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Fractional Calculus (Motivation)

@ Fractional calculus generalize the classical differentiation and
integration operator.

e Classically D?(f) = (D o D)(f) = D(D(f))
o What is /D = D27

@ More generally, what is D? for a € R? Hopefully, when a=ne€ Z, it
corresponds to the classical n-th derivative.

@ l|dea first appeared in a letter from I'Hopital to Leibniz, and
introduced in papers by Abel and Liouville independently

@ Since then, several different definitions have been proposed and
recently many developments are occurring
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Fractional Calculus (Applications)

@ Fractional advection dispersion equation: for modelling contaminant
flow in heterogeneous porous media

@ Fractional diffusion equation: for modelling anomalous diffusion
processes in complex media (fractional time derivative corresponding
to long-time heavy tail decay; fractional spatial derivative
corresponding to nonlocal diffusion), including Lévy flight

@ Modelling of viscoelastic damping in materials like polymers

@ Fractional time acoustical wave equations: for modelling of acoustical
waves in complex media such as in biological tissue (attenuation
measured in media comes from multiple relaxation phenomena)

@ Fractional Schrodinger equation in fractional quantum mechanics:
when Brownian-like quantum mechanical paths are replaced by their
continuous time-analog, the Lévy like ones
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Fractional Laplacian

Recall that the Fourier transform of the Laplacian of u € S is given by

—

(—A)u(€) = —4n®[¢l*a(€)

for every £ € RN,
Naturally, we can define the fractional Laplacian (—A)%, 0 <s <1 as

(CA)u(E) = (—4n%I¢%)a (),

which can be rewritten as a singular integral in real space

(—A)u(x) = cns p.v./R Mdy

N |X_y|N+25 :
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Riesz Potentials

Recall the generalized Riesz potentials of order o for 0 < oo < N given by
the formula
(N, )

lo * u(x) 1= FLE * u(x),

where the constant y is given by
()

(N, o) = ———~—.
2°T (3

If ue LP(RN), 1< p < oo, then
Io % u € LP=(RM),

where
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Riesz Potentials and the Riesz Fractional Derivative

@ Riesz potentials satisfy the semi-group property

(Inlg) x u = loqpg * u

fora,>0and a+ 5 < N.

@ The Laplacian maps a potential of order o + 2 to a potential of order
«,

—A(lpg2 *x u) = Iy * u.
Through analytic continuation, the Riesz potential can be extended to

negative exponents, and so one arrives at a formula for the fractional
Laplacian, or Riesz fractional derivative, given by

R u(x) — u(y
(—A)°u(x) =cns p.v./RN |)E_)y|/v£25)dy =1l_ps%uU
for0 <s < 1.
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Riesz Fractional Gradient

Since
(—A)SU(X) = 1725 * U= —A(/2,25 * u),

we can naturally define the s-Riesz fractional gradient as

o°u
D°u); i= — =1,....N
( u)J a)(jg? ./ 9 )
where
OFu. 0y wu
aXJ-S = 3XJ 1-s .

Here, s € (0,1).
Note: For u € LP(RN) for some 1 < p < oo such that ¢ * u is
well-defined, this is defined in the distributional sense, i.e.

as
<87XL'5]7V> :( 1)(’1 s*U / (Il s) 7 X7 Vv € CSO(RN)
J
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Fractional Derivative (integral form)

Writing in integral form, we have the s-gradient as

c 2u(x + 2)
D U(X) = CN,s !EQ)/{Z>6} Wdz

for a function w.
We can correspondingly define the s-divergence for a vector ¢ as
. : z-p(x+2z)
divip(x) == cn I|m/ ———dz.
%50 {|z|>€} |Z‘N+s+1
Note 1: Unlike the classical derivative which depends on only neighbouring
points (local property), the fractional derivative involves information on

the function further out. It is a nonlocal operator.
Note 2: For 0 < s < 1, if u € C°(RV), then

N

S S
(-A)°u=— o s = —div®(D*®u).
j=1 "4 77
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Fractional Derivative (Remarks)

This is a good definition of the fractional derivative, in such a way that
the fractional operator does not depend on the chosen basis.
Indeed, this operator is

@ translationally invariant,

@ rotationally invariant,

@ homogeneous of degree s € R under isotropic scaling,
@ is continuous in the Schwartz space.

Note: These are in fact the properties of the Riesz transform, which we
recall, is given by

(s
, _ : Y _ P
Rif(x) = —N1)2 6||_r110 oy [y f(x—y)dy, j=1,...,N,

and it is well-known that the Riesz transform is the only linear operator
fulfilling all these properties.
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Relation with Riesz Transforms

Indeed, we have the following property: Let 1 < p < oo and s € (0, 1).
Every u € C°(RN) can be expressed as

o°u
u=I *E;Rjax
J

where R; is the Riesz transform, which can be characterized as a singular

integral or 0-order operator with multiplier — IE\
Proof. Since

& u o —l4sp
gy — gl
and R = ﬁ the result follows from the identity
Is = (2ml¢)
in S(RVY'. O

Catharine Lo On a new class of fractional PDEs 6 May, 2020 12 /39



© Fractional Sobolev Spaces

Catharine Lo On a new class of fractional PDEs 6 May, 2020 13 /39



Fractional Hilbert Spaces

Recall that we can make use of the Fourier transform to define Sobolev
spaces as

Wm2(RN) = H™(RY) = {u € LP(RY) : € = (1+]6P)™2a(¢) € L2(R)).
We can extend this definition to fractional Hilbert spaces.

HERN) = {u € L(RM) < {€ > (1+[EP)2F(u)(€)} € L2RM)} for s > 0,
and

HERY) = {u € S'RY) : (€= (1+[6P)2F(u)(©)} € L2RM)) for s <0,

with norm
gy =||(1+ 1€P)/2F (w)

[2(RN)
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Fractional Hilbert Spaces (Properties)

It is known that

O the space H5(R") with the above defined norm is a Banach space;

@ the space H5(R") coincides with the classical Sobolev space
Wm2(RN) if s = m e N;

© for s > 0, the space H=5(R") coincides with the dual (H*(RN)Y';

@ the space S(RV) is dense in H5(RN);

@ for s > 1/2 and N > 2, the functions in H5(R") have a trace on
{xn = 0} that belongs to H*"1/2(RN-1).

@ Conversely, every function in H5~1/2(RN=1 x {0}) can be extended in
a linear and continuous manner to a function in H*(RV).
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Fractional Sobolev Spaces

For general p, we have the following definition of fractional Sobolev spaces,
1
Wer(Q) = { € LP(Q) : [ulwer(e) = (fi Joo ML dily )” < +oo},

for 0 < s < 1, with the natural norm

||U||€Vs,p(9) = HUHIL)P(Q) + [Um/s,p(gy

For p = 2 with integer s, this definition is the same as the definition of
Sobolev spaces with Fourier transform.

The space W;P(Q2) denotes the closure in W*P(Q) of all smooth
functions having a compact support contained in 2.

Denoting H5(Q2) := W*2(Q), we can similarly define H5(S2) as the closure
in H*(Q2) of all smooth functions having a compact support contained in
Q. Moreover, there is an equivalent norm for Hg(2), given by

||”HH3(Q) =[D?ullj2qyr» 0<s<1
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Fractional Sobolev Spaces (Embedding Results)

Then we have the following embedding results: Let 0 < s < 1 and
1 < p < o0. Suppose € is a Lipschitz open set.

@ The space D(RV) is dense in WSP(RN).

If 0 <5’ <s<1, then WSP(RN) — W*'P(RN).

WLP(RN) < WeP(RN).

If sp < N, then W*P(Q) — LI(Q2) for every g < Np/(N — sp)

If sp = N, then W*P(Q) — L9(Q) for every q < occ.

If sp > N, then W*P(Q) — L*°(R2), and, more precisely,

WP (Q) — COs=N/P(Q) if Q is bounded.

o In particular, H(Q) — L () and 127(Q) — H5(Q) = (H5(2))
for 0 < s < 1, where 2* = 2%~ and 2% = 2% when s < 7,
and if N = 1, 2* = g for any finite g and 2% = ¢/ = q;11 when s = %
and 2* = oo and 2#:1whens>%.
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Properties of the Fractional Derivative (Duality)

Let s € (0,1). For all Lipschitz compactly supported scalar function f and

vector function ¢,
/ fdivipdx = —/ - (D°f)dx
RN RN
Proof.

: . (y =x) - o(y)
fdivipdx = f(x)1 W) 2V g
/]R’V Ve CN’S/RN (X)ETO/HX —y|>e} \y—X\"’““ e
x) - ()
=cp, Ilm/ / —dydx
*e=0 RN J{|x— y|>e} ’y_X’N+S+1
(x = y)f(x)
=_ | 7d dx
CNSE[Q)/R”/{X—ybe}SO( ’X_ ‘N+S+1

:—/Rng-(DSf)dx

by dominated convergence theorem and Fubini's theorem. [
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Properties of the Fractional Derivative (Leibniz Rule)

Let s € (0,1). For all Lipschitz compactly supported scalar functions f, g,

D*(fg) = f(D°g) + g(D*f) + Dy (f 8),

where the nonlinear term

D, (F,8)(x) = c/v,s/ (¥ = x)(fly) — f(x))(gly) — g(X))dt’ vx € RV,

RN ‘y_X’N-l-S—&-l

Moreover, for 1 < p, g < oo such that % + % =1,

HDNL f 8 HLl(]RN RN) < N S[f] RN)[g]W%’q(RN)

and similarly
DR (Fs )| 1 gy < 26n,s[Fioe amy gl wsa -

A similar Leibniz rule holds for divergence. Note the additional nonlinear
term, which makes integration by parts difficult.
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Properties of the Fractional Derivative (Leibniz Rule)

Proof. Given f,g compactly supported Lipschitz functions in RN, we have

*(fg)(x) 7CNS/]RN y—Xx (f(Y)g(Y)*f(X)g(X)) dy

X|N+s+1

/ y —x (f(y)g(y) — f(y)g(x) + f(y)g(x) — f(x)g(x)) dy

. e
_CNS/]RN _X|;(i/)x‘,\,+s)+1 (X))dy+g(x)Dsf(x)
—ens /R e (y& = iﬁNl)(fl(y ) =& 4y 4 (D (x) + £(x)D*F(x).

We also have that, for any p, g € (1, 00) with % + % =1,

f(y) — f(x —g(x
HDIS\IL(fvg)H oy <Chs [f(y) N(+S)| lg(y) é,r\,(“)'dde
HETED a5y

1 1
F(y) — F(x)|P ’ a 7
cone( [ [ EOZID )7 ([ [ I8 E0 )7
T \Jrw Sy [x = y|[Ne RV SRV [x — y|NTe
The case p =00, g =1 is similar. id
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Properties of the Fractional Derivative (Extension to

Fractional Sobolev Spaces)

With these estimates on the nonlinear term, we can continuously extend
our operator

Diyy : Lipc(RY) x Lip(RY) — L'(RV; RY)

to
Diy : WrPRN) x wad(RN) — (H(RV;RV)
for any p, g € [1, 0] such that % + % =1.
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Properties of the Fractional Derivative (Estimate on /)

Let H5P(RN) be the generalized Sobolev space, defined by
H*P(RN) := {u e LP(RY) : D°u € LP(RV)}

for s > 0. It holds, for 1 < p < oo and € > 0, that
HsteP(RNY — WSP(RN) — H—<P(RM).

We now look at some additional properties that correspond to fractional
derivatives, that are useful for analysing fractional PDEs.

Estimate on the operator /5: Let 1 < p < 0o and 0 < s < 1 be such that
sp < N. Then for all f € LP(RV) such that /s * f is well-defined, there
exists C = C(N, p,s) > 0 such that

s % Fll o ey < CUF oy
where p* := N’\l’;p.
This can be shown just by expanding /s * f.
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Properties of the Fractional Derivative (Fractional Sobolev

Inequality)

Fractional Sobolev Inequality. Let 1 < p < oo and 0 < s < 1 be such that
sp < N. Then there exists a constant C = C(N, p,s) > 0 such that

lall o ey < COullogmy -

This implies the fractional Poincaré inequality for open bounded domains,
which is useful for obtaining a priori energy estimates.
Proof. We will show the result for u € C2°(RN) and extend the result for
general u € HSP(RN) by density. Recall that for u € C=°(RM), we can

. N s
rewrite u as u = Is x g where g = ijl Rjg—x}’.

Note that g € LP(RV) and sp < N. So by the previous estimate on the

operator /s, and the boundedness of the Riesz transform

R; : LP(RN) — LP(RN), we have

ull o= vy = llls * &l o+ vy < const x||g]| pny < const x const x [|D*ul| p ()
L]
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Properties of the Fractional Derivative (Fractional Morrey

Inequality)

Fractional Morrey Inequality. Let 1 < p < 0o and 0 < s < 1 be such that
sp > N. Then there exists a constant M = M(N, p,s) > 0 such that

s N

|u(x) = u(y)| < Mix = y[" 7 [|D*ul| (p ()

for all u € HSP(RN).
This is useful for estimating the variation of the solution.
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Stampacchia Theorem

Stampacchia Theorem. Given V (which, in our case, is H3(2)) a Hilbert
space, K C V a closed, nonempty, convex set, L € V' and a(-,-) a

bounded coercive bilinear form. Then there exists a unique solution to the
variational inequality

veK:a(u,v—u)>(Liv—u), Vvek
In the case K = V/, one has unique solvability of
veV:a(uv)=(Lv), YveV,

which is Lax-Milgram theorem.
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Application I: Fractional Dirichlet Problem

Problem. Let Q c RN be open and bounded. Suppose that f € L2#(Q),
and A : RN — RV*N is bounded and measurable such that

alé)? < A(x)E - € < a[¢)?

for some a,,a* > 0 and all x € RN and ¢ € RV, Then there exists a
unique u € H3(2) such that

/A(X)DSU - D vdx :/ fvdx
Q

Q

for every v € H3(Q).
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Dirichlet Problem (Proof) |

Proof. The bilinear mapping B : H3(2) x H5(2) — R defined by the LHS
Blu,v] := / A(x)D*u - D®vdx
Q

is coercive by the strict ellipticity of A and the fractional Poincaré
inequality, i.e.

Blu, u] > a*/ D*uPdx > cllulZay -
Q 0

Also, the boundedness of A and the Cauchy-Schwarz inequality gives
continuity of B, since

Blu,v] < a*C/HUHHg(Q)”VHHg(Q) :
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Dirichlet Problem (Proof) I

Similar estimates imply that the map, since Lz#(Q) C H(Q),

vr—>/fv
Q

is a bounded linear functional on H§().

So, one may apply the Lax-Milgram theorem to obtain existence of

u € H3(2) satisfying the equation.

For uniqueness, if uy, upy are two solutions to the Dirichlet problem, then
the function w = u; — up € H(Q) and satisfies

/ A(x)D°w - D*vdx =0
Q

for every v € H3(Q2). Thus, letting v = w, we obtain w = 0 by the
fractional Poincaré inequality.
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Dirichlet Problem (Remark)

Remark. 1t is possible to extend the Dirichlet problem to arbitrary open
domains with generalised Dirichlet data, i.e. find a solution u € H*(Q2)
with u = € H5(RV) in Q°, where ¢ is given in such a way that /;_ * ¢
is well-defined. Then, D®u is well-defined everywhere. In this case, we
instead use the bilinear form

Bld, v],

where
i=u— .
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Application Il: Fractional Obstacle Problem

Problem. Let Q C RN be a bounded domain with Lipschitz boundary,
f € 127(Q), and A : Q — RVN*N pe strictly elliptic, bounded and
measurable. Then, for every function ¢ € H*(2) such that the closed
convex sets

Ky ={veH;(Q):v>1vae inQ}#0,

there exists a unique u € Kfp such that

/QA(X)DSU-DS(v—u)dXZ/Qf(v—u) Vv e Ky,

Proof. This is just a direct application of the Stampacchia theorem, since
we have already shown that the bilinear form is bounded and coercive
previously in the Dirichlet problem. []
Remark 1. The theorem holds, for instance, if ¢ € Hj(Q).

Remark 2. For the special case of A= Id and f =0,

u= PK;O
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Application Ill: Fractional Variational Inequality with

Gradient Constraint |

Problem. Let Q C RN be a bounded domain with Lipschitz boundary. For
positive functions g € L>°(£2), consider the nonempty convex sets

Kg ={ve H3(Q): [D°v| < g a.e. in Q}.

Suppose that f; € L}(Q) and A: Q — RN*N s strictly elliptic, bounded
and measurable. Then for every

g eLlX(Q)={gel®Q):g(x)>v>0ae xeQ}

there exists a unique u; € K3 N C%3(Q) for all Holder constants
0 < B < 1, such that

/ A(x)D*u; - D*(v — uj)dx > / fi(v —uj)dx Vv e Kg.
Q Q
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Application Ill: Fractional Variational Inequality with

Gradient Constraint Il

When g1 = g», the solution map L1(Q) 5 f +— u € H§(Q) is 1-Holder
continuous, i.e., for some C; > 0, we have

1
[|ur — U2||Hg(Q) < Glh - fZHil(Q) :

Moreover, if in addition, f; € Lz#(Q)7 i=1,2, and g3 = g, then
L2#(Q) > f — u € H5(R2) is Lipschitz continuous, i.e.,

||U]_ - u2||H5(Q) < C#Hﬁ - f2||L2#(Q) )
where Cy = ac—: > 0, where C, is the constant of the Sobolev embedding

H(Q) = L2 (Q).
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Gradient Constraint Problem (Proof) |

Proof. We first find the solution for f; € L2"(Q) ¢ H™5(Q). But the
assumption on A(x) implies that it defines a continuous bilinear and
coercive form over H3(€2). Then by the Stampacchia Theorem, we obtain
the existence and uniqueness of the solution. The regularity of u; then
follows from the Sobolev embeddings

0,8(0 00
K c CP(Q) c L~(Q).

For the third result, since

f

—n2 _ _ = _ _
alalye < [ ADGD%T <[] 1 8] < . LI,

L2# (Q)

where = u; — uy and f = f; — £, the Lipschitz continuity of the map
f — u follows.
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Gradient Constraint Problem (Proof) Il

Also, using the Sobolev embedding above, and letting s be such that

”VHLOO(Q) < K, Vv e K;'17

then we have the %—Hélder continuous estimate with C; = \/2r/a, for
fi, f € 127(Q) C [1(Q) since

-2 r — ra
gy <[] s g N200) < 28| -
Finally, we can obtain the solvability of the original problem for f; only in
L}(Q) by density, by taking an approximating sequence of " € L2#(Q)
such that £ — f; in L(Q) as n — oo and using the 3-Hélder continuous
estimate for that Cauchy sequence. O
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Gradient Constraint Problem (Remarks)

Remark 1. As with the Dirichlet problem, it is possible to extend the
variational inequality to arbitrary open domains with generalised Dirichlet
data, i.e. ¢ € H5(RN) such that 1 ¢ * ¢ is well-defined and |DS¢| < g,
and replacing H5(£2) in the definition of KZ with the space

{ve H(RV): v =y ae in Q).

Remark 2. If, in addition, A is symmetric, then the variational inequality is
equivalent to the optimisation problem

uekg: J(u) < J(v), Vv € K3,
where J : ng — R is the convex functional

j(v):;/ﬂAst-st—/ﬂfv.

Catharine Lo On a new class of fractional PDEs 6 May, 2020 37/39



References |

E

Giovanni E. Comi and Giorgio Stefani, A distributional approach to
fractional sobolev spaces and fractional variation: asymptotics i, arXiv:
1910.13419 [math.FA] (2019).

. A distributional approach to fractional sobolev spaces and
fractional variation: Existence of blow-up, Journal of Functional
Analysis 277 (2019), no. 10, 3373 — 3435.

José Rodrigues, Obstacle problems in mathematical physics,
North-Holland Mathematics Studies 134, 1987.

José Francisco Rodrigues and Lisa Santos, On nonlocal variational and
quasi-variational inequalities with fractional gradient, Applied
Mathematics & Optimization 80, no. 3 (2019), 835 — 852.

Catharine Lo On a new class of fractional PDEs 6 May, 2020 38/39



References |l

[@ Miroslav Silhavy, Fractional vector analysis based on invariance
requirements (critique of coordinate approaches), Continuum
Mechanics and Thermodynamics 32, Issue 1 (2020), 207 — 288.

[@ Tien-Tsan Shieh and Daniel Spector, On a new class of fractional
partial differential equations, Advances in Calculus of Variations 8
(2014), 321 — 366.

, On a new class of fractional partial differential equations ii,
Advances in Calculus of Variations 11 (2017), 289 — 307.

Catharine Lo On a new class of fractional PDEs 6 May, 2020 39/39



	Introduction
	Fractional Sobolev Spaces
	Properties of the Fractional Derivative
	Fractional PDEs

