole in z = c, such that

$$f(z) = \begin{cases} \mathcal{LF}(\mu_l)(z), & z \in T_{\alpha,c} \\ \mathcal{LF}(\mu_r)(z), & z \in T_{c,\beta}. \end{cases}$$

Let $\alpha, \beta \in \mathbb{R}$ and let $c \in \mathbb{R}$ be such that $\alpha < c < \beta$. If μ_l is a polarized measure with respect to $]\alpha, c[$ and μ_r is a polarized measure with respect to $]c, \beta[$, then we say

 $(\mu_l,\mu_r)_{\alpha,c,\beta}$

is a **polarized measure pair** if there is a polar function f meromorphic in $T_{\alpha,\beta}$ with a single pole in z = c, such that

$$f(z) = \begin{cases} \mathcal{LF}(\mu_l)(z), & z \in T_{\alpha,c} \\ \mathcal{LF}(\mu_r)(z), & z \in T_{c,\beta}. \end{cases}$$

• We assume that $]\alpha, c[$ is the maximal interval for which μ_l is exponentially finite, and similarly for $]c, \beta[$.

Let $\alpha, \beta \in \mathbb{R}$ and let $c \in \mathbb{R}$ be such that $\alpha < c < \beta$. If μ_l is a polarized measure with respect to $]\alpha, c[$ and μ_r is a polarized measure with respect to $]c, \beta[$, then we say

 $(\mu_l,\mu_r)_{\alpha,c,\beta}$

is a **polarized measure pair** if there is a polar function f meromorphic in $T_{\alpha,\beta}$ with a single pole in z = c, such that

$$f(z) = \begin{cases} \mathcal{LF}(\mu_l)(z), & z \in T_{\alpha,c} \\ \mathcal{LF}(\mu_r)(z), & z \in T_{c,\beta}. \end{cases}$$

- We assume that $]\alpha, c[$ is the maximal interval for which μ_l is exponentially finite, and similarly for $]c, \beta[$.
- In particular, f has singularities at $z = \alpha$ and $z = \beta$, if these are finite.

	uarte

• Consider a polarized measure pair $(\mu_l, \mu_r)_{\alpha, c, \beta}$, with associated meromorphic function f.

- Consider a polarized measure pair $(\mu_l, \mu_r)_{\alpha, c, \beta}$, with associated meromorphic function f.
- Expanding in a Laurent series, we can write

$$f(z) = \sum_{k=1}^{m} \frac{b_k}{(z-c)^k} + \sum_{k\geq 0} c_k (z-c)^k =: f^p(z) + f^h_0(z), \ z \in B_R(c) \setminus \{c\},$$

where $R = \min\{|\alpha - c|, |\beta - c|\}.$

- Consider a polarized measure pair $(\mu_l, \mu_r)_{\alpha, c, \beta}$, with associated meromorphic function f.
- Expanding in a Laurent series, we can write

$$f(z) = \sum_{k=1}^{m} \frac{b_k}{(z-c)^k} + \sum_{k\geq 0} c_k (z-c)^k =: f^p(z) + f^h_0(z), \ z \in B_R(c) \setminus \{c\},$$

where $R = \min\{|\alpha - c|, |\beta - c|\}.$

• f_0^h can be extended analytically to a holomorphic function $f^h(z)$ in $T_{\alpha,\beta}$ such that

$$f(z) = f^p(z) + f^h(z), \ \forall z \in T_{\alpha,\beta} \setminus \{c\}.$$

- Consider a polarized measure pair $(\mu_l, \mu_r)_{\alpha, c, \beta}$, with associated meromorphic function f.
- Expanding in a Laurent series, we can write

$$f(z) = \sum_{k=1}^{m} \frac{b_k}{(z-c)^k} + \sum_{k\geq 0} c_k (z-c)^k =: f^p(z) + f^h_0(z), \ z \in B_R(c) \setminus \{c\},$$

where $R = \min\{|\alpha - c|, |\beta - c|\}.$

• f_0^h can be extended analytically to a holomorphic function $f^h(z)$ in $T_{\alpha,\beta}$ such that

$$f(z) = f^p(z) + f^h(z), \ \forall z \in T_{\alpha,\beta} \setminus \{c\}.$$

• By direct computation one can verify that

$$\frac{1}{(z-c)^k} = \begin{cases} \mathcal{LF}(\mu_{lk}^p)(z), & z \in T_{-\infty,c} \\ \mathcal{LF}(\mu_{rk}^p)(z), & z \in T_{c,+\infty}; \end{cases}$$

- Consider a polarized measure pair $(\mu_l, \mu_r)_{\alpha, c, \beta}$, with associated meromorphic function f.
- Expanding in a Laurent series, we can write

$$f(z) = \sum_{k=1}^{m} \frac{b_k}{(z-c)^k} + \sum_{k\geq 0} c_k (z-c)^k =: f^p(z) + f^h_0(z), \ z \in B_R(c) \setminus \{c\},$$

where $R = \min\{|\alpha - c|, |\beta - c|\}.$

• f_0^h can be extended analytically to a holomorphic function $f^h(z)$ in $T_{\alpha,\beta}$ such that

$$f(z) = f^p(z) + f^h(z), \ \forall z \in T_{\alpha,\beta} \setminus \{c\}.$$

• By direct computation one can verify that

$$\frac{1}{(z-c)^k} = \begin{cases} \mathcal{LF}(\mu_{lk}^p)(z), & z \in T_{-\infty,c} \\ \mathcal{LF}(\mu_{rk}^p)(z), & z \in T_{c,+\infty}, \end{cases}$$

where $d\mu_{\cdot k}^{p}(t) = \sigma_{\cdot k}^{p}(t)dt$ and

$$\left\{ \begin{array}{l} \sigma_{lk}^p(t) = -\frac{t^{k-1}}{(k-1)!}(1-H(t))e^{ct} \\ \sigma_{rk}^p(t) = \frac{t^{k-1}}{(k-1)!}H(t)e^{ct}. \end{array} \right.$$

Rodrigo Duarte

May 13, 2020

	uarte

• Adding these measures we define

$$\mu^p_{\cdot} = \sum_{k=1}^m b_k \mu^p_{\cdot k}.$$

• Adding these measures we define

$$\mu^p_{\cdot} = \sum_{k=1}^m b_k \mu^p_{\cdot k}.$$

• Then, we obtain

$$f^{p}(z) = \begin{cases} \mathcal{LF}(\mu_{l}^{p})(z), & z \in T_{-\infty,c} \\ \mathcal{LF}(\mu_{r}^{p})(z), & z \in T_{c,+\infty}. \end{cases}$$

• Adding these measures we define

$$\mu^p_{\cdot} = \sum_{k=1}^m b_k \mu^p_{\cdot k}.$$

• Then, we obtain

$$f^{p}(z) = \begin{cases} \mathcal{LF}(\mu_{l}^{p})(z), & z \in T_{-\infty,c} \\ \mathcal{LF}(\mu_{r}^{p})(z), & z \in T_{c,+\infty}. \end{cases}$$

• One can check that indeed μ^p_{\cdot} is an EFSM with density

$$\sigma^p_{\cdot}(t) = \sum_{k=1}^m b_k \sigma^p_{\cdot k}(t).$$

Rodrigo Duarte

May 13, 2020 18/

• Adding these measures we define

$$\mu^p_{\cdot} = \sum_{k=1}^m b_k \mu^p_{\cdot k}.$$

• Then, we obtain

$$f^{p}(z) = \begin{cases} \mathcal{LF}(\mu_{l}^{p})(z), & z \in T_{-\infty,c} \\ \mathcal{LF}(\mu_{r}^{p})(z), & z \in T_{c,+\infty}. \end{cases}$$

• One can check that indeed μ^p_{\cdot} is an EFSM with density

$$\sigma^p_{\cdot}(t) = \sum_{k=1}^m b_k \sigma^p_{\cdot k}(t).$$

Definition

We define the transition polynomial to be

$$\mathcal{P}(t) = \sum_{k=1}^{m} \frac{b_k}{(k-1)!} t^{k-1} = e^{-ct} (\sigma_r^p(t) - \sigma_l^p(t)).$$

Rodrigo Duarte

May 13, 2020 18/

Rodrigo Duarte

Measure Transitions

May 13, 2020

・ロト ・四ト ・ヨト ・ヨト

∃ つへで 19/24

Let $(\mu_l, \mu_r)_{\alpha,c,\beta}$ be a polarized measure pair with associated function f. Suppose that $\mu_{rx_0}^h := \mu_{rx_0} - \mu_{rx_0}^p$ is exponentially finite with respect to $]\alpha - x_0, \beta - x_0[$, for some $x_0 \in]c, \beta[$. Then,

$$f(z) = f(x+iy) = \mathcal{LF}(\mu_{lx}^p + \mu_{rx}^h)(iy), \ z \in T_{\alpha,c}.$$

Let $(\mu_l, \mu_r)_{\alpha,c,\beta}$ be a polarized measure pair with associated function f. Suppose that $\mu_{rx_0}^h := \mu_{rx_0} - \mu_{rx_0}^p$ is exponentially finite with respect to $]\alpha - x_0, \beta - x_0[$, for some $x_0 \in]c, \beta[$. Then,

$$f(z) = f(x+iy) = \mathcal{LF}(\mu_{lx}^p + \mu_{rx}^h)(iy), \ z \in T_{\alpha,c}.$$

Note that μ^h_{rx0} is a finite signed measure exponentially finite with respect to]c - x₀, β - x₀[, even if μ_r - μ^p_r is not a signed measure;

Let $(\mu_l, \mu_r)_{\alpha,c,\beta}$ be a polarized measure pair with associated function f. Suppose that $\mu_{rx_0}^h := \mu_{rx_0} - \mu_{rx_0}^p$ is exponentially finite with respect to $]\alpha - x_0, \beta - x_0[$, for some $x_0 \in]c, \beta[$. Then,

$$f(z) = f(x+iy) = \mathcal{LF}(\mu_{lx}^p + \mu_{rx}^h)(iy), \ z \in T_{\alpha,c}.$$

- Note that μ^h_{rx0} is a finite signed measure exponentially finite with respect to]c x₀, β x₀[, even if μ_r μ^p_r is not a signed measure;
- We have

$$f(z) = f^{p}(z) + \mathcal{LF}(\mu_{rx_{0}}^{h})(z - x_{0}), \ z \in T_{c,\beta}.$$

Let $(\mu_l, \mu_r)_{\alpha,c,\beta}$ be a polarized measure pair with associated function f. Suppose that $\mu_{rx_0}^h := \mu_{rx_0} - \mu_{rx_0}^p$ is exponentially finite with respect to $]\alpha - x_0, \beta - x_0[$, for some $x_0 \in]c, \beta[$. Then,

$$f(z) = f(x+iy) = \mathcal{LF}(\mu_{lx}^p + \mu_{rx}^h)(iy), \ z \in T_{\alpha,c}.$$

- Note that μ^h_{rx0} is a finite signed measure exponentially finite with respect to]c x₀, β x₀[, even if μ_r μ^p_r is not a signed measure;
- We have

$$f(z) = f^p(z) + \mathcal{LF}(\mu^h_{rx_0})(z - x_0), \ z \in T_{c,\beta}.$$

 By uniqueness of analytic continuation we must have this equality in the whole strip T_{α,β} \ {c}.

Let $(\mu_l, \mu_r)_{\alpha,c,\beta}$ be a polarized measure pair with associated function f. Suppose that $\mu_{rx_0}^h := \mu_{rx_0} - \mu_{rx_0}^p$ is exponentially finite with respect to $]\alpha - x_0, \beta - x_0[$, for some $x_0 \in]c, \beta[$. Then,

$$f(z) = f(x+iy) = \mathcal{LF}(\mu_{lx}^p + \mu_{rx}^h)(iy), \ z \in T_{\alpha,c}.$$

- Note that μ^h_{rx0} is a finite signed measure exponentially finite with respect to]c x₀, β x₀[, even if μ_r μ^p_r is not a signed measure;
- We have

$$f(z) = f^p(z) + \mathcal{LF}(\mu^h_{rx_0})(z - x_0), \ z \in T_{c,\beta}.$$

- By uniqueness of analytic continuation we must have this equality in the whole strip T_{α,β} \ {c}.
- Recalling that $f^p(z) = \mathcal{LF}(\mu_l^p)(z)$ when $z \in T_{\alpha,c}$, it follows that

$$f(z) = \mathcal{LF}(\mu_l^p)(z) + \mathcal{LF}(\mu_{rx_0}^h)(z - x_0) = \mathcal{LF}(\mu_{lx}^p + \mu_{rx}^h)(iy).$$

Let $(\mu_l, \mu_r)_{\alpha,c,\beta}$ be a polarized measure pair with associated function f. Suppose that $\mu_{rx_0}^h := \mu_{rx_0} - \mu_{rx_0}^p$ is exponentially finite with respect to $]\alpha - x_0, \beta - x_0[$, for some $x_0 \in]c, \beta[$. Then,

$$f(z) = f(x+iy) = \mathcal{LF}(\mu_{lx}^p + \mu_{rx}^h)(iy), \ z \in T_{\alpha,c}.$$

- Note that μ^h_{rx0} is a finite signed measure exponentially finite with respect to]c x₀, β x₀[, even if μ_r μ^p_r is not a signed measure;
- We have

$$f(z) = f^{p}(z) + \mathcal{LF}(\mu^{h}_{rx_{0}})(z - x_{0}), \ z \in T_{c,\beta}.$$

- By uniqueness of analytic continuation we must have this equality in the whole strip T_{α,β} \ {c}.
- Recalling that $f^p(z) = \mathcal{LF}(\mu_l^p)(z)$ when $z \in T_{\alpha,c}$, it follows that

$$f(z) = \mathcal{LF}(\mu_l^p)(z) + \mathcal{LF}(\mu_{rx_0}^h)(z - x_0) = \mathcal{LF}(\mu_{lx}^p + \mu_{rx}^h)(iy).$$

Remark:

• There is an analogous result using μ_l and going from $T_{\alpha,c}$ to $T_{c,\beta}$.

Rodrigo Duarte

3

< D > < </p>

Let $(\mu_l, \mu_r)_{\alpha, c, \beta}$ be a polarized measure pair. The following are equivalent:

Let $(\mu_l, \mu_r)_{\alpha, c, \beta}$ be a polarized measure pair. The following are equivalent:

(i)
$$\mu_{rx_0}^h := \mu_{rx_0} - \mu_{rx_0}^p$$
 is exponentially finite with respect to $]\alpha - x_0, \beta - x_0[$, for some $x_0 \in]c, \beta[;$

Let $(\mu_l, \mu_r)_{\alpha, c, \beta}$ be a polarized measure pair. The following are equivalent:

(i) $\mu_{rx_0}^h := \mu_{rx_0} - \mu_{rx_0}^p$ is exponentially finite with respect to $]\alpha - x_0, \beta - x_0[$, for some $x_0 \in]c, \beta[;$

(ii) We have

$$\begin{cases} \mu_l^s = \mu_r^s \\ \sigma_r(t) - \sigma_l(t) = \mathcal{P}(t)e^{ct} \text{ a.e. in } \mathbb{R} \end{cases}$$

where μ_l^s, μ_r^s are exponentially finite with respect to $]\alpha, \beta[$, and $d\mu_{\cdot}^a(t) = \sigma_{\cdot}(t)dt;$

Let $(\mu_l, \mu_r)_{\alpha, c, \beta}$ be a polarized measure pair. The following are equivalent:

(i) $\mu_{rx_0}^h := \mu_{rx_0} - \mu_{rx_0}^p$ is exponentially finite with respect to $]\alpha - x_0, \beta - x_0[$, for some $x_0 \in]c, \beta[;$

(ii) We have

$$\begin{cases} \mu_l^s = \mu_r^s \\ \sigma_r(t) - \sigma_l(t) = \mathcal{P}(t)e^{ct} \text{ a.e. in } \mathbb{R} \end{cases}$$

where μ_l^s, μ_r^s are exponentially finite with respect to $]\alpha, \beta[$, and $d\mu^a_{\cdot}(t) = \sigma_{\cdot}(t)dt;$

(iii) $\mu_r^h =: \mu_r - \mu_r^p$ is a bilaterally polarized EFSM with respect to $]\alpha, \beta[$.

Let $(\mu_l, \mu_r)_{\alpha, c, \beta}$ be a polarized measure pair. The following are equivalent:

(i) $\mu_{rx_0}^h := \mu_{rx_0} - \mu_{rx_0}^p$ is exponentially finite with respect to $]\alpha - x_0, \beta - x_0[$, for some $x_0 \in]c, \beta[;$

(ii) We have

$$\begin{cases} \mu_l^s = \mu_r^s \\ \sigma_r(t) - \sigma_l(t) = \mathcal{P}(t)e^{ct} \text{ a.e. in } \mathbb{R} \end{cases}$$

where μ_l^s, μ_r^s are exponentially finite with respect to $]\alpha, \beta[$, and $d\mu_{\cdot}^a(t) = \sigma_{\cdot}(t)dt;$

(iii) $\mu_r^h =: \mu_r - \mu_r^p$ is a bilaterally polarized EFSM with respect to $]\alpha, \beta[$.

Remarks:

• One could replace r by l in item (i) and (iii);

Let $(\mu_l, \mu_r)_{\alpha, c, \beta}$ be a polarized measure pair. The following are equivalent:

(i) $\mu_{rx_0}^h := \mu_{rx_0} - \mu_{rx_0}^p$ is exponentially finite with respect to $]\alpha - x_0, \beta - x_0[$, for some $x_0 \in]c, \beta[;$

(ii) We have

$$\begin{cases} \mu_l^s = \mu_r^s \\ \sigma_r(t) - \sigma_l(t) = \mathcal{P}(t)e^{ct} \text{ a.e. in } \mathbb{R} \end{cases}$$

where μ_l^s, μ_r^s are exponentially finite with respect to $]\alpha, \beta[$, and $d\mu_{\cdot}^a(t) = \sigma_{\cdot}(t)dt;$

(iii) $\mu_r^h =: \mu_r - \mu_r^p$ is a bilaterally polarized EFSM with respect to $]\alpha, \beta[$.

Remarks:

- One could replace r by l in item (i) and (iii);
- The implication (iii) \implies (i) is immediate.

Proof of (i) \Longrightarrow (ii)

	uarte

Image: A matrix and a matrix

æ

• By the lemma above we have

$$f(x+iy) = \mathcal{LF}(\mu_{lx})(iy) = \mathcal{LF}(\mu_{lx}^p + \mu_{rx}^h)(iy),$$

so $\mu_{lx} = \mu_{lx}^p + \mu_{rx}^h$, for $x \in]\alpha, c[$.

• By the lemma above we have

$$f(x+iy) = \mathcal{LF}(\mu_{lx})(iy) = \mathcal{LF}(\mu_{lx}^p + \mu_{rx}^h)(iy),$$

so $\mu_{lx} = \mu_{lx}^p + \mu_{rx}^h$, for $x \in]\alpha, c[$.

• Considering the Lebesgue decomposition we obtain $\mu_{lx}^s = \mu_{rx}^{hs} = \mu_{rx}^s$. So,

$$e^{-xt}d\mu_l^s = d\mu_{lx}^s = d\mu_{rx}^s = e^{-xt}d\mu_r^s.$$

Thus, $\mu_l^s = \mu_r^s$.

• By the lemma above we have

$$f(x+iy) = \mathcal{LF}(\mu_{lx})(iy) = \mathcal{LF}(\mu_{lx}^p + \mu_{rx}^h)(iy),$$

so $\mu_{lx} = \mu_{lx}^p + \mu_{rx}^h$, for $x \in]\alpha, c[$.

• Considering the Lebesgue decomposition we obtain $\mu_{lx}^s = \mu_{rx}^{hs} = \mu_{rx}^s$. So,

$$e^{-xt}d\mu_l^s = d\mu_{lx}^s = d\mu_{rx}^s = e^{-xt}d\mu_r^s.$$

Thus, $\mu_l^s = \mu_r^s$.

• Considering instead the absolutely continuous part we obtain $\mu_{lx}^a = \mu_{lx}^{pa} + \mu_{rx}^{ha} = \mu_{lx}^p + \mu_{rx}^a - \mu_{rx}^p$, so

$$\mu_{rx}^a - \mu_{lx}^a = \mu_{rx}^p - \mu_{lx}^p.$$

Rodrigo Duarte

• By the lemma above we have

$$f(x+iy) = \mathcal{LF}(\mu_{lx})(iy) = \mathcal{LF}(\mu_{lx}^p + \mu_{rx}^h)(iy),$$

so $\mu_{lx} = \mu_{lx}^p + \mu_{rx}^h$, for $x \in]\alpha, c[$.

• Considering the Lebesgue decomposition we obtain $\mu_{lx}^s = \mu_{rx}^{hs} = \mu_{rx}^s$. So,

$$e^{-xt}d\mu_l^s = d\mu_{lx}^s = d\mu_{rx}^s = e^{-xt}d\mu_r^s.$$

Thus, $\mu_l^s = \mu_r^s$.

• Considering instead the absolutely continuous part we obtain $\mu_{lx}^a = \mu_{lx}^{pa} + \mu_{rx}^{ha} = \mu_{lx}^p + \mu_{rx}^a - \mu_{rx}^p$, so

$$\mu_{rx}^a - \mu_{lx}^a = \mu_{rx}^p - \mu_{lx}^p.$$

• Thus,

$$e^{-xt}(\sigma_r - \sigma_l)dt = d(\mu_{rx}^a - \mu_{lx}^a) = d(\mu_{rx}^p - \mu_{lx}^p) = e^{-xt}(\sigma_r^p - \sigma_l^p)dt$$
$$= e^{-xt}\mathcal{P}(t)e^{ct}dt.$$

Roc	lrigo	Duarte	3

3

• Can these results be generalised to \mathbb{C}^n ?

- Can these results be generalised to \mathbb{C}^n ?
- We assumed that the singularity at z = c is a pole. What happens at an essential singularity?

$$f(z) = \sum_{k \ge 1} \frac{b_k}{(z-c)^k} + \sum_{k \ge 0} c_k (z-c)^k, \ z \in B_R(c) \setminus \{c\}$$

- Can these results be generalised to \mathbb{C}^n ?
- We assumed that the singularity at z = c is a pole. What happens at an essential singularity?

$$f(z) = \sum_{k \ge 1} \frac{b_k}{(z-c)^k} + \sum_{k \ge 0} c_k (z-c)^k, \ z \in B_R(c) \setminus \{c\}.$$

- In this case, the argument for the existence of f^h does not work.

- Can these results be generalised to \mathbb{C}^n ?
- We assumed that the singularity at z = c is a pole. What happens at an essential singularity?

$$f(z) = \sum_{k \ge 1} \frac{b_k}{(z-c)^k} + \sum_{k \ge 0} c_k (z-c)^k, \ z \in B_R(c) \setminus \{c\}.$$

- In this case, the argument for the existence of f^h does not work.
- Moreover, in the construction of σ_r^p , we would obtain an infinite sum

$$\sigma_r^p(t) = H(t)e^{ct}\sum_{k\ge 1} b_k \frac{t^{k-1}}{(k-1)!}$$

- Can these results be generalised to \mathbb{C}^n ?
- We assumed that the singularity at z = c is a pole. What happens at an essential singularity?

$$f(z) = \sum_{k \ge 1} \frac{b_k}{(z-c)^k} + \sum_{k \ge 0} c_k (z-c)^k, \ z \in B_R(c) \setminus \{c\}.$$

- In this case, the argument for the existence of f^h does not work.
- Moreover, in the construction of σ_r^p , we would obtain an infinite sum

$$\sigma_r^p(t) = H(t)e^{ct}\sum_{k\ge 1} b_k \frac{t^{k-1}}{(k-1)!}.$$

- Decay properties of b_k ?

References I

J. Buescu, A. C. Paixão.

The Measure Transition Problem for Meromorphic Polar Functions. Submitted, 2019.

J. Buescu, A. C. Paixão. Complex Variable Positive Definite Functions. Complex Anal. Oper. Theory, DOI 10.1007/s11785-013-0319-1.

J. Buescu, A. C. Paixão, A. Symeonides. Complex Positive Definite Functions on Strips. Complex Anal. Oper. Theory, DOI 10.1007/s11785-015-0527-y.

Eugene Lukacs.

Characteristic Functions. Charles Griffin & Company Limited, 1970.

J. Mercer.

Functions of Positive and Negative Type, and their Connection with the Theory of Integral Equations. https://doi.org/10.1098/rsta.1909.0016

James Stewart.

Positive Definite Functions and Generalizations, an Historical Survey . Rocky Mountain Journal of Mathematics, Volume 6, Number 3, Summer 1976.

J. Buescu, A. C. Paixão. Real and complex variable positive definite functions.

São Paulo Journal of Mathematical Sciences, 6, 2 (2012), 155-169.

Gerald B. Folland.

Real Analysis: Modern Techniques and Their Applications. John Wiley & Sons, Inc. 1999.

Gerald B. Folland.

A Course in Abstract Harmonic Analysis. CRC Press, 2015.