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Fractional Calculus (Motivation)

Fractional calculus generalize the classical differentiation and
integration operator.

Classically D2(f ) = (D ◦ D)(f ) = D(D(f ))

What is
√
D = D

1
2 ?

More generally, what is Da for a ∈ R? Hopefully, when a = n ∈ Z, it
corresponds to the classical n-th derivative.

Idea first appeared in a letter from l’Hopital to Leibniz, and
introduced in papers by Abel and Liouville independently

Since then, several different definitions have been proposed and
recently many developments are occurring
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Fractional Calculus (Applications)

Fractional advection dispersion equation: for modelling contaminant
flow in heterogeneous porous media

Fractional diffusion equation: for modelling anomalous diffusion
processes in complex media (fractional time derivative corresponding
to long-time heavy tail decay; fractional spatial derivative
corresponding to nonlocal diffusion), including Lévy flight

Modelling of viscoelastic damping in materials like polymers

Fractional time acoustical wave equations: for modelling of acoustical
waves in complex media such as in biological tissue (attenuation
measured in media comes from multiple relaxation phenomena)

Fractional Schrödinger equation in fractional quantum mechanics:
when Brownian-like quantum mechanical paths are replaced by their
continuous time-analog, the Lévy like ones
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Fractional Laplacian

Recall that the Fourier transform of the Laplacian of u ∈ S is given by

(̂−∆)u(ξ) = −4π2|ξ|2û(ξ)

for every ξ ∈ RN .
Naturally, we can define the fractional Laplacian (−∆)s , 0 < s < 1 as

̂(−∆)su(ξ) = (−4π2|ξ|2)s û(ξ),

which can be rewritten as a singular integral in real space

(−∆)su(x) := cN,s p.v .

∫
RN

u(x)− u(y)

|x − y |N+2s
dy .
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Riesz Potentials

Recall the generalized Riesz potentials of order α for 0 < α < N given by
the formula

Iα ∗ u(x) :=
γ(N, α)

|x |N−α
∗ u(x),

where the constant γ is given by

γ(N, α) :=
Γ
(
N−α

2

)
π

N
2 2αΓ

(
α
2

) .
If u ∈ Lp(RN), 1 < p <∞, then

Iα ∗ u ∈ Lpα(RN),

where
1

pα
=

1

p
− α

N
.
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Riesz Potentials and the Riesz Fractional Derivative

Riesz potentials satisfy the semi-group property

(IαIβ) ∗ u = Iα+β ∗ u

for α, β > 0 and α + β < N.

The Laplacian maps a potential of order α + 2 to a potential of order
α,

−∆(Iα+2 ∗ u) = Iα ∗ u.

Through analytic continuation, the Riesz potential can be extended to
negative exponents, and so one arrives at a formula for the fractional
Laplacian, or Riesz fractional derivative, given by

(−∆)su(x) = cN,s p.v .

∫
RN

u(x)− u(y)

|x − y |N+2s
dy = I−2s ∗ u

for 0 < s < 1.
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Riesz Fractional Gradient

Since
(−∆)su(x) = I−2s ∗ u = −∆(I2−2s ∗ u),

we can naturally define the s-Riesz fractional gradient as

(Dsu)j :=
∂su

∂x sj
, j = 1, . . . ,N

where
∂su

∂x sj
:=

∂

∂xj
I1−s ∗ u.

Here, s ∈ (0, 1).
Note: For u ∈ Lp(RN) for some 1 < p <∞ such that I1−s ∗ u is
well-defined, this is defined in the distributional sense, i.e.

〈∂
su

∂x sj
, v〉 = (−1)〈I1−s ∗ u,

∂v

∂xj
〉 = −

∫
RN

(I1−s) ∗ u
∂v

∂xj
dx , ∀v ∈ C∞0 (RN).
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Fractional Derivative (integral form)

Writing in integral form, we have the s-gradient as

Dsu(x) := cN,s lim
ε→0

∫
{|z|>ε}

zu(x + z)

|z |N+s+1
dz

for a function u.
We can correspondingly define the s-divergence for a vector ϕ as

divsϕ(x) := cN,s lim
ε→0

∫
{|z|>ε}

z · ϕ(x + z)

|z |N+s+1
dz .

Note 1: Unlike the classical derivative which depends on only neighbouring
points (local property), the fractional derivative involves information on
the function further out. It is a nonlocal operator.
Note 2: For 0 < s < 1, if u ∈ C∞c (RN), then

(−∆)su = −
N∑
j=1

∂s

∂x sj

∂s

∂x sj
u = −divs(Dsu).
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Fractional Derivative (Remarks)

This is a good definition of the fractional derivative, in such a way that
the fractional operator does not depend on the chosen basis.
Indeed, this operator is

translationally invariant,

rotationally invariant,

homogeneous of degree s ∈ R under isotropic scaling,

is continuous in the Schwartz space.

Note: These are in fact the properties of the Riesz transform, which we
recall, is given by

Rj f (x) :=
Γ
(
N+1

2

)
π(N+1)/2

lim
ε→0

∫
{|y |>ε}

yj
|y |N+1

f (x − y)dy , j = 1, . . . ,N,

and it is well-known that the Riesz transform is the only linear operator
fulfilling all these properties.
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Relation with Riesz Transforms

Indeed, we have the following property: Let 1 ≤ p <∞ and s ∈ (0, 1).
Every u ∈ C∞c (RN) can be expressed as

u = Is ∗
N∑
j=1

Rj
∂su

∂x sj

where Rj is the Riesz transform, which can be characterized as a singular

integral or 0-order operator with multiplier
−iξj
|ξ| .

Proof. Since
∂̂su

∂x sj
= −(2π)s iξj |ξ|−1+s û

and R̂j =
−iξj
|ξ| , the result follows from the identity

Îs = (2π|ξ|)−s

in S(RN)′.
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Fractional Hilbert Spaces

Recall that we can make use of the Fourier transform to define Sobolev
spaces as

Wm,2(RN) = Hm(RN) = {u ∈ Lp(RN) : ξ 7→ (1+ |ξ|2)m/2û(ξ) ∈ L2(RN)}.

We can extend this definition to fractional Hilbert spaces.

Hs(RN) = {u ∈ L2(RN) : {ξ 7→ (1+|ξ|2)s/2F(u)(ξ)} ∈ L2(RN)} for s > 0,

and

Hs(RN) = {u ∈ S ′(RN) : {ξ 7→ (1+|ξ|2)s/2F(u)(ξ)} ∈ L2(RN)} for s < 0,

with norm
‖u‖Hs(RN) =

∥∥∥(1 + |ξ|2)s/2F(u)
∥∥∥
L2(RN)

.
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Fractional Hilbert Spaces (Properties)

It is known that

1 the space Hs(RN) with the above defined norm is a Banach space;

2 the space Hs(RN) coincides with the classical Sobolev space
Wm,2(RN) if s = m ∈ N;

3 for s > 0, the space H−s(RN) coincides with the dual (Hs(RN))′;

4 the space S(RN) is dense in Hs(RN);

5 for s > 1/2 and N ≥ 2, the functions in Hs(RN) have a trace on
{xN = 0} that belongs to Hs−1/2(RN−1).

6 Conversely, every function in Hs−1/2(RN−1 × {0}) can be extended in
a linear and continuous manner to a function in Hs(RN).
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Fractional Sobolev Spaces

For general p, we have the following definition of fractional Sobolev spaces,

Ws,p(Ω) :=

{
u ∈ Lp(Ω) : [u]W s,p(Ω) :=

(∫
Ω

∫
Ω
|u(x)−u(y)|p
|x−y |N+sp dxdy

) 1
p
< +∞

}
,

for 0 < s < 1, with the natural norm

‖u‖pW s,p(Ω)
:=‖u‖pLp(Ω) + [u]pW s,p(Ω).

For p = 2 with integer s, this definition is the same as the definition of
Sobolev spaces with Fourier transform.
The space W s,p

0 (Ω) denotes the closure in W s,p(Ω) of all smooth
functions having a compact support contained in Ω.
Denoting Hs(Ω) := W s,2(Ω), we can similarly define Hs

0(Ω) as the closure
in Hs(Ω) of all smooth functions having a compact support contained in
Ω. Moreover, there is an equivalent norm for Hs

0(Ω), given by

‖u‖Hs
0(Ω) =‖Dsu‖[L2(Ω)]n , 0 < s < 1.
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Fractional Sobolev Spaces (Embedding Results)

Then we have the following embedding results: Let 0 < s < 1 and
1 < p <∞. Suppose Ω is a Lipschitz open set.

The space D(RN) is dense in W s,p(RN).

If 0 < s ′ < s < 1, then W s,p(RN) ↪→W s′,p(RN).

W 1,p(RN) ↪→W s,p(RN).

If sp < N, then W s,p(Ω) ↪→ Lq(Ω) for every q ≤ Np/(N − sp)

If sp = N, then W s,p(Ω) ↪→ Lq(Ω) for every q <∞.

If sp > N, then W s,p(Ω) ↪→ L∞(Ω), and, more precisely,
W s,p(Ω) ↪→ C 0,s−N/p(Ω̄) if Ω is bounded.

In particular, Hs
0(Ω) ↪→ L2∗(Ω) and L2#

(Ω) ↪→ H−s(Ω) = (Hs
0(Ω))′

for 0 < s < 1, where 2∗ = 2N
N−2s and 2# = 2N

N+2s when s < N
2 ,

and if N = 1, 2∗ = q for any finite q and 2# = q′ = q
q−1 when s = 1

2

and 2∗ =∞ and 2# = 1 when s > 1
2 .
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Properties of the Fractional Derivative (Duality)

Let s ∈ (0, 1). For all Lipschitz compactly supported scalar function f and
vector function ϕ, ∫

RN

f divsϕdx = −
∫
RN

ϕ · (Ds f )dx .

Proof.∫
RN

f divsϕdx =cN,s

∫
RN

f (x) lim
ε→0

∫
{|x−y |>ε}

(y − x) · ϕ(y)

|y − x |N+s+1
dydx

=cN,s lim
ε→0

∫
RN

∫
{|x−y |>ε}

f (x)
(y − x) · ϕ(y)

|y − x |N+s+1
dydx

=− cN,s lim
ε→0

∫
RN

∫
{|x−y |>ε}

ϕ(y) · (x − y)f (x)

|x − y |N+s+1
dydx

=−
∫
RN

ϕ · (Ds f )dx

by dominated convergence theorem and Fubini’s theorem.
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Properties of the Fractional Derivative (Leibniz Rule)

Let s ∈ (0, 1). For all Lipschitz compactly supported scalar functions f , g ,

Ds(fg) = f (Dsg) + g(Ds f ) + Ds
NL(f , g),

where the nonlinear term

Ds
NL(f , g)(x) := cN,s

∫
RN

(y − x)(f (y)− f (x))(g(y)− g(x))

|y − x |N+s+1
dt, ∀x ∈ RN .

Moreover, for 1 < p, q <∞ such that 1
p + 1

q = 1,∥∥Ds
NL(f , g)

∥∥
L1(RN ;RN)

≤ cN,s [f ]
W

s
p ,p(RN)

[g ]
W

s
q ,q(RN)

and similarly∥∥Ds
NL(f , g)

∥∥
L1(RN ;RN)

≤ 2cN,s [f ]L∞(RN)[g ]W s,1(RN).

A similar Leibniz rule holds for divergence. Note the additional nonlinear
term, which makes integration by parts difficult.
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Properties of the Fractional Derivative (Leibniz Rule)

Proof. Given f , g compactly supported Lipschitz functions in RN , we have

Ds(fg)(x) =cN,s

∫
RN

(y − x)(f (y)g(y)− f (x)g(x))

|y − x |N+s+1
dy

=cN,s

∫
RN

(y − x)(f (y)g(y)− f (y)g(x) + f (y)g(x)− f (x)g(x))

|y − x |N+s+1
dy

=cN,s

∫
RN

(y − x)f (y)(g(y)− g(x))

|y − x |N+s+1
dy + g(x)Ds f (x)

=cN,s

∫
RN

(y − x)(f (y)− f (x))(g(y)− g(x))

|y − x |N+s+1
dy + f (x)Dsg(x) + g(x)Ds f (x).

We also have that, for any p, q ∈ (1,∞) with 1
p + 1

q = 1,

∥∥Ds
NL(f , g)

∥∥
L1(RN ;RN)

≤CN,s

∫
RN

∫
RN

|f (y)− f (x)|

|x − y |
N+s
p

|g(y)− g(x)|

|y − x |
N+s
q

dydx

≤cN,s
(∫

RN

∫
RN

|f (y)− f (x)|p

|x − y |N+s
dydx

) 1
p
(∫

RN

∫
RN

|g(y)− g(x)|q

|x − y |N+s
dydx

) 1
q

.

The case p =∞, q = 1 is similar.
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Properties of the Fractional Derivative (Extension to
Fractional Sobolev Spaces)

With these estimates on the nonlinear term, we can continuously extend
our operator

Ds
NL : Lipc(RN)× Lipc(RN)→ L1(RN ;RN)

to
Ds
NL : W

s
p
,p(RN)×W

s
q
,q(RN)→ L1(RN ;RN)

for any p, q ∈ [1,∞] such that 1
p + 1

q = 1.
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Properties of the Fractional Derivative (Estimate on Is)

Let Hs,p(RN) be the generalized Sobolev space, defined by

Hs,p(RN) := {u ∈ Lp(RN) : Dsu ∈ Lp(RN)}

for s > 0. It holds, for 1 < p <∞ and ε > 0, that

Hs+ε,p(RN) ↪→W s,p(RN) ↪→ Hs−ε,p(RN).

We now look at some additional properties that correspond to fractional
derivatives, that are useful for analysing fractional PDEs.
Estimate on the operator Is : Let 1 < p <∞ and 0 < s < 1 be such that
sp < N. Then for all f ∈ Lp(RN) such that Is ∗ f is well-defined, there
exists C = C (N, p, s) > 0 such that

‖Is ∗ f ‖Lp∗ (RN) ≤ C‖f ‖Lp(RN)

where p∗ := Np
N−sp .

This can be shown just by expanding Is ∗ f .
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Properties of the Fractional Derivative (Fractional Sobolev
Inequality)

Fractional Sobolev Inequality. Let 1 < p <∞ and 0 < s < 1 be such that
sp < N. Then there exists a constant C = C (N, p, s) > 0 such that

‖u‖Lp∗ (RN) ≤ C‖Dsu‖Lp(RN) .

This implies the fractional Poincaré inequality for open bounded domains,
which is useful for obtaining a priori energy estimates.
Proof. We will show the result for u ∈ C∞c (RN) and extend the result for
general u ∈ Hs,p(RN) by density. Recall that for u ∈ C∞c (RN), we can
rewrite u as u = Is ∗ g where g =

∑N
j=1Rj

∂su
∂xsj
.

Note that g ∈ Lp(RN) and sp < N. So by the previous estimate on the
operator Is , and the boundedness of the Riesz transform
Rj : Lp(RN)→ Lp(RN), we have
‖u‖ Lp∗ (RN) =‖Is ∗ g‖Lp∗ (RN) ≤ const ×‖g‖Lp(RN) ≤ const × const ×‖Dsu‖Lp(RN)
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Properties of the Fractional Derivative (Fractional Morrey
Inequality)

Fractional Morrey Inequality. Let 1 < p <∞ and 0 < s < 1 be such that
sp > N. Then there exists a constant M = M(N, p, s) > 0 such that

|u(x)− u(y)| ≤ M|x − y |s−
N
p ‖Dsu‖Lp(RN)

for all u ∈ Hs,p(RN).
This is useful for estimating the variation of the solution.
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Stampacchia Theorem

Stampacchia Theorem. Given V (which, in our case, is Hs
0(Ω)) a Hilbert

space, K ⊂ V a closed, nonempty, convex set, L ∈ V ′ and a(·, ·) a
bounded coercive bilinear form. Then there exists a unique solution to the
variational inequality

u ∈ K : a(u, v − u) ≥ 〈L, v − u〉, ∀v ∈ K.

In the case K = V , one has unique solvability of

u ∈ V : a(u, v) = 〈L, v〉, ∀v ∈ V ,

which is Lax-Milgram theorem.
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Application I: Fractional Dirichlet Problem

Problem. Let Ω ⊂ RN be open and bounded. Suppose that f ∈ L2#
(Ω),

and A : RN → RN×N is bounded and measurable such that

a∗|ξ|2 ≤ A(x)ξ · ξ ≤ a∗|ξ|2

for some a∗, a
∗ > 0 and all x ∈ RN and ξ ∈ RN . Then there exists a

unique u ∈ Hs
0(Ω) such that∫

Ω
A(x)Dsu · Dsvdx =

∫
Ω
fvdx

for every v ∈ Hs
0(Ω).
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Dirichlet Problem (Proof) I

Proof. The bilinear mapping B : Hs
0(Ω)× Hs

0(Ω)→ R defined by the LHS

B[u, v ] :=

∫
Ω
A(x)Dsu · Dsvdx

is coercive by the strict ellipticity of A and the fractional Poincaré
inequality, i.e.

B[u, u] ≥ a∗

∫
Ω
|Dsu|2dx ≥ c‖u‖2

Hs
0(Ω) .

Also, the boundedness of A and the Cauchy-Schwarz inequality gives
continuity of B, since

B[u, v ] ≤ a∗c ′‖u‖Hs
0(Ω)‖v‖Hs

0(Ω) .
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Dirichlet Problem (Proof) II

Similar estimates imply that the map, since L2#
(Ω) ⊂ H−s(Ω),

v 7→
∫

Ω
fv

is a bounded linear functional on Hs
0(Ω).

So, one may apply the Lax-Milgram theorem to obtain existence of
u ∈ Hs

0(Ω) satisfying the equation.
For uniqueness, if u1, u2 are two solutions to the Dirichlet problem, then
the function w = u1 − u2 ∈ Hs

0(Ω) and satisfies∫
Ω
A(x)Dsw · Dsvdx = 0

for every v ∈ Hs
0(Ω). Thus, letting v = w , we obtain w ≡ 0 by the

fractional Poincaré inequality.
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Dirichlet Problem (Remark)

Remark. It is possible to extend the Dirichlet problem to arbitrary open
domains with generalised Dirichlet data, i.e. find a solution u ∈ Hs(Ω)
with u = ϕ ∈ Hs(RN) in Ωc , where ϕ is given in such a way that I1−s ∗ ϕ
is well-defined. Then, Dsu is well-defined everywhere. In this case, we
instead use the bilinear form

B[ũ, v ],

where
ũ = u − ϕ.
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Application II: Fractional Obstacle Problem

Problem. Let Ω ⊂ RN be a bounded domain with Lipschitz boundary,
f ∈ L2#

(Ω), and A : Ω→ RN×N be strictly elliptic, bounded and
measurable. Then, for every function ψ ∈ Hs(Ω) such that the closed
convex sets

Ks
ψ = {v ∈ Hs

0(Ω) : v ≥ ψ a.e. in Ω} 6= 0,

there exists a unique u ∈ Ks
ψ such that∫

Ω
A(x)Dsu · Ds(v − u)dx ≥

∫
Ω
f (v − u) ∀v ∈ Ks

ψ.

Proof. This is just a direct application of the Stampacchia theorem, since
we have already shown that the bilinear form is bounded and coercive
previously in the Dirichlet problem.
Remark 1. The theorem holds, for instance, if ψ ∈ Hs

0(Ω).
Remark 2. For the special case of A = Id and f = 0,

u = PKs
ψ

0.
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Application III: Fractional Variational Inequality with
Gradient Constraint I

Problem. Let Ω ⊂ RN be a bounded domain with Lipschitz boundary. For
positive functions g ∈ L∞(Ω), consider the nonempty convex sets

Ks
g = {v ∈ Hs

0(Ω) : |Dsv | ≤ g a.e. in Ω}.

Suppose that fi ∈ L1(Ω) and A : Ω→ RN×N is strictly elliptic, bounded
and measurable. Then for every

gi ∈ L∞ν (Ω) := {g ∈ L∞(Ω) : g(x) ≥ ν > 0 a.e. x ∈ Ω},

there exists a unique ui ∈ Ks
gi
∩ C 0,β(Ω̄) for all Hölder constants

0 < β < 1, such that∫
Ω
A(x)Dsui · Ds(v − ui )dx ≥

∫
Ω
fi (v − ui )dx ∀v ∈ Ks

gi
.

Catharine Lo On a new class of fractional PDEs 6 May, 2020 33 / 39



Application III: Fractional Variational Inequality with
Gradient Constraint II

When g1 = g2, the solution map L1(Ω) 3 f 7→ u ∈ Hs
0(Ω) is 1

2 -Hölder
continuous, i.e., for some C1 > 0, we have

‖u1 − u2‖Hs
0(Ω) ≤ C1‖f1 − f2‖

1
2

L1(Ω)
.

Moreover, if in addition, fi ∈ L2#
(Ω), i = 1, 2, and g1 = g2, then

L2#
(Ω) 3 f 7→ u ∈ Hs

0(Ω) is Lipschitz continuous, i.e.,

‖u1 − u2‖Hs
0(Ω) ≤ C#‖f1 − f2‖L2#

(Ω)
,

where C# = C∗
a∗
> 0, where C∗ is the constant of the Sobolev embedding

Hs
0(Ω) ↪→ L2#

(Ω).
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Gradient Constraint Problem (Proof) I

Proof. We first find the solution for fi ∈ L2#
(Ω) ⊂ H−s(Ω). But the

assumption on A(x) implies that it defines a continuous bilinear and
coercive form over Hs

0(Ω). Then by the Stampacchia Theorem, we obtain
the existence and uniqueness of the solution. The regularity of ui then
follows from the Sobolev embeddings

Ks
g ⊂ C 0,β(Ω̄) ⊂ L∞(Ω).

For the third result, since

a∗‖ū‖2
Hs

0(Ω) ≤
∫

Ω
ADs ū·Ds ū ≤

∥∥∥f̄ ∥∥∥
L2#

(Ω)
‖ū‖L2∗ (Ω) ≤ C∗

∥∥∥f̄ ∥∥∥
L2#

(Ω)
‖ū‖Hs

0(Ω) ,

where ū = u1 − u2 and f̄ = f1 − f2, the Lipschitz continuity of the map
f 7→ u follows.
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Gradient Constraint Problem (Proof) II

Also, using the Sobolev embedding above, and letting κ be such that

‖v‖L∞(Ω) ≤ κ, ∀v ∈ Ks
g1
,

then we have the 1
2 -Hölder continuous estimate with C1 =

√
2κ/a∗ for

f1, f2 ∈ L2#
(Ω) ⊂ L1(Ω) since

a∗‖ū‖2
Hs

0(Ω) ≤
∥∥∥f̄ ∥∥∥

L1(Ω)
‖ū‖L∞(Ω) ≤ 2κ

∥∥∥f̄ ∥∥∥
L1(Ω)

.

Finally, we can obtain the solvability of the original problem for fi only in
L1(Ω) by density, by taking an approximating sequence of f ni ∈ L2#

(Ω)
such that f ni → fi in L1(Ω) as n→∞ and using the 1

2 -Hölder continuous
estimate for that Cauchy sequence.
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Gradient Constraint Problem (Remarks)

Remark 1. As with the Dirichlet problem, it is possible to extend the
variational inequality to arbitrary open domains with generalised Dirichlet
data, i.e. ϕ ∈ Hs(RN) such that I1−s ∗ ϕ is well-defined and |Dsϕ| ≤ g ,
and replacing Hs

0(Ω) in the definition of Ks
g with the space

{v ∈ Hs(RN) : v = ϕ a.e. in Ωc}.
Remark 2. If, in addition, A is symmetric, then the variational inequality is
equivalent to the optimisation problem

u ∈ Ks
g : J (u) ≤ J (v), ∀v ∈ Ks

g ,

where J : Ks
g → R is the convex functional

J (v) =
1

2

∫
Ω
ADsv · Dsv −

∫
Ω
fv .
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