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Plan of the presentation

1 Motivation from Hamiltonian mechanics and the Arnol′d conjecture;

2 Morse homology and Lagrangian mechanics;

3 Floer homology and proving the Arnol′d conjecture;

4 Viterbo’s theorem.
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Hamiltonian mechanics

Consider a conservative force F acting on Euclidean space Rn, with a
potencial V such that ∇V = −F . The energy of a particle of unit mass
in this space is described by the Hamiltonian function

H : Rn × Rn → R

(q, p) 7→ 1

2
|p|2 + V (q).

The motion of such a particle is given by a curve t 7→ (q(t), p(t))
satisfying the equations {

q′ = p,

p′ = F .
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For a general Hamiltonian function H : Rn × Rn → R motion is described
by Hamilton’s equations 

q′i =
∂H

∂pi
,

p′i = −∂H
∂qi

.
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The symplectic viewpoint

Hamilton’s equations are an ODE associated to the Hamiltonian vector
field

XH =

(
∂H

∂p1
, · · · , ∂H

∂pn
,− ∂H

∂q1
, · · · ,− ∂H

∂qn

)
.

The space Rn × Rn has a canonical 2-form

ω0 =
n∑

i=1

dpi ∧ dqi

satisfying

ω0 (XH , v) = −(DH)v , ∀v ∈ R2n.
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Definition

Let M be a smooth manifold. A smooth 2-form ω on M is a symplectic
form if

It is closed: dω = 0;

It is non-degenerate: if ωx(v ,w) = 0 for all w ∈ TxM then v = 0.

We say that (M, ω) is a symplectic manifold.

The Hamiltonian vector field associated to the Hamiltonian function
H : M → R satisfies

ωx (XH(x), v) = −(dH)xv , ∀x ∈ M, v ∈ TxM.
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A few remarks:

(R2n, ω0) is a symplectic manifold

Symplectic manifolds have even dimension;

Locally, symplectic manifolds are symplectomorphic to (R2n, ω0);

Symplectic manifolds are orientable: ωn is a volume form;

Orientable surfaces have symplectic forms (any area form);

The cotangent bundle has a canonical symplectic form generalizing
(R2n, ω0).
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An Arnol′d conjecture

Given a time-dependent Hamiltonian function H : R×M → R we can
define the Hamiltonian flow φ•XH

: R×M → M by:
dφtXH

(x)

dt
= XHt

(
φtH(x)

)
,

φ0
XH

(x) = x .

We call φ1
XH

a Hamiltonian symplectomorphism. We say that a fixed

point φ1
XH

(x) = x is non-degenerate if

(dφ1
XH

)x − idTxM : TxM → TxM

is invertible.
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Conjecture (Arnol′d)

Let (M, ω) be a compact symplectic manifold and H : [0, 1]×M → R be
a smooth time-dependent Hamiltonian function. Suppose that the fixed
points of the time-1 Hamiltonian flow φ1

XH
are non-degenerate. Then

#Fix
(
φ1
XH

)
≥

dim M∑
k=0

bk(M;F),

where bk(M;F) are the Betti numbers of M with coefficients in F.

Proven for F = Q by Fukaya and Ono.
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This Arnol′d conjecture gives a relation between the Hamiltonian
dynamics with the topology of the manifold. It is specific to Hamiltonian
dynamics: the Lefschetz fixed-point theorem yields

Fix
(
φ1
XH

)
≥ |χ(M)|.

Example

On the flat 2-torus T2 = (R/Z)2 with the induced symplectic form ω0 we
have #Fix(φ1

H) ≥ 4.

On the other hand, any translation is a symplectomorphism (homotopic
to idT2 ) with no fixed points.
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Morse inequalities

Let M be a manifold and f ∈ C∞(M).

Definition

We say that p ∈ M is a critical point of M if (df )p = 0. We say that p
is a non-degenerate critical point if the Hessian (d2f )p is
non-degenerate. We say that f is a Morse function if all its critical
points are non-degenerate.

Theorem (Morse inequalities)

Let M be a compact manifold and f a Morse function on M. Then

#Crit(f ) ≥
dim M∑
k=0

bk(M;F).
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The Hessian and Morse index

When (df )p = 0 we can define the Hessian as a bilinear map(
d2f
)
p

(Xp,Yp) = Xp · Y · f

for vector fields X and Y .
Given local coordinates (x1, · · · , xn) it is represented by the Hessian
matrix [

∂2f

∂xixj
(p)

]n
i,j=1

.

The signature of this quadratic form does not depend on the choice of
local coordinates.

Definition

The index of p is the dimension of the largest linear subspace of TpM on
which (d2f )p is negative-definite.
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The basic building blocks of Morse theory

Denote Ma = f −1(]−∞, a[).

1 Between critical values the topology does not change;

2 When we cross a critical point of index k the homotopy type
changes by adding a k-cell.

Closed manifold CW complex

Critical point Cell

Index Dimension

homotopy
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Height function on the 2-torus
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Morse theory and CW homology

Denoting by C (M, f ) the aforementioned CW complex:

Hsing
• (M) ∼= HCW

• (C (M, f )) ∼= H• (Z · Crit f , ∂) ,

where Crit f is graded by index and ∂ is some differential.
As a direct consequence we have the Morse inequalities

#Critk f ≥ bk(M;F),

for any field F.

Example

A Morse function on RP2 has at least three critical points.
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Morse homology

Can we define an appropriate differential ∂ in a self-contained way? The
basic idea is to count trajectories of the negative-gradient −∇f between
critical points — for this purpose we need a Riemannian metric g on M.

Given p± ∈ Crit f define M(p−, p+) as the set of curves c : R→ M such
that {

ċ(s) +∇f (c(s)) = 0,

lim
s→±∞

c(s) = p±.

R action: (σ · c)(s) := c(s + σ)

L(p−, p+) =M(p−, p+)/R
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For p ∈ Critk f define

∂p =
∑

q∈Critk−1f

|L(p, q)|q, mod 2

1 How can we guarantee that L(p, q) is a finite set?

2 How can we show that ∂2 = 0?
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We can identify
M(p, q) = W u(p) ∩W s(q)

where

W u(p) =

{
x ∈ M : lim

t→−∞
φt−∇f (x) = p

}
W s(q) =

{
x ∈ M : lim

t→+∞
φt−∇f (x) = q

}
are the unstable/stable manifolds of −∇f .

By the stable manifold theorem, these are indeed manifolds
(diffeomorphic to balls), of dimension

dimW u(p) = indf (p),

dimW s(q) = n − indf (q).
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Morse-Smale condition:

W u(p) t W s(q)⇒ dimM(p, q) = indf (p)− indf (q)

If p 6= q:
dimL(p, q) = indf (p)− indf (q)− 1.

In particular, if indf (p) = indf (q) + 1 then L(p, q) is a 0-manifold. One
can show that it is compact, and thus a finite set.

Theorem

Let M be a closed manifold. For a generic choice of f and/or g the
Morse-Smale condition holds.
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Fixing the 2-torus
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Showing ∂2 = 0: gluing

Given p ∈ Critk+1f :

∂2p =
∑

r∈Critk−1f

∣∣∣∣∣∣
⋃

q∈Critk f

L(p, q)× L(q, r)

∣∣∣∣∣∣ r .
It turns out that we can compactify L(p, r) as a 1-manifold with
boundary:

L(p, r) = L(p, r)︸ ︷︷ ︸
interior

⋃ ⋃
q∈Critk f

L(p, q)× L(q, r)︸ ︷︷ ︸
boundary

and ∂2 = 0 since compact 1-manifolds are disjoint unions of arcs and
circles.
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Computations: round sphere

k Ck(M, f ) Hk(M;Z/2)

2 Z/2 · a Z/2

1 0 0

0 Z/2 · c Z/2
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Computations: heart-shaped sphere

k Ck(M, f ) Hk(M;Z/2)

2 Z/2 · (a1, a2) Z/2

1 Z/2 · b 0

0 Z/2 · c Z/2

×(1, 1)

×2
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Generalizations

Morse homology can be defined on a Hilbert manifold M with a
Riemannian metric G and a Morse function f such that:

1 f is bounded from below;

2 The Morse index of critical points of f is finite;

3 The manifold is complete;

4 f satisfies the Palais-Smale condition: any sequence xn ∈ M s.t.
f (xn) is bounded and lim |∇f (xn)| = 0 has a convergent
subsequence;

5 (f ,G ) satisfies the Morse-Smale condition.

Theorem

HMorse
• (M, f ,G ) ∼= Hsing

• (M)
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Application to Lagrangian mechanics

Consider a “quadratic Lagrangian” such as

L : S1 × TQ → R

(t, q, v) 7→ 1

2
|v |2 − V (t, q).

The critical points of the Lagrangian action functional

EL : W 1,2
(
S1;M

)
→ R

x 7→
∫
S1

L(t, x(t), x ′(t))dt

are the 1-periodic solutions of the Euler-Lagrange equations

∇qL(t, x(t), x ′(t)) =
D

dt
∇vL(t, x(t), x ′(t)).
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For generic choices of potential V conditions 1–4 hold. For generic
choices of Riemannian metric (uniformly equivalent to the W 1,2-metric)
it satisfies condition 5.

The Morse complex MC (M, EL,G ) is generated by 1-periodic solutions of

E-L and the same homology as Hsing
• (LM).

Theorem (Gromoll-Meyer)

If the sequence bk(LM) is unbounded then M has infinite geometrically
distinct closed geodesics.
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The actual Arnol′d conjecture

Conjecture (Arnol′d)

Let (M, ω) be a compact symplectic manifold, and let φ be an
Hamiltonian symplectomorphism with non-degenerate fixed points. Then

#Fix(φ) ≥ min
f∈C∞(M) Morse

#Crit(f ).

For general Hamiltonian symplectomorphisms φ:

#Fix(φ) ≥ min
f∈C∞(M)

#Crit(f ).

The Morse inequalities and the “weak” Arnol′d conjecture give a
common lower bound for the above quantities.

Miguel Martins dos Santos IST-UL

Morse Homology and Floer Homology



Introduction Morse homology Floer homology Viterbo’s theorem References

Hamiltonian action functional

On (R2n, ω0) we can define a functional

AH : L (Rn × Rn)→ R

(q, p) 7→
∫
S1

p(t) · q′(t)− H(t, q(t), p(t))dt

with critical points the 1-periodic solutions of Hamilton’s equation P(H)!

However (for example on W 1,2(S1;R2n)):

Morse index may be infinite;

The Palais-Smale condition may fail.
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Floer’s approach

Study directly the space of “formal” negative L2-gradient trajectories of
AH : solutions u ∈ C∞(R× S1;R2n) of Floer’s equation

∂su(s, t)− J0 (∂tu(s, t)− XHt (u(s, t))) = 0,

where

J0 =

[
0 In
−In 0

]
.

This is a first-order elliptic system of partial differential equations: a
zero-order perturbation of the Cauchy-Riemann equation

∂su − J0∂tu = 0.
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For general symplectic manifolds Floer’s equation is

∂su(s, t)− Ju(s,t) (∂tu(s, t)− XHt (u(s, t))) = 0,

where J is an almost-complex structure which is compatible with ω
i.e.

J2
p = −idTpM

and

ωp(v , Jpw) = g(v ,w), v ,w ∈ TpM

defines a Riemannian metric.
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The trajectory spaces M(x−, x+) for x± ∈ P(H) consist of solutions u of
Floer’s equation such that

lim
s→±∞

u(s, ·) = x±

in C∞(S1;M).

R-action: (σ · u)(s, t) := u(s + σ, t)

Moduli spaces L(x−, x+) =M(x−, x+)/R.
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Floer complex

Under the following topological assumption∫
S2

u∗c1(M) = 0, ∀u ∈ C∞(S2;M)

we can associate to contractible 1-periodic solutions of Hamilton’s
equation their Conley-Zhender indices µCZ .

The Floer complex is then FC (M,H, J;Z/2) = (Z/2 · P0(H), ∂) with
differential given by

∂x =
∑

y∈P0(H),
µCZ (y)=µCZ (x)−1

|L(x , y)|y .
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Theorem

If (M, ω) is aspherical; i.e.∫
S2

u∗ω = 0, u ∈ C∞(S2;M)

then FC (M,H, J;Z/2) is a well-defined chain complex for generic choices
of H and J.

Floer homology is the homology FH(M,H, J;Z/2) of this complex.
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Floer theory

The powerful machinery of Morse theory/Morse homology no longer
works and needs to be replaced. Just proving that the Floer complex is
well-defined requires powerful analytic tools, such as:

Regularity for elliptic PDE — Calderón-Zygmund inequality, freezing
coefficients, elliptic bootstrapping ;

Bubbling-off analysis — originating from Gromov compactness and
using the removable singularity theorem;

Differential geometry on Banach manifolds — implicit function
theorem, Sard theorem, Thom transversality;

Functional analysis — Banach open mapping theorem, Fredholm
operators, Newton-Picard method;

Continuation principles for “almost-holomorphic” maps — Carleman
similarity principle.
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Invariance of Floer homology on closed manifolds

Let (M, ω) be a closed symplectic manifold satisfying the topological
assumptions.

Theorem

If (H0, J0) and (H1, J1) are data such that the Floer complex is
well-defined then there is a canonical isomorphism

FH(M,H0, J0) ∼= FH(M,H1, J1).

We can thus define HFloer
• (M) = FH(M,H, J).
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Computation and the Arnol′d conjecture

Theorem

There are compatible a.c.s J and C 2-small autonomous Hamiltonian H
such that

FC•(M,H, J) ∼= MC•+n(M,H, g).

In particular there is an isomorphism

HFloer
• (M) ∼= Hsing

•+n(M),

and the “weak” Arnol′d conjecture holds.
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Legendre transformation

T ∗Q TQ

Momentum Velocity

1
2 |p|

2 + V (t, q) = H L = 1
2 |v |

2 − V (t, q)

Hamilton’s equations Euler-Lagrange equations

Legendre transformation

(∗)
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The bijection (∗) induces a bijection between the generators of
FC (T ∗Q,H, J) and MC (LQ, EL,G ).

Theorem (Abbondandolo-Schwarz)

For generic compatible uniformly continuous J there is a chain
isomorphism

FC•(T
∗Q,H, J;Z/2) ∼= MC•(LQ, EL,G ;Z/2).

Theorem (Viterbo)

Let Q be a closed manifold. Then

HFloer
• (T ∗Q;Z/2) ∼= Hsing

• (LQ;Z/2).

If Q is spin then
HFloer
• (T ∗Q) ∼= Hsing

• (LQ).
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Ongoing work: S1-equivariant version

LQ is an S1-space: (τ · x)(t) := x(t + τ). There is a suitable definition
of S1-equivariant Floer homology, due to Bourgeois and Oancea.

Is it the case that

FHS1

• (T ∗Q;Z/2) ∼= HS1

• (LQ;Z/2)?

For Z-coefficients is Q spin the appropriate condition?
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