Introduction 00000000	Morse homology 000000000000000000	Floer homology 00000000	

Morse Homology and Floer Homology

LisMath seminar

Miguel Martins dos Santos

Instituto Superior Técnico Universidade de Lisboa miguel.m.santos@ist.utl.pt

29th April 2020

・ロト ・同ト ・ヨト ・ヨ

Plan of the presentation

- **1** Motivation from Hamiltonian mechanics and the Arnol'd conjecture;
- 2 Morse homology and Lagrangian mechanics;
- **3** Floer homology and proving the Arnol'd conjecture;
- 4 Viterbo's theorem.

・ロト ・同ト ・ヨト ・ヨ

Introduction •0000000	Morse homology 000000000000000000	Floer homology 000000000	

Hamiltonian mechanics

Consider a conservative force F acting on Euclidean space \mathbb{R}^n , with a potencial V such that $\nabla V = -F$. The energy of a particle of unit mass in this space is described by the **Hamiltonian function**

$$\mathcal{H} \colon \mathbb{R}^n imes \mathbb{R}^n o \mathbb{R}$$
 $(q,p) \mapsto rac{1}{2} |p|^2 + V(q).$

The motion of such a particle is given by a curve $t \mapsto (q(t), p(t))$ satisfying the equations

$$\begin{cases} q' = p, \\ p' = F. \end{cases}$$

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Introduction ○●○○○○○○	Morse homology 000000000000000000	Floer homology 000000000	

For a general Hamiltonian function $H \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ motion is described by **Hamilton's equations**

$$\begin{cases} q'_i = \frac{\partial H}{\partial p_i}, \\ p'_i = -\frac{\partial H}{\partial q_i} \end{cases}$$

<ロト < 部 ト < 目 ト < 目 ト) 目 の Q (?)</p>

Miguel Martins dos Santos Morse Homology and Floer Homology

Introduction	Morse homology 000000000000000000000000000000000000	Floer homology	Viterbo's theorem	
0000000				

The symplectic viewpoint

Hamilton's equations are an ODE associated to the Hamiltonian vector field

$$X_{H} = \left(\frac{\partial H}{\partial p_{1}}, \cdots, \frac{\partial H}{\partial p_{n}}, -\frac{\partial H}{\partial q_{1}}, \cdots, -\frac{\partial H}{\partial q_{n}}\right).$$

The space $\mathbb{R}^n \times \mathbb{R}^n$ has a canonical 2-form

$$\omega_0 = \sum_{i=1}^n dp_i \wedge dq_i$$

satisfying

$$\omega_0(X_H, v) = -(DH)v, \qquad \forall v \in \mathbb{R}^{2n}.$$

Introduction	Morse homology	Floer homology	
0000000			

Definition

Let M be a smooth manifold. A smooth 2-form ω on M is a symplectic form if

• It is closed: $d\omega = 0$;

It is non-degenerate: if $\omega_x(v, w) = 0$ for all $w \in T_x M$ then v = 0. We say that (M, ω) is a symplectic manifold.

The **Hamiltonian vector field** associated to the **Hamiltonian function** $H: M \to \mathbb{R}$ satisfies

$$\omega_x(X_H(x),v) = -(dH)_x v, \qquad \forall x \in M, v \in T_x M.$$

3

Introduction 0000000	Morse homology 0000000000000000	Floer homology 000000000	

A few remarks:

- $(\mathbb{R}^{2n}, \omega_0)$ is a symplectic manifold
- Symplectic manifolds have even dimension;
- Locally, symplectic manifolds are symplectomorphic to $(\mathbb{R}^{2n}, \omega_0)$;
- Symplectic manifolds are orientable: ω^n is a volume form;
- Orientable surfaces have symplectic forms (any area form);
- The cotangent bundle has a canonical symplectic form generalizing $(\mathbb{R}^{2n}, \omega_0)$.

Introduction 00000●00	Morse homology 0000000000000000000	Floer homology 000000000	

An Arnol'd conjecture

Given a **time-dependent** Hamiltonian function $H : \mathbb{R} \times M \to \mathbb{R}$ we can define the **Hamiltonian** flow $\phi_{X_{\mu}}^{\bullet} : \mathbb{R} \times M \to M$ by:

$$\begin{cases} \frac{\mathrm{d}\phi_{X_{H}}^{t}(x)}{\mathrm{d}t} = X_{H_{t}}\left(\phi_{H}^{t}(x)\right),\\ \\ \phi_{X_{H}}^{0}(x) = x. \end{cases}$$

We call $\phi_{X_H}^1$ a Hamiltonian symplectomorphism. We say that a fixed point $\phi_{X_H}^1(x) = x$ is non-degenerate if

$$(d\phi^1_{X_H})_x - \operatorname{id}_{T_xM} : T_xM o T_xM$$

is invertible.

IST-UL

Introduction	Morse homology	Floer homology	
00000000			

Conjecture (Arnol'd)

Let (M, ω) be a compact symplectic manifold and $H: [0, 1] \times M \to \mathbb{R}$ be a smooth time-dependent Hamiltonian function. Suppose that the fixed points of the **time-1 Hamiltonian flow** $\phi_{X_{\mu}}^{1}$ are **non-degenerate**. Then

$$\#\operatorname{Fix}\left(\phi_{X_{H}}^{1}
ight)\geq\sum_{k=0}^{\dim M}b_{k}(M;\mathbb{F}),$$

where $b_k(M; \mathbb{F})$ are the Betti numbers of M with coefficients in \mathbb{F} .

Proven for $\mathbb{F} = \mathbb{Q}$ by Fukaya and Ono.

Introduction 0000000	Morse homology 000000000000000000	Floer homology 000000000	

This Arnol'd conjecture gives a relation between the Hamiltonian dynamics with the topology of the manifold. It is specific to Hamiltonian dynamics: the Lefschetz fixed-point theorem yields

$$\mathsf{Fix}\left(\phi_{X_{H}}^{1}
ight)\geq|\chi(M)|.$$

Example

On the flat 2-torus $\mathbb{T}^2 = (\mathbb{R}/\mathbb{Z})^2$ with the induced symplectic form ω_0 we have $\# \operatorname{Fix}(\phi_H^1) \geq 4$.

On the other hand, any translation is a symplectomorphism (homotopic to $id_{\mathbb{T}^2}$) with no fixed points.

Morse homology		
•00000000000000		

Morse inequalities

Let *M* be a manifold and $f \in C^{\infty}(M)$.

Definition

We say that $p \in M$ is a **critical point** of M if $(df)_p = 0$. We say that p is a **non-degenerate** critical point if the Hessian $(d^2f)_p$ is non-degenerate. We say that f is a **Morse function** if all its critical points are non-degenerate.

Theorem (Morse inequalities)

Let M be a compact manifold and f a Morse function on M. Then

$$\#\operatorname{Crit}(f) \geq \sum_{k=0}^{\dim M} b_k(M; \mathbb{F}).$$

▲日 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 → のへで

Morse homology	Floer homology	
000000000000000000000000000000000000000		

The Hessian and Morse index

When $(df)_p = 0$ we can define the Hessian as a bilinear map

$$\left(d^{2}f\right)_{p}\left(X_{p},Y_{p}\right)=X_{p}\cdot Y\cdot f$$

for vector fields X and Y.

Given local coordinates (x_1, \dots, x_n) it is represented by the Hessian matrix

$$\left[\frac{\partial^2 f}{\partial x_i x_j}(p)\right]_{i,j=1}^n$$

The signature of this quadratic form does not depend on the choice of local coordinates.

Definition

The **index** of p is the dimension of the largest linear subspace of T_pM on which $(d^2f)_p$ is negative-definite.

・ロン ・雪 と ・ ヨ と ・

Morse homology	Floer homology	
000000000000000000000000000000000000000		

The basic building blocks of Morse theory

Denote $M^{a} = f^{-1}(] - \infty, a[)$.

- **1** Between critical values the topology does not change;
- When we cross a critical point of index k the homotopy type changes by adding a k-cell.

Closed manifold $\xleftarrow{}$ CW complex

Critical point - Cell

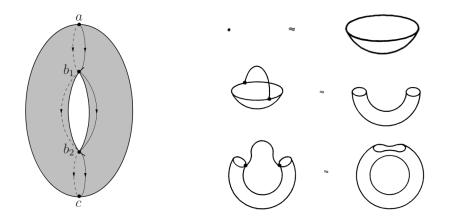
Index - Dimension

イロト イポト イヨト イヨト 二日

Introduction 00000000 Morse homology

Floer homology 000000000 Viterbo's theorem 000 References

Height function on the 2-torus



- イロト 4 回 ト 4 回 ト 4 回 ト 4 回 ト

Miguel Martins dos Santos Morse Homology and Floer Homology IST-UL

Morse homology		
00000000000000000		

Morse theory and CW homology

Denoting by C(M, f) the aforementioned CW complex:

$$H^{\text{sing}}_{\bullet}(M) \cong H^{\text{CW}}_{\bullet}(C(M, f)) \cong H_{\bullet}(\mathbb{Z} \cdot \text{Crit } f, \partial),$$

where Crit f is graded by index and ∂ is some differential. As a direct consequence we have the Morse inequalities

 $#\operatorname{Crit}_k f \geq b_k(M; \mathbb{F}),$

for any field \mathbb{F} .

Example

A Morse function on \mathbb{RP}^2 has at least three critical points.

Introduction 00000000	Morse homology 00000●00000000000	Floer homology 000000000	

Morse homology

Can we define an appropriate differential ∂ in a self-contained way? The basic idea is to count trajectories of the negative-gradient $-\nabla f$ between critical points — for this purpose we need a Riemannian metric g on M.

Given $p_\pm\in$ Crit f define $\mathcal{M}(p_-,p_+)$ as the set of curves $c\colon\mathbb{R} o M$ such that

$$\begin{cases} \dot{c}(s) +
abla f(c(s)) = 0, \ \lim_{s o \pm \infty} c(s) = p_{\pm}. \end{cases}$$

 \mathbb{R} action: $(\sigma \cdot c)(s) := c(s + \sigma)$

$$\mathcal{L}(p_-,p_+)=\mathcal{M}(p_-,p_+)/\mathbb{R}$$

Morse homology		
000000000000000000		

For $p \in \operatorname{Crit}_k f$ define

$$\partial p = \sum_{q \in \operatorname{Crit}_{k-1}f} |\mathcal{L}(p,q)|q, \mod 2$$

- **1** How can we guarantee that $\mathcal{L}(p,q)$ is a finite set?
- **2** How can we show that $\partial^2 = 0$?

э

《曰》《卽》《臣》《臣》

Introduction 00000000	Morse homology 000000000000000000000000000000000000	Floer homology 000000000	

We can identify

$$\mathcal{M}(p,q) = W^u(p) \cap W^s(q)$$

where

$$W^{u}(p) = \left\{ x \in M : \lim_{t \to -\infty} \phi^{t}_{-\nabla f}(x) = p \right\}$$
$$W^{s}(q) = \left\{ x \in M : \lim_{t \to +\infty} \phi^{t}_{-\nabla f}(x) = q \right\}$$

are the unstable/stable manifolds of $-\nabla f$.

By the stable manifold theorem, these are indeed manifolds (diffeomorphic to balls), of dimension

$$\dim W^u(p) = \operatorname{ind}_f(p),$$
$$\dim W^s(q) = n - \operatorname{ind}_f(q).$$

イロト イヨト イヨト

Introduction 00000000	Morse homology 00000000●00000000	Floer homology 000000000	

Morse-Smale condition:

$$W^{u}(p) \pitchfork W^{s}(q) \Rightarrow \dim \mathcal{M}(p,q) = \mathrm{ind}_{f}(p) - \mathrm{ind}_{f}(q)$$

If $p \neq q$:

$$\dim \mathcal{L}(p,q) = \operatorname{ind}_f(p) - \operatorname{ind}_f(q) - 1.$$

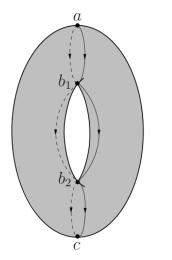
In particular, if $\operatorname{ind}_f(p) = \operatorname{ind}_f(q) + 1$ then $\mathcal{L}(p,q)$ is a 0-manifold. One can show that it is compact, and thus a finite set.

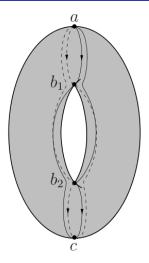
Theorem

Let M be a closed manifold. For a generic choice of f and/or g the Morse-Smale condition holds.

00000000000000000000000	

Fixing the 2-torus





▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQの

Miguel Martins dos Santos Morse Homology and Floer Homology

Morse homology	Floer homology	
00000000000000000		

Showing $\partial^2 = 0$: gluing

Given $p \in \operatorname{Crit}_{k+1} f$:

$$\partial^2 p = \sum_{r \in \operatorname{Crit}_{k-1} f} \left| \bigcup_{q \in \operatorname{Crit}_k f} \mathcal{L}(p,q) \times \mathcal{L}(q,r) \right| r.$$

It turns out that we can compactify $\mathcal{L}(p, r)$ as a 1-manifold with boundary:

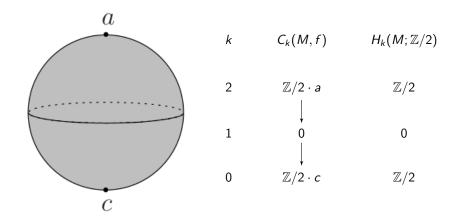
$$\overline{\mathcal{L}(p,r)} = \underbrace{\mathcal{L}(p,r)}_{\text{interior}} \bigcup \underbrace{\bigcup_{q \in \text{Crit}_k f} \mathcal{L}(p,q) \times \mathcal{L}(q,r)}_{\text{boundary}}$$

and $\partial^2=0$ since compact 1-manifolds are disjoint unions of arcs and circles.

<ロ> (四) (四) (三) (三) (三) (三)

Morse homology	Floer homology	
000000000000000		

Computations: round sphere



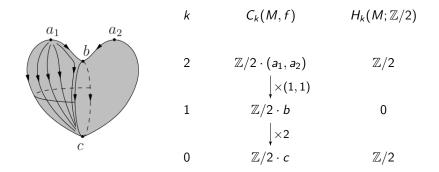
▲□▶▲圖▶▲≣▶▲≣▶ ≣ めんの

Miguel Martins dos Santos Morse Homology and Floer Homology

Floer homology

Viterbo's theorem 000 References

Computations: heart-shaped sphere



Introduction 00000000	Morse homology 000000000000000000000000000000000000	Floer homology 000000000	

Generalizations

Morse homology can be defined on a Hilbert manifold M with a Riemannian metric G and a Morse function f such that:

- **1** *f* is bounded from below;
- **2** The Morse index of critical points of f is finite;
- 3 The manifold is complete;
- **4** *f* satisfies the **Palais-Smale condition**: any sequence $x_n ∈ M$ s.t. $f(x_n)$ is bounded and $\lim |\nabla f(x_n)| = 0$ has a convergent subsequence;
- **5** (f, G) satisfies the Morse-Smale condition.

Theorem

$$H^{\operatorname{Morse}}_{\bullet}(M, f, G) \cong H^{\operatorname{sing}}_{\bullet}(M)$$

<ロト <問ト < 回ト < 回ト :

Morse homology	Floer homology	
000000000000000000000000000000000000000		

Application to Lagrangian mechanics

Consider a "quadratic Lagrangian" such as

$$egin{aligned} &L\colon S^1 imes TQ o \mathbb{R}\ &(t,q,v)\mapsto rac{1}{2}|v|^2-V(t,q). \end{aligned}$$

The critical points of the Lagrangian action functional

$$\mathcal{E}_L \colon W^{1,2}\left(S^1; M
ight) o \mathbb{R}$$

 $x \mapsto \int_{S^1} L(t, x(t), x'(t)) \, \mathrm{d}t$

are the 1-periodic solutions of the Euler-Lagrange equations

$$abla_q L(t, x(t), x'(t)) = rac{\mathrm{D}}{\mathrm{d}t}
abla_v L(t, x(t), x'(t)).$$

・ロト ・ 同ト ・ ヨト ・ ヨ

Introduction 0000000	Morse homology 000000000000000000000000000000000000	Floer homology 000000000	

For generic choices of potential V conditions 1–4 hold. For generic choices of Riemannian metric (uniformly equivalent to the $W^{1,2}$ -metric) it satisfies condition 5.

The Morse complex $MC(M, \mathcal{E}_L, G)$ is generated by 1-periodic solutions of E-L and the same homology as $H_{\bullet}^{sing}(\mathcal{L}M)$.

Theorem (Gromoll-Meyer)

If the sequence $b_k(\mathcal{L}M)$ is unbounded then M has infinite geometrically distinct closed geodesics.

Morse homology

Floer homology 000000000 Viterbo's theorem 000

イロト イポト イヨト イヨト

References

The actual Arnol'd conjecture

Conjecture (Arnol'd)

Let (M, ω) be a compact symplectic manifold, and let ϕ be an Hamiltonian symplectomorphism with non-degenerate fixed points. Then

$$\#\operatorname{Fix}(\phi) \geq \min_{f \in C^{\infty}(M) \text{ Morse}} \#\operatorname{Crit}(f).$$

For general Hamiltonian symplectomorphisms ϕ :

$$\#\operatorname{Fix}(\phi) \geq \min_{f \in C^{\infty}(M)} \#\operatorname{Crit}(f).$$

The Morse inequalities and the "weak" Arnol'd conjecture give a common lower bound for the above quantities.

Morse homology	Floer homology	
	•0000000	

Hamiltonian action functional

On $(\mathbb{R}^{2n}, \omega_0)$ we can define a functional

with critical points the 1-periodic solutions of Hamilton's equation $\mathcal{P}(H)$!

However (for example on $W^{1,2}(S^1; \mathbb{R}^{2n})$):

- Morse index may be infinite;
- The Palais-Smale condition may fail.

Introduction 00000000	Morse homology 00000000000000000	Floer homology ○●○○○○○○○	

Floer's approach

Study directly the space of "formal" negative L^2 -gradient trajectories of \mathcal{A}_H : solutions $u \in C^{\infty}(\mathbb{R} \times S^1; \mathbb{R}^{2n})$ of **Floer's equation**

$$\partial_s u(s,t) - J_0 \left(\partial_t u(s,t) - X_{H_t}(u(s,t)) \right) = 0,$$

where

$$J_0 = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}.$$

This is a first-order elliptic system of partial differential equations: a zero-order perturbation of the Cauchy-Riemann equation

$$\partial_s u - J_0 \partial_t u = 0.$$

Introduction 00000000	Morse homology 000000000000000000	Floer homology 00●000000	

For general symplectic manifolds Floer's equation is

$$\partial_s u(s,t) - J_{u(s,t)} \left(\partial_t u(s,t) - X_{H_t}(u(s,t)) \right) = 0,$$

where J is an almost-complex structure which is compatible with ω i.e.

$$J_p^2 = -\mathrm{id}_{T_p M}$$

and

$$\omega_{\rho}(v, J_{\rho}w) = g(v, w), \qquad v, w \in T_{\rho}M$$

defines a Riemannian metric.

・ロト ・ 同ト ・ ヨト ・ ヨト

Introduction 00000000	Morse homology 0000000000000000000	Floer homology 000●00000	

The trajectory spaces $\mathcal{M}(x_-, x_+)$ for $x_\pm \in \mathcal{P}(H)$ consist of solutions u of Floer's equation such that

 $\lim_{s\to\pm\infty}u(s,\cdot)=x_{\pm}$

in $C^{\infty}(S^1; M)$.

 \mathbb{R} -action: $(\sigma \cdot u)(s, t) := u(s + \sigma, t)$

Moduli spaces $\mathcal{L}(x_-, x_+) = \mathcal{M}(x_-, x_+)/\mathbb{R}$.

▲ロト▲郡ト▲臣ト▲臣ト 臣 のへで

Introduction	Morse homology	Floer homology	Viterbo's theorem	
00000000	000000000000000000	000000000	000	

Floer complex

Under the following topological assumption

$$\int_{S^2} u^* c_1(M) = 0, \qquad \forall u \in C^\infty(S^2; M)$$

we can associate to **contractible** 1-periodic solutions of Hamilton's equation their Conley-Zhender indices μ_{CZ} .

The Floer complex is then $FC(M, H, J; \mathbb{Z}/2) = (\mathbb{Z}/2 \cdot \mathcal{P}_0(H), \partial)$ with differential given by

$$\partial x = \sum_{\substack{y \in \mathcal{P}_0(H), \\ \mu_{\mathcal{C}Z}(y) = \mu_{\mathcal{C}Z}(x) - 1}} |\mathcal{L}(x, y)| y.$$

イロト イヨト イヨト

Morse homology	Floer homology	
	000000000	

Theorem

If (M, ω) is aspherical; i.e.

$$\int_{S^2} u^* \omega = 0, \qquad \qquad u \in C^\infty(S^2; M)$$

then $FC(M, H, J; \mathbb{Z}/2)$ is a well-defined chain complex for generic choices of H and J.

Floer homology is the homology $FH(M, H, J; \mathbb{Z}/2)$ of this complex.

크

Introduction 00000000	Morse homology 000000000000000000	Floer homology 000000●00	

Floer theory

The powerful machinery of Morse theory/Morse homology no longer works and needs to be replaced. Just proving that the Floer complex is well-defined requires powerful analytic tools, such as:

- Regularity for elliptic PDE Calderón-Zygmund inequality, freezing coefficients, elliptic bootstrapping;
- Bubbling-off analysis originating from Gromov compactness and using the removable singularity theorem;
- Differential geometry on Banach manifolds implicit function theorem, Sard theorem, Thom transversality;
- Functional analysis Banach open mapping theorem, Fredholm operators, Newton-Picard method;
- Continuation principles for "almost-holomorphic" maps Carleman similarity principle.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

・ロト ・四ト ・ヨト ・

Invariance of Floer homology on closed manifolds

Let (M, ω) be a closed symplectic manifold satisfying the topological assumptions.

Theorem

If (H_0, J_0) and (H_1, J_1) are data such that the Floer complex is well-defined then there is a canonical isomorphism

 $FH(M, H_0, J_0) \cong FH(M, H_1, J_1).$

We can thus define $H^{\text{Floer}}_{\bullet}(M) = FH(M, H, J)$.

Floer homology

Viterbo's theorem 000

イロト イヨト イヨト イヨト

References

Computation and the Arnol'd conjecture

Theorem

There are compatible a.c.s J and C^2 -small autonomous Hamiltonian H such that

$$FC_{\bullet}(M, H, J) \cong MC_{\bullet+n}(M, H, g).$$

In particular there is an isomorphism

 $H^{\operatorname{Floer}}_{\bullet}(M) \cong H^{\operatorname{sing}}_{\bullet+n}(M),$

and the "weak" Arnol'd conjecture holds.

Introduction	Morse homology	Floer homology	Viterbo's theorem	
00000000	00000000000000000	00000000	●00	

Legendre transformation



 Introduction
 Morse homology
 Floer homology
 Viterbo's theorem
 Reference

 00000000
 0000000000
 000000000
 0●0
 0

The bijection (*) induces a bijection between the generators of $FC(T^*Q, H, J)$ and $MC(\mathcal{L}Q, \mathcal{E}_L, G)$.

Theorem (Abbondandolo-Schwarz)

For generic compatible uniformly continuous J there is a chain isomorphism

 $FC_{\bullet}(T^*Q, H, J; \mathbb{Z}/2) \cong MC_{\bullet}(\mathcal{L}Q, \mathcal{E}_L, G; \mathbb{Z}/2).$

Theorem (Viterbo)

Let Q be a closed manifold. Then

$$H^{\operatorname{Floer}}_{ullet}(T^*Q;\mathbb{Z}/2)\cong H^{\operatorname{sing}}_{ullet}(\mathcal{L}Q;\mathbb{Z}/2).$$

If Q is spin then

$$H^{\operatorname{Floer}}_{\bullet}(T^*Q)\cong H^{\operatorname{sing}}_{\bullet}(\mathcal{L}Q).$$

э

< □ > < □ > < □ > < □ > < □ >

Morse homology	Floer homology	Viterbo's theorem	
		000	

Ongoing work: S^1 -equivariant version

 $\mathcal{L}Q$ is an **S**¹-space: $(\tau \cdot x)(t) := x(t + \tau)$. There is a suitable definition of S¹-equivariant Floer homology, due to Bourgeois and Oancea.

Is it the case that

$$FH^{S^1}_{\bullet}(T^*Q;\mathbb{Z}/2)\cong H^{S^1}_{\bullet}(\mathcal{L}Q;\mathbb{Z}/2)?$$

For \mathbb{Z} -coefficients is Q spin the appropriate condition?

・ロト ・伺 ト ・ ヨト ・ ヨ

- A. Abbondandolo, F. Schlenk. (2017). Floer homologies, with applications.
- A. Abbondandolo, M. Schwarz. (2006). On the Floer homology of cotangent bundles.
- M. Audin, M. Damian. (2014). Morse theory and Floer homology.
- F. Bourgeois, A. Oancea. (2017). *S*¹-equivariant symplectic homology and linearized contact homology.
- A. Floer. (1988). A relative Morse index for the symplectic action.
- A. Floer. (1988). The unregularized gradient flow of the symplectic action.
- K. Fukaya, K. Ono. (1999). Arnold conjecture and Gromov-Witten invariant.
- J. Milnor. (1963). Morse theory.