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e Definite Func

@ In the theory of integral equations, operators of the form

Ticg(e) = [ Ko.)g(w)dy

have an important role.
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Positive Definite Functions

@ In the theory of integral equations, operators of the form

Ticg(e) = [ Ko.)g(w)dy

have an important role. In 1909, James Mercer introduced the following notion
relating to this theory:
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Definite Functions

@ In the theory of integral equations, operators of the form

Trg(x /K(xy

have an important role. In 1909, James Mercer introduced the following notion
relating to this theory:

K : R? — C is said to be a positive definite kernel if for any collection (zx)p_y, we have

n

Z @k, 21)éx€t 2 0, V€= (€1,...,€n) €C™.
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Definite Functions

@ In the theory of integral equations, operators of the form

Trg(x /K(xy

have an important role. In 1909, James Mercer introduced the following notion
relating to this theory:

K : R? — C is said to be a positive definite kernel if for any collection (zx)p_y, we have

n

Z @k, 21)éx€t 2 0, V€= (€1,...,€n) €C™.

@ The case K(z,y) = f(z — y) is of particular interest for the operators Tk.
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nite Functions

@ In the theory of integral equations, operators of the form

Trg(x /K(wy

have an important role. In 1909, James Mercer introduced the following notion
relating to this theory:

K : R? — C is said to be a positive definite kernel if for any collection (zx)p_y, we have

n

Z @k, 21)éx€t 2 0, V€= (€1,...,€n) €C™.

@ The case K(z,y) = f(x — y) is of particular interest for the operators Tk .

A function f: R — C is said to be positive definite if for any collection (xy)}_, we have

n

> flan —x)ér€ >0, ¥EEC™,

k,l=1
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Polar Funct

A function f: A C C — C is said to be (co-)positive definite if for any
collection (zy)p_, satisfying zi &+ Z, € A, we have

> flrt2)6E >0, VE= (&1,...,&) €C™

k=1
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Polar Functions

A function f: A C C — C is said to be (co-)positive definite if for any
collection (zy)p_, satisfying zi &+ Z, € A, we have

> flrt2)6E >0, VE= (&1,...,&) €C™

k=1

| A\

Definition

A function f: A C C — C is called polar if it is (co-)positive definite or
(co-)negative definite.
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Polar Functions

A function f: A C C — C is said to be (co-)positive definite if for any
collection (zy)p_, satisfying zi &+ Z, € A, we have

> flrt2)6E >0, VE= (&1,...,&) €C™

k=1

Definition

| A\

A function f: A C C — C is called polar if it is (co-)positive definite or
(co-)negative definite.

Remarks:

@ A function f is positive definite in A if and only if the function
g(z) = f(iz) is co-positive definite in —iA.
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Polar Functions

A function f: A C C — C is said to be (co-)positive definite if for any
collection (zy)p_, satisfying zi &+ Z, € A, we have

> flrt2)6E >0, VE= (&1,...,&) €C™

k=1

| A\

Definition

A function f: A C C — C is called polar if it is (co-)positive definite or
(co-)negative definite.

Remarks:

@ A function f is positive definite in A if and only if the function
g(z) = f(iz) is co-positive definite in —iA.

@ We can always translate from the notion of positive definiteness to the
notion of co-positive definiteness.
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An Important Example
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An Important Example

@ Recall the definition of the Gamma function:

+o0o
I'(z) = / r* e "dx, R(z) > 0.
0
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An Important Example

@ Recall the definition of the Gamma function:
“+o0
I'(z) = / ¥ e dr, R(2) >0
0

@ This function is co-positive definite in this half plane.

2
n +oo n
e
> T+ 2)&& = / > atg,
0 k=1

k=1

—x

dx > 0.
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An Important Example

@ Recall the definition of the Gamma function:
“+o0
I'(z) = / ¥ e dr, R(2) >0
0

@ This function is co-positive definite in this half plane.

2
n +oo n
e
Z D(z + 2166 = / Zmzkﬁk
0 k=1

k,l=1
o I' can be extended to a meromorphic function on C using the
relationship I'(z + 1) = 2I'(z). The Gamma function has simple poles at
the nonpositive integers, with residues Res(I', —n) = (—1)"/nl.

—x

dx > 0.
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An Important Example

@ Recall the definition of the Gamma function:
“+o0
I'(z) = / ¥ e dr, R(2) >0
0

@ This function is co-positive definite in this half plane.

2
n +oo n
e
Z D(zk + 2)&k6 = / Zmzkﬁk
0 k=1

k,l=1
@ I" can be extended to a meromorphic function on C using the
relationship I'(z + 1) = 2I'(z). The Gamma function has simple poles at
the nonpositive integers, with residues Res(I', —n) = (—1)"/nl.

—x

dx > 0.

@ In each vertical strip —n < R(z) < —n + 1, we have the
Cauchy-Saalschiitz formula

+oo _1\m
I'(z) :/0 A (e_”” — Z %xm> dzx.
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@ Using the Cauchy-Saalschiitz formula one can show that I' is co-positive definite in
the strips —n < R(z) < —n + 1 with n even, and co-negative definite in these strips
with n odd.

Rodrigo Duarte Measure Transit s May 13,



@ Using the Cauchy-Saalschiitz formula one can show that I' is co-positive definite in
the strips —n < R(z) < —n + 1 with n even, and co-negative definite in these strips
with n odd.

+ -+ - 4

mmmmmmmmmmeef .. ———————————
S R )
-t e
DD MDD DI
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@ Using the Cauchy-Saalschiitz formula one can show that I' is co-positive definite in
the strips —n < R(z) < —n + 1 with n even, and co-negative definite in these strips

with n odd.

_|_

_|_

_|_

e e T

S R )

- e
5
T

@ With the change of variables t = — log(z) we obtain, in the strip
—n < R(z) < —n + 1, the representation
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@ Using the Cauchy-Saalschiitz formula one can show that I' is co-positive definite in
the strips —n < R(z) < —n + 1 with n even, and co-negative definite in these strips
with n odd.

+ -+ - 4

mmmmmmmmmmeef .. ———————————
S R )
-t e
DD MDD DI

@ With the change of variables t = — log(z) we obtain, in the strip
—n < R(z) < —n + 1, the representation

+oo
I'(z) = / e *tdu_n(t),

— 00
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@ Using the Cauchy-Saalschiitz formula one can show that I' is co-positive definite in
the strips —n < R(z) < —n + 1 with n even, and co-negative definite in these strips
with n odd.

+ -+ - 4

mmmmmmmmmmeef .. ———————————
S R )
-t e
DD MDD DI

@ With the change of variables t = — log(z) we obtain, in the strip
—n < R(z) < —n + 1, the representation

+oo
PE) = [ e dun(®), duon(t) = (bt

— 00
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@ Using the Cauchy-Saalschiitz formula one can show that I' is co-positive definite in
the strips —n < R(z) < —n + 1 with n even, and co-negative definite in these strips
with n odd.

+ -+ - 4

mmmmmmmmmmeef .. ———————————
S R )
-t e
DD MDD DI

@ With the change of variables t = — log(z) we obtain, in the strip
—n < R(z) < —n + 1, the representation

+oo
PE) = [ e dun(®), duon(t) = (bt

— 00

where

Ufn(t): Z (—T:L?m e_mt.
m>n :
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@ Using the Cauchy-Saalschiitz formula one can show that I' is co-positive definite in
the strips —n < R(z) < —n + 1 with n even, and co-negative definite in these strips
with n odd.
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@ With the change of variables t = — log(z) we obtain, in the strip
—n < R(z) < —n + 1, the representation

+oo
I'(z) = / e P du_n(t), du—n(t) = o_n(t)dt,

— 00

where

Ufn(t): Z (—T:L):n e_mt.
m>n :

@ Note that the transition from one density to the one on its left follows the simple
transition formula:

o—n(t) —o_(mtn(t) =
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Laplace-Fourier Trans
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Fourier Transform

@ A well known result in harmonic analysis relates the Fourier transform
with positive definite functions.
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Laplace-Fourier Transform

@ A well known result in harmonic analysis relates the Fourier transform
with positive definite functions.

Bochner’s Theorem

A continuous function f : R — C is positive definite if and only if there is a
unique finite and nonnegative measure p such that

f@) = [ etdute.
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Laplace-Fourier Transform

@ A well known result in harmonic analysis relates the Fourier transform
with positive definite functions.

Bochner’s Theorem

A continuous function f : R — C is positive definite if and only if there is a
unique finite and nonnegative measure p such that

f@) = [ etdute.

Definition
The Laplace-Fourier transform of a measure p and the Fourier-Laplace
transform are defined by

| A\

LFWE) = [

wamwmww=/Www

R
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Laplace-Fourier Trans
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Laplace-Fourier Transform

Definition

A measure p over the o-algebra of measurable sets in R is exponentially finite
with respect to a nonempty interval [, if

/e_ytdu(t) < 00,
R

for all y € I.
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Laplace-Fourier Transform

Definition

A measure p over the o-algebra of measurable sets in R is exponentially finite
with respect to a nonempty interval [, if

/e_ytdu(t) < 00,
R

for all y € I.

@ We define the strips S, = {z € C| a < $(2) < b} and
Top ={2€C|a<R(z) <b}.
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Laplace-Fourier Transform

Definition

A measure p over the o-algebra of measurable sets in R is exponentially finite
with respect to a nonempty interval [, if

/e_ytdu(t) < o0,
R

for all y € I.

@ We define the strips S, = {z € C| a < $(2) < b} and
Top ={2€C|a<R(z) <b}.

Proposition

Let u be a nonnegative measure which is exponentially finite with respect to
Ja,b]. Then, we can assume |a, b[ is maximal and the function £F () is

holomorphic and co-positive definite in 75, 3, with singularities in a and b, if
finite.
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Laplace-Fourier Trans
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Laplace-Fourier Transform

Let f : T, — C be some holomorphic function. Then f is co-positive
definite if and only if it is the Laplace-Fourier transform of an
exponentially finite measure with respect to |a, b[. Furthermore, pu is
uniquely determined by f.
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Laplace-Fourier Transform

Let f : T, — C be some holomorphic function. Then f is co-positive
definite if and only if it is the Laplace-Fourier transform of an
exponentially finite measure with respect to |a, b[. Furthermore, pu is
uniquely determined by f.

Remarks:

o If |a, A] is the maximal interval with respect to
which p is exponentially finite, then f has an :
analytic continuation LF to T, g. Ta 3

i )

{ 2
{ 2
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Laplace-Fourier Transform

Let f : T, — C be some holomorphic function. Then f is co-positive
definite if and only if it is the Laplace-Fourier transform of an
exponentially finite measure with respect to |a, b[. Furthermore, pu is
uniquely determined by f.

Remarks:

o If |a, A] is the maximal interval with respect to
which p is exponentially finite, then f has an :
analytic continuation LF to T, g. Ta 3
H )

{ 2
{ 2

@ There will be singularities at « and S if these are

finite. « ﬂ
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Laplace-Fourier Transform

Let f : T, — C be some holomorphic function. Then f is co-positive
definite if and only if it is the Laplace-Fourier transform of an
exponentially finite measure with respect to |a, b[. Furthermore, pu is
uniquely determined by f.

Remarks:

o If |a, A] is the maximal interval with respect to
which p is exponentially finite, then f has an :
analytic continuation LF to T, g. Ta 3
H )

{ 2
{ 2

@ There will be singularities at « and S if these are

finite. « ﬂ

@ This result has a direct analog for positive
definite functions and Fourier-Laplace transforms.
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Examples

Function

Strip pair and polarity

Pole

Transition of densities

Rodrigo Duarte

Measure Transitions

May 13




Examples

Function

Strip pair and polarity

Pole

Transition of densities

I'(z)

Rodrigo Duarte

Measure Transitions

May 13




Examples

Function

Strip pair and polarity

Pole

Transition of densities

I'(z)

T—n—l,—na T—n,—n+l

Rodrigo Duarte

Measure Transitions

May 13




Examples

Function

Strip pair and polarity

Pole

Transition of densities

I'(z)
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Examples

Function Strip pair and polarity | Pole Transition of densities
I'(z) ToptnTonni1  |2=—n| op(t) — oy(t) = et
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Examples

Function Strip pair and polarity | Pole Transition of densities
I'(2) ToptnTonni1  |2=—n| op(t) — oy(t) = et
Z(z) = —4&)
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Examples

Function Strip pair and polarity | Pole Transition of densities
I'(z) ToptnTonni1  |2=—n| op(t) — oy(t) = et

Z(Z) — &) + in TO,l; — in T17+<>o
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Examples

Function Strip pair and polarity | Pole Transition of densities
I'(z) ToptnTonni1  |2=—n| op(t) — oy(t) = et

Z(z)=—-C| 4 inTyy,—inTiqe | 2=1
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Examples

Function Strip pair and polarity | Pole Transition of densities
I'(z) ToptnTonni1  |2=—n| op(t) — oy(t) = et
Z(z)=-C| 4Ty, —inTije | 2=1 or(t) — oy(t) = —e
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Examples

Function Strip pair and polarity | Pole Transition of densities
I'(2) ToptnTonni1  |2=—n| op(t) — oy(t) = et
Z(z)=-C| 4Ty, —inTije | 2=1 or(t) — oy(t) = —e
1
Z(e+1)2
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Examples

Function Strip pair and polarity | Pole Transition of densities
') Tonot o Tonngs |2 = =n| on(t) = ou(t) = 577e
Z(z)=-C| 4Ty, —inTije | 2=1 or(t) — oy(t) = —e
z(zil)Q —inT o _1,—inT_ 19
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Examples

Function Strip pair and polarity | Pole Transition of densities
') Tonot o Tonngs |2 = =n| on(t) = ou(t) = 577e
Z(z) = _C(ZZ) + inTp1,—inTi 400 | 2=1 or(t) — oy(t) = —e
z(lerl)Q —inT o 1,—inT_19]z2=-1
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Examples

Function Strip pair and polarity | Pole Transition of densities
') Tonot o Tonngs |2 = =n| on(t) = ou(t) = 577e
Z(z)=-C| 4Ty, —inTije | 2=1 op(t) — oy (t) = —et
Eeay —inT 1, —inT1p|z=—1|op(t) —out) = —(1 + t)e™"
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Examples

Function Strip pair and polarity | Pole Transition of densities
') Tonot o Tonngs |2 = =n| on(t) = ou(t) = 577e
Z(z)=-C| 4Ty, —inTije | 2=1 op(t) — oy (t) = —et
e |- T — T2 =—1on(t) —ou(t) = —(1+t)e™
General f(z)
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Examples

Function Strip pair and polarity | Pole Transition of densities
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Examples

Function Strip pair and polarity | Pole Transition of densities
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Examples

Function Strip pair and polarity | Pole Transition of densities
I'(2) ToptnTonni1  |2=—n| op(t) — oy(t) = et
Z(z)=-C| 4Ty, —inTije | 2=1 or(t) — oy(t) = —e
e —inT o 1,—inT 19|z=—1|0.(t) —ou(t) = —(1 +t)e?
General f(z) Toc:Tep z=c | o.(t) —o(t) =P(t)e?
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Short Detour Through Measure Theory
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Short Detour Through Measure Theory

Definition

Let (X, M) be a measurable space. A signed measure in X is a set function
i M — [—00, +00] such that
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Short Detour Through Measure Theory

Definition

Let (X, M) be a measurable space. A signed measure in X is a set function
i M — [—00, +00] such that

° u(2)=0;
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Short Detour Through Measure Theory

Definition

Let (X, M) be a measurable space. A signed measure in X is a set function
i M — [—00, +00] such that

° u(2)=0;

@ 1 does not take more than one infinite value;
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Short Detour Through Measure Theory

Definition

Let (X, M) be a measurable space. A signed measure in X is a set function
i M — [—00, +00] such that

° u(2)=0;
@ 1 does not take more than one infinite value;

@ If (A,)n is a sequence of disjoint measurable sets then
p(JAn) =D u(An),

where the series converges absolutely if p(lJ,, An) is finite.
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Short Detour Through Measure Theory

Definition

Let (X, M) be a measurable space. A signed measure in X is a set function
i M — [—00, +00] such that

° u(2)=0;
@ 1 does not take more than one infinite value;

@ If (A,)n is a sequence of disjoint measurable sets then
wlJAn) =D u(4n),

where the series converges absolutely if p(lJ,, An) is finite.

| A

Definition

A signed measure y is o-finite if there is a countable family {A,} C M of
measurable sets with finite measure such that

X:UAn.

A\
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Short Detour Through Measure Theory
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Short Detour Through Measure Theory

Suppose we have two signed measures p and v in (X, M). We say that v is
singular with respect to u if there are measurable sets A, B such that
ANB=@, AUB =X, u(A) =0 and v(B) = 0. This is written pu L v.
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Short Detour Through Measure Theory

Suppose we have two signed measures p and v in (X, M). We say that v is
singular with respect to u if there are measurable sets A, B such that
ANB=@, AUB =X, u(A) =0 and v(B) = 0. This is written pu L v.

Definition

Let v be a signed measure and p a nonnegative measure in (X, M). We say
that v is absolutely continuous with respect to p if

WA) =0 = v(A) =0, VA e M.

This is written v < pu.
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Short Detour Through Measure Theory
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Short Detour Through Me

Jordan Decomposition Theorem

Let 4 be a signed measure. Then, there are unique nonnegative measures u™
and p~, such that

p=pt—p,
and pt L p~.
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Short Detour Through Me

Jordan Decomposition Theorem

Let 4 be a signed measure. Then, there are unique nonnegative measures u™
and p~, such that

p=pt—p,
and pt L p~.

@ One of u™, p~ is finite;
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Short Detour Through Measure Theory

Jordan Decomposition Theorem

Let 4 be a signed measure. Then, there are unique nonnegative measures u™
and p~, such that

p=pt—p,
and pt L p~.

@ One of u™, p~ is finite;

@ One defines L'(u) = L' (p*) N LY (™) and for f € L*(p),

[ tin= [ sau - [ rau
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Short Detour Through Measure Theory
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Short Detour Through Measure Theory

The Lebesgue-Radon-Nikodym Theorem

Let v be a o-finite signed measure and p a o-finite nonnegative measure on

(X, M).
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Short Detour Through Measure Theory

The Lebesgue-Radon-Nikodym Theorem

Let v be a o-finite signed measure and p a o-finite nonnegative measure on

(X, M). Then, there are unique o-finite measures v* and v* on (X, M) such
that

v=v"+01°

with v* < p and v° L pu.
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Short Detour Through Measure Theory

The Lebesgue-Radon-Niko Theorem

Let v be a o-finite signed measure and p a o-finite nonnegative measure on

(X, M). Then, there are unique o-finite measures v* and v* on (X, M) such
that

v=v"+01°

with v* < p and v®* L u. Moreover, there is a unique (a.e.) extended
p-integrable function f: X — R such that

Ve (A) :/Afdu, VA EM.
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Short Detour Through Measure Theory

The Lebesgue-Radon-Niko Theorem

Let v be a o-finite signed measure and p a o-finite nonnegative measure on

(X, M). Then, there are unique o-finite measures v* and v* on (X, M) such
that

v=v"+01°

with v* < p and v®* L u. Moreover, there is a unique (a.e.) extended
p-integrable function f: X — R such that

Ve (A) :/Afdu, VA EM.

o The splitting v = v* 4+ v*® is called the Lebesgue Decomposition.
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Short Detour Through Measure Theory

The Lebesgue-Radon-Niko Theorem

Let v be a o-finite signed measure and p a o-finite nonnegative measure on

(X, M). Then, there are unique o-finite measures v* and v* on (X, M) such
that

v=v"+01°

with v* < p and v®* L u. Moreover, there is a unique (a.e.) extended
p-integrable function f: X — R such that

Ve (A) :/Afdu, VA EM.

o The splitting v = v* 4+ v*® is called the Lebesgue Decomposition.
@ The relation

v(4) = [ pa

is also written as dv = fdu. In this case we call f the density associated
with v.
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Exponentially Finite Signed Measures
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onentially Finite Signed Measures

A measure p on the o-algebra of measurable sets in R is an exponentially finite
signed measure (EFSM) with respect to a nonempty interval I if it is a signed
measure and

iy (A) = /A e~ Vdu(t)

is finite for all measurable A C R and for all y € I.
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onentially Finite Signed Measures

A measure p on the o-algebra of measurable sets in R is an exponentially finite
signed measure (EFSM) with respect to a nonempty interval I if it is a signed
measure and

iy (A) = /A e~ Vdu(t)

is finite for all measurable A C R and for all y € I.

Exponentially finite signed measures are o-finite.
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ponentially Finite Signed Measures

A measure p on the o-algebra of measurable sets in R is an exponentially finite
signed measure (EFSM) with respect to a nonempty interval I if it is a signed
measure and

iy (A) = /A e~ Vdu(t)

is finite for all measurable A C R and for all y € I.

Exponentially finite signed measures are o-finite.

@ In particular, there is a Lebesgue decomposition
p=pt+p

of any EFSM p, with respect to the Lebesgue measure on R.
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onentially Finite Signed Measures

A measure p on the o-algebra of measurable sets in R is an exponentially finite
signed measure (EFSM) with respect to a nonempty interval I if it is a signed
measure and

iy (A) = /A e~ Vdu(t)

is finite for all measurable A C R and for all y € I.

Exponentially finite signed measures are o-finite.

@ In particular, there is a Lebesgue decomposition
p=pt+p
of any EFSM p, with respect to the Lebesgue measure on R.
@ Furthermore, there is a density o(t) such that du®(t) = o(t)dt.
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Bilateral Polarization
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Bilateral Polarizat

A measure p is said to be polarized if it has a sign and it is
exponentially finite with respect to some interval.
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Bilateral Polarization

A measure p is said to be polarized if it has a sign and it is
exponentially finite with respect to some interval.

| A\

Definition
A signed measure p is said to be right polarized if there exists some
v € R such that the measure

u(A) = (AN, +oa))

is polarized.
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Bilateral Polarization

A measure p is said to be polarized if it has a sign and it is
exponentially finite with respect to some interval.

| A\

Definition
A signed measure p is said to be right polarized if there exists some
v € R such that the measure

p(A) = p(Any, +o0)

is polarized.

e We can analogously define left polarized signed measures;
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Bilateral Polarization

A measure p is said to be polarized if it has a sign and it is
exponentially finite with respect to some interval.

| A\

Definition
A signed measure p is said to be right polarized if there exists some
v € R such that the measure

p(A) = p(Any, +o0)

is polarized.

e We can analogously define left polarized signed measures;

o A signed measure is bilaterally polarized if it is both left and
right polarized.
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Measure Pairs




1re Pairs

Definition

Let o, 5 € R and let ¢ € R be such that o < ¢ < f.
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re Pairs

Definition

Let o, 5 € R and let ¢ € R be such that o < ¢ < . If y; is a polarized
measure with respect to Ja, [ and p, is a polarized measure with respect to

e, B[,
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Measure Pairs

Definition

Let o, 5 € R and let ¢ € R be such that o < ¢ < . If y; is a polarized

measure with respect to Ja, [ and p, is a polarized measure with respect to
le, B[, then we say

(11, pr) aye, 8

is a polarized measure pair if there is a polar function f meromorphic in
T,,5 with a single pole in z = ¢,
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Measure Pairs

Definition

Let o, 5 € R and let ¢ € R be such that o < ¢ < . If y; is a polarized

measure with respect to Ja, [ and p, is a polarized measure with respect to
le, B[, then we say

(11, pr) aye, 8

is a polarized measure pair if there is a polar function f meromorphic in
T.,s with a single pole in z = ¢, such that

_ [ LF(u)(2), 2 € Tae
f(z) = { cﬂﬁﬁ)(z)’ 2€Tep
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Measure Pairs

Definition

Let o, 5 € R and let ¢ € R be such that o < ¢ < . If y; is a polarized
measure with respect to Ja, [ and p, is a polarized measure with respect to
le, B[, then we say

(K, r) e,

is a polarized measure pair if there is a polar function f meromorphic in
T.,s with a single pole in z = ¢, such that

_ [ LF(u)(2), 2 € Tae
f(z) = { cﬂﬁﬁ)(z)’ 2€Tep

@ We assume that ]o, ¢[ is the maximal interval for which p; is
exponentially finite, and similarly for ]¢, 5].
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Measure Pairs

Definition

Let o, 5 € R and let ¢ € R be such that o < ¢ < . If y; is a polarized
measure with respect to Ja, [ and p, is a polarized measure with respect to
le, B[, then we say

(K, r) e,

is a polarized measure pair if there is a polar function f meromorphic in
T.,s with a single pole in z = ¢, such that

_ [ LF(u)(2), 2 € Tae
f(z) = { cﬂﬁﬁ)(z)’ 2€Tep

@ We assume that ]o, ¢[ is the maximal interval for which p; is
exponentially finite, and similarly for ]¢, 5].

@ In particular, f has singularities at z = a and z = 3, if these are finite.
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n Polynomial
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Transition Polynomial

@ Consider a polarized measure pair (u, itr)q,c,g, With associated meromorphic
function f.
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1omial

@ Consider a polarized measure pair (u, itr)q,c,g, With associated meromorphic
function f.
@ Expanding in a Laurent series, we can write

m

f0)= 3 2 + L= 0" = 70 + (). 2 € Br(@)\ (o)

k=1 k>0

where R = min{|a — c|, |8 — c|}.
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1omial

@ Consider a polarized measure pair (u, itr)q,c,g, With associated meromorphic
function f.
@ Expanding in a Laurent series, we can write

m

f0)= 3 2 + L= 0" = 70 + (). 2 € Br(@)\ (o)

k=1 k>0

where R = min{|a — c|, |8 — c|}.
4] fél can be extended analytically to a holomorphic function f%(2) in T, 3 such that

f(2) = fP(2) + f*(2), V2 € Tap \ {c}.
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1omial

Consider a polarized measure pair (u, tir)a,c,8, With associated meromorphic
function f.

Expanding in a Laurent series, we can write

m

f0)= 3 2 + L= 0" = 70 + (). 2 € Br(@)\ (o)

k=1 k>0

where R = min{|a — c|, |8 — c|}.

f(? can be extended analytically to a holomorphic function fh(z) in Ty, g such that
fz) = fP(2) + f"(2), Vz € Tap \ {c}.

By direct computation one can verify that

1 _ E}—(ufk)(z), z2€T-ooc
(z—ok | LFWE)(2), 2€Tetoos

Rodrigo Duarte Measure Transitions May 13, 20



1omial

Consider a polarized measure pair (u, tir)a,c,8, With associated meromorphic
function f.
Expanding in a Laurent series, we can write

m

f0)= 3 2 + L= 0" = 70 + (). 2 € Br(@)\ (o)

k=1 k>0

where R = min{|a — c|, |8 — c|}.
f(? can be extended analytically to a holomorphic function fh(z) in Ty, g such that

f(2) = fP(2) + f*(2), V2 € Tap \ {c}.

By direct computation one can verify that

1 _ E}—(ufk)(z), z2€T-ooc
(z—ok | LFWE)(2), 2€Tetoos

where du?) (t) = o) (t)dt and

k—1
o (t) = —7(2 i (1= H(#))e!

Ufk(t) = (k 1)IH(t)
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n Polynomial

@ Adding these measures we define

m
/L? = Zbklu‘pk
k=1
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Transition Polynomial

@ Adding these measures we define

@ Then, we obtain
FP(2) = LF(p7)(2), 2z € T-ooc
LF(p2)(2), 2z€Tetoo-
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n Polynomial

@ Adding these measures we define
m
/L? = Z bklu‘?k'
k=1

@ Then, we obtain

vy | LFW)(2), 2€T-ccc
f (Z)—{ CFP)(2), 2 € Torer.

@ One can check that indeed p* is an EFSM with density

of(t) =D beohi (1)
k=1
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Transition Polynomial

@ Adding these measures we define
m
/L? = Z bk#%
k=1

@ Then, we obtain

vy | LFW)(2), 2€T-ccc
() —{ CFP)(2), 2 € Torer.

@ One can check that indeed p” is an EFSM with density
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Let (u1, 4r)a,e,p be a polarized measure pair with associated function f. Suppose
that pfmo ‘= [lrog — [4ha, iS exponentially finite with respect to Ja — xo, f — xo[, for
some g €]c, B[. Then,

f(2) = f(z +iy) = LF(u, + p) (iy), 2 € Tae.
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Let (u1, 4r)a,e,p be a polarized measure pair with associated function f. Suppose
that pfmo ‘= [lrog — [4ha, iS exponentially finite with respect to Ja — xo, f — xo[, for
some g €]c, B[. Then,

f(2) = f(z +iy) = LF(u, + p) (iy), 2 € Tae.

@ Note that ufxo is a finite signed measure exponentially finite with respect to
Je = xo, B — xo[, even if u, — pf is not a signed measure;
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Let (u1, 4r)a,e,p be a polarized measure pair with associated function f. Suppose
that pfmo ‘= [lrog — [4ha, iS exponentially finite with respect to Ja — xo, f — xo[, for
some g €]c, B[. Then,

f(2) = f(z +iy) = LF(UE, + i) (i), 2 € Tae.

@ Note that ufxo is a finite signed measure exponentially finite with respect to
Je = xo, B — xo[, even if u, — pf is not a signed measure;

@ We have
f(Z) = fp(z) + [’]:()u‘?}"baro)(z - :CO)’ z € Tc,5~
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Let (u1, 4r)a,e,p be a polarized measure pair with associated function f. Suppose
that pfmo ‘= [lrog — [4ha, iS exponentially finite with respect to Ja — xo, f — xo[, for
some g €]c, B[. Then,

f(2) = f(z +iy) = LF(u, + p) (iy), 2 € Tae.

@ Note that ufxo is a finite signed measure exponentially finite with respect to
Je = xo, B — xo[, even if u, — pf is not a signed measure;

@ We have
f(Z) = fp(z) + [’]:()u‘?}"baro)(z - :CO)’ z € Tc,5~

@ By uniqueness of analytic continuation we must have this equality in the whole
strip Ta g \ {c}.
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Let (u1, 4r)a,e,p be a polarized measure pair with associated function f. Suppose
that pfmo ‘= [lrog — [4ha, iS exponentially finite with respect to Ja — xo, f — xo[, for
some g €]c, B[. Then,

f(2) = f(z +iy) = LF(u, + p) (iy), 2 € Tae.

Note that ufxo is a finite signed measure exponentially finite with respect to
Je = xo, B — xo[, even if u, — pf is not a signed measure;

@ We have
f(Z) = fp(z) + [’]:()u‘?}"baro)(z - ZCO)’ S TC,B'
@ By uniqueness of analytic continuation we must have this equality in the whole
strip Ta g \ {c}.
@ Recalling that fP(z) = LF(u7)(z) when z € Ty, ¢, it follows that

F(2) = LF(u0)(2) + LF (i) (2 = 20) = LF(uf, + p172) (@)
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Let (u1, 4r)a,e,p be a polarized measure pair with associated function f. Suppose
that pfmo ‘= [lrog — [4ha, iS exponentially finite with respect to Ja — xo, f — xo[, for
some g €]c, B[. Then,

f(2) = f(z +iy) = LF(u, + p) (iy), 2 € Tae.

Note that ufxo is a finite signed measure exponentially finite with respect to
Je = xo, B — xo[, even if u, — pf is not a signed measure;

@ We have
f(Z) = fp(z) + [’]:()u‘?}"baro)(z - ZCO)’ S TC,B'
@ By uniqueness of analytic continuation we must have this equality in the whole
strip Ta g \ {c}.
@ Recalling that fP(z) = LF(u7)(z) when z € Ty, ¢, it follows that

F(2) = LF()(2) + LF (10, (2 — x0) = LF (1, + pre) ().
Remark:

@ There is an analogous result using y; and going from T, . to ¢ 3.
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Main Theorem

Theorem

Let (p, lr)a,c,p be a polarized measure pair. The following are equivalent:
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Main Theorem

Theorem

Let (p, lr)a,c,p be a polarized measure pair. The following are equivalent:

(i) phy, = trao — pE,, is exponentially finite with respect to
Ja — xg, B — xo[, for some zy €]c, B;
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Main Theorem

Theorem

Let (p, lr)a,c,p be a polarized measure pair. The following are equivalent:

(i) phy, = trao — pE,, is exponentially finite with respect to
Ja — xg, B — xo[, for some zy €]c, B;

(ii) We have
Hy =
or(t) —oi(t) = P(t)e a.e. in R

where p7, uf are exponentially finite with respect to |, 5[, and
dp®(t) = o.(t)dt;
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Main Theorem

Theorem

Let (p, lr)a,c,p be a polarized measure pair. The following are equivalent:

(i) phy, = trao — pE,, is exponentially finite with respect to
Ja — xg, B — xo[, for some zy €]c, B;

(ii) We have

Hy =
or(t) —oi(t) = P(t)e a.e. in R

where p7, uf are exponentially finite with respect to |, 5[, and
dp®(t) = o.(t)dt;

(iii) p? =: p, — uP is a bilaterally polarized EFSM with respect to ]a, A[.
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Main Theorem

Theorem

Let (p, lr)a,c,p be a polarized measure pair. The following are equivalent:

(i) phy, = trao — pE,, is exponentially finite with respect to
Ja — xg, B — xo[, for some zy €]c, B;

(ii) We have

Hy =
or(t) —oi(t) = P(t)e a.e. in R

where p7, uf are exponentially finite with respect to |, 5[, and
dp®(t) = o.(t)dt;

(iii) p? =: p, — uP is a bilaterally polarized EFSM with respect to ]a, A[.

Remarks:

@ One could replace r by [ in item (i) and (iii);
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Main Theorem

Theorem

Let (w1, fr)a,c, be a polarized measure pair. The following are equivalent:

(i) phy, = trao — pE,, is exponentially finite with respect to
Ja — xg, B — xo[, for some zy €]c, B;

(ii) We have
Hy =
or(t) —oi(t) = P(t)e a.e. in R

where p7, uf are exponentially finite with respect to |, 5[, and
dp®(t) = o.(t)dt;

(iii) p? =: p, — uP is a bilaterally polarized EFSM with respect to ]a, A[.

Remarks:
@ One could replace r by [ in item (i) and (iii);

@ The implication (iii) = (i) is immediate.
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Proof of (i) = (ii)
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Proof of (i) = (ii)

@ By the lemma above we have
fla+iy) = LF (o) (iy) = LF(up, + 1) (@),

SO fl1z = pib + pl,, for z €]a, .
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Proof of (i) = (ii)

@ By the lemma above we have
fla+iy) = LF (o) (iy) = LF(up, + 1) (@),

SO fl1z = pib + pl,, for z €]a, .

@ Considering the Lebesgue decomposition we obtain pj, = uhs = us. . So,
e~y = dpj, = dp;, = e dp;.
Thus, uj = p;.
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Proof of (i) = (ii)

@ By the lemma above we have
fla+iy) = LF (o) (iy) = LF(up, + 1) (@),

SO fl1z = pib + pl,, for z €]a, .

@ Considering the Lebesgue decomposition we obtain pj, = uhs = us. . So,
e~y = dpj, = dp;, = e dp;.

Thus, uj = p;.
@ Considering instead the absolutely continuous part we obtain

Wity = iy = By iy — iy, SO

a a _ ,p P
Hrg = Mg = My — Mg
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Proof of (i) = (ii)

@ By the lemma above we have
fla+iy) = LF (o) (iy) = LF(up, + 1) (@),

SO fl1z = pib + pl,, for z €]a, .

@ Considering the Lebesgue decomposition we obtain pj, = uhs = us. . So,
e~y = dpj, = dp;, = e dp;.

Thus, uj = p;.
@ Considering instead the absolutely continuous part we obtain

Wity = Wiy + 1 = By + e — [, 5O

:U’gac - :U’?m = 'U’gm - 'u’fm'
@ Thus,
(0, — o)t = (il — pf,) = (P, — 1b,) = e~ (0? — 0¥ )dt
= e TP (t)e dt.

e
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Open Questior

Measure Transitions



@ Can these results be generalised to C"?
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@ Can these results be generalised to C"?

@ We assumed that the singularity at z = ¢ is a pole. What happens at an
essential singularity?

flz)= Z (zi—kc)k + ch(z —¢)*, z€ Br(e)\ {c}.

k>1 k>0
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@ Can these results be generalised to C"?

@ We assumed that the singularity at z = ¢ is a pole. What happens at an
essential singularity?

flz)= Z (zi—kc)k + ch(z —¢)*, z€ Br(e)\ {c}.

k>1 k>0

— In this case, the argument for the existence of f* does not work.
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@ Can these results be generalised to C"?

@ We assumed that the singularity at z = ¢ is a pole. What happens at an
essential singularity?

f(z)zz( +ch z—¢)*, z€ Bgr(c)\ {c}.

k>1 k>0

— In this case, the argument for the existence of f* does not work.

— Moreover, in the construction of ¢, we would obtain an infinite sum

0.19( Cthk

k>1
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@ Can these results be generalised to C"?

@ We assumed that the singularity at z = ¢ is a pole. What happens at an
essential singularity?

f(z)zz( +ch z—¢)*, z€ Bgr(c)\ {c}.

k>1 k>0

— In this case, the argument for the existence of f* does not work.

— Moreover, in the construction of ¢, we would obtain an infinite sum

0.19( Cthk

k>1

— Decay properties of by?
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