On an old conjecture of Almgren

Michael Goldman

CNRS, LJLL, Université de Paris

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The problem

For $g : \mathbb{R}^d \to \mathbb{R}$ convex and coercive, $\Phi : \mathbb{R}^d \to \mathbb{R}^+$ convex one-homogeneous i.e. $\Phi(\lambda x) = |\lambda| \Phi(x)$, with $\Phi > 0$ on $\mathbb{R}^d \setminus \{0\}$ and V > 0 we consider

Conjecture (Almgren): every minimizer is convex.

The problem

For $g : \mathbb{R}^d \to \mathbb{R}$ convex and coercive, $\Phi : \mathbb{R}^d \to \mathbb{R}^+$ convex one-homogeneous i.e. $\Phi(\lambda x) = |\lambda| \Phi(x)$, with $\Phi > 0$ on $\mathbb{R}^d \setminus \{0\}$ and V > 0 we consider

Conjecture (Almgren): every minimizer is convex.

To avoid some complications, we will assume g strictly convex.

This models equilibrium shapes of liquid drops/ crystals in the presence of an external field $(-\nabla g)$. See e.g. Herring

We also consider the problem without volume constraint:

$$\min_{E} \int_{\partial E} \Phi(\nu) d\mathcal{H}^{d-1} + \int_{E} g dx \qquad (P)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

which appears in Almgren-Taylor-Wang scheme for MCF.

Notation

We let

$$P_{\Phi}(E) = \int_{\partial E} \Phi(\nu) d\mathcal{H}^{d-1}.$$

When $\Phi = |\cdot|$ this is just the perimeter (denoted by P(E)). We also define

$$\mathcal{G}(E) = \int_E g dx.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 \implies we minimize $\mathcal{F}(E) = P_{\Phi}(E) + \mathcal{G}(E)$.

The case g = 0

Let

$$W = \{x \in \mathbb{R}^d : x \cdot \nu \leq \Phi(\nu) \quad \forall |\nu| = 1\}.$$

This is the Wulff shape associated to Φ .

Theorem (Wulff, Dinghas, Taylor, Fonseca, Müller)

Up to translation W is the unique minimizer of

$$\min_{|E|=|W|} P_{\Phi}(E).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

In particular: W is convex

Idea of proofs

Various proofs:

- symmetrization for $P_{\Phi} = P$: De Giorgi
- Brunn-Minkowski: Dinghas, Taylor, Fonseca
- Optimal transport: Gromov, Figalli-Maggi-Pratelli

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Second variation: Barbosa-Do Carmo

▶ ...

No 'direct' proof of convexity.

For V > 0, let t_V be such that $|\{g \le t_V\}| = V$ then the **convex** set $\{g \le t_V\}$ minimizes

$$\min_{E|=V} \int_E g dx$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Scaling

For $\lambda > 0$,

$$\mathcal{F}(\lambda E) = \lambda^{d-1} P_{\Phi}(E) + \lambda^d \int_E g(\lambda x) dx$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• for $V \ll 1$, $P_{\Phi}(E)$ dominates and $E \sim W$

• for $V \gg 1$, $\mathcal{G}(E)$ dominates and $E \sim \{g \leq t\}$.

Terminology

- If W is polyhedral we say that Φ is crystalline
- We say that $\Phi \in C^2(\mathbb{R}^d \setminus \{0\})$ is uniformly elliptic if

$$\langle D^2 \Phi(\nu) \xi, \xi \rangle \ge |\xi - \langle \nu, \xi \rangle \nu|^2 \qquad \forall |\xi| = |\nu| = 1.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In this case W is uniformly convex and C^2 .

General properties of minimizers

Recall: $\Phi \gtrsim |\cdot|$ convex one-homogeneous and g convex coercive, $\mathcal{F} = P_{\Phi} + \mathcal{G}$ with $P_{\Phi}(E) = \int_{\partial E} \Phi(\nu)$ and $\mathcal{G}(E) = \int_{E} g$

 $\min_{|E|=V} \mathcal{F}(E) \quad (P_V) \quad \text{and} \quad \min_{E} \mathcal{F}(E) \quad (P)$

- ► There always exist minimizers for (P_V) and (P). Every such minimizer is bounded.
- Every minimizer satisfies densities estimates $\Longrightarrow E \sim \mathring{E}$.
- P_Φ(F) ≥ P_Φ(E) if F ⊃ E (E is outward minimizing the perimeter).
- If $\Phi \in C^{3,\alpha}$ is uniformly elliptic and $g \in C^{1,\alpha}$, then $\exists \Sigma$ with $\mathcal{H}^{d-3}(\Sigma) = 0$ and such that $\partial E \setminus \Sigma$ is $C^{3,\alpha}$

Notation from differential geometry

For a smooth (d-1)-manifold $M \subset \mathbb{R}^d$,

- D is the gradient in \mathbb{R}^d and abla is the tangential gradient
- A is the second fondamental form
- $H^{\Phi} = \operatorname{div}_{M}(D\Phi(\nu)) = tr(D^{2}\Phi(\nu)A)$ is the anisotropic mean curvature

• if $\Phi = |\cdot|$, $H^{\Phi} = H$ is the classical mean curvature.

First and second variation for (P)

If E is a minimizer of (P) and Φ is uniformly elliptic then
1) First variation: H^Φ + g = 0 on ∂E\Σ
2) Second variation: for φ ∈ C¹_c(∂E\Σ),

$$\int_{\partial E \setminus \Sigma} \langle D^2 \Phi(\nu) \nabla \varphi, \nabla \varphi \rangle - tr(D^2 \Phi(\nu) A^2) \varphi^2 + D_{\nu} g \varphi^2 \ge 0$$
(1)

If *E* satisfies (1) for every $\varphi \in C_c^1(\partial E \setminus \Sigma)$, we say that it is **stable**.

Rk: if $\Phi = |\cdot|$, then (1) reads:

$$\int_{\partial E \setminus \Sigma} |\nabla \varphi|^2 - tr(A^2)\varphi^2 + D_{\nu}g\,\varphi^2 \ge 0.$$

First and second variation for (P_V)

If *E* is a minimizer of (P_V) and Φ is uniformly elliptic then 1) First variation: $\exists \mu \in \mathbb{R}$ s.t. $H^{\Phi} + g = \mu$ on $\partial E \setminus \Sigma$ 2) Second variation: for $\varphi \in C_c^1(\partial E \setminus \Sigma)$ with $\int_{\partial E} \varphi = 0$,

$$\int_{\partial E \setminus \Sigma} \langle D^2 \Phi(\nu) \nabla \varphi, \nabla \varphi \rangle - tr(D^2 \Phi(\nu) A^2) \varphi^2 + D_{\nu} g \varphi^2 \ge 0$$

A first remark

If E is minimizing (P) or (P_V), $P_{\Phi}(F) \ge P_{\Phi}(E)$ if $F \supset E \Longrightarrow E$ is mean convex i.e. $H^{\Phi} \ge 0$.

A second (important) remark

If *E* is a minimizer of (P_V) with **disconnected** boundary, then at least one connected component of ∂E is **stable**.

Otherwise $\exists \varphi_1, \varphi_2$ with $\int_{\partial E_1} \varphi_1 = -\int_{\partial E_2} \varphi_2 > 0$ s.t. $\varphi = \varphi_1 + \varphi_2$ satisfies

$$\int_{\partial E \setminus \Sigma} \langle D^2 \Phi(\nu) \nabla \varphi, \nabla \varphi \rangle - tr(D^2 \Phi(\nu) A^2) \varphi^2 + D_{\nu} g \varphi^2 < 0$$

Convexity for d = 2

Theorem (McCann, Okikiolu)

If d = 2, for every g, Φ and V > 0, every minimizer of (P_V) can be decomposed as $E = \bigcup_{i=1}^{N} E_i$ where $|E_i| = m_i$ with $m_i \neq m_j$ and E_i is **convex** and is the **unique** minimizer of

$$\min_{K|=m_i, K \text{ convex}} \mathcal{F}(E).$$

Idea of proof: since *E* mean convex $\implies E_i$ convex. Uniqueness follows from OT argument (displacement convexity)

The case $V \ll 1$

Theorem (Figalli-Maggi+Figalli-Zhang)

Assume $V \ll 1$ then

- i) *E* is connected and $E \sim W$. In particular if d = 2 and $V \ll 1 \implies E$ convex and unique (cf McCann).
- ii) if Φ is crystalline $\implies E$ convex polytope with sides parallel to W.

iii)
$$g \in C^1$$
, $\Phi \in C^{2,\alpha}$ unif. elliptic $\Longrightarrow E$ is convex.

Rk: Result more quantitative. Proof relies on quant. isoper. inequality. Quantitative version of iii) uses second variation argument inspired by Barbosa-Do Carmo.

The case $V \gg 1$

Theorem (Caselles-Chambolle)

 $\forall \ \Phi \ \text{and} \ g, \ \text{if} \ V \gg 1$ the minimizer of

$$\min_{E|=V} \int_{\partial E} \Phi(\nu) + \int_{E} g \qquad (P_V$$

is unique and convex.

Rk: this Theorem is not explicitely stated.

Idea of proof

• for every $t \in \mathbb{R}$, every minimizer E_t of

$$\min_{E} P_{\Phi}(E) + \int_{E} (g - t) \qquad (P^t)$$

is a minimizer of (P_V) for $V = |E_t|$.

If u is the local minimizer of

$$\int \Phi(Du) + \frac{1}{2} \int (u-g)^2,$$

then it is **unique** and **convex**. Convexity follows from Alvarez-Lasry-Lions.

▶ For every $t \in \mathbb{R}$, $E_t = \{u < t\}$ is the unique solution of (P^t) .

 \implies minimizer of (P_V) is unique and convex for $V > |\{\min u\}|$.

- ► Observe that the proof of Caselles-Chambolle works in the regime where (P_V) ~→ (P).
- Also proves that solutions of (P) are generically unique and convex.

The case $V \sim 1$

Theorem (G.-De Philippis)

If $\Phi \in C^{3,\alpha}$ uniformly elliptic and $g \in C^{1,\alpha}$ then for every minimizer E of (P_V) , ∂E is **connected**.

Combining with mean convexity (cf McCann)

Corollary

If d = 2, $\Phi \in C^{3,\alpha}$ uniformly elliptic and $g \in C^{1,\alpha}$, then E is convex and unique.

Also

Theorem (G.-De Philippis)

If $\Phi \in C^{3,\alpha}$ uniformly elliptic and $g \in C^{1,\alpha}$ then every minimizer of (P) is convex.

Idea of the proof:

The idea is to consider the two-point function

$$S(x,y) = \langle \nu(x), y - x \rangle$$
 $x \in \partial E \setminus \Sigma, y \in \partial E$

and then

$$S(x) = \sup_{\partial E} S(x, y) = \sup_{\partial E} \langle \nu(x), y - x \rangle.$$

We have $S \ge 0$ and $S \equiv 0 \iff E$ convex.

Similar (but different) two-point functions introduced by Andrews to show preservation of interior ball condition by MCF, see also solution of Lawson's conjecture by Brendle.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Also reminiscent of doubling of the variable trick for viscosity solutions.

The Jacobi operator

Let

$$L_{\Phi}\varphi = \operatorname{div}_{\partial E}(D^{2}\Phi(\nu)\nabla\varphi) + \operatorname{Tr}(D^{2}\Phi(\nu)A^{2})\varphi$$

so that stability rewrites as

$$\int_{\partial E \setminus \Sigma} (-L_{\Phi}\varphi)\varphi + D_{\nu}g\varphi^2 \geq 0$$

<u>Aim</u>: prove that for minimizers of (P) or (P_V) , S gives a negative variation i.e.

$$\int_{\partial E \setminus \Sigma} (-L_{\Phi}S)S + D_{\nu}gS^2 < 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

unless $S \equiv 0$.

Main Lemma

Recall:
$$H^{\Phi} = \operatorname{div}_{\partial E}(D\Phi(\nu)) = tr(D^{2}\Phi(\nu)A).$$

Lemma

If E is a minimizer of (P) or (P_V) then for $\bar{x} \in \partial E \setminus \Sigma$ if $S(\bar{x}) = S(\bar{x}, \bar{y}), \ \bar{y} \in \partial E \setminus \Sigma$ and

$$L_{\Phi}S(\bar{x}) \ge H^{\Phi}(\bar{x}) - H^{\Phi}(\bar{y}) + \langle \nabla H^{\Phi}(\bar{x}), \bar{y} - \bar{x} \rangle$$
(2)

in the viscosity sense.

Rk: minimality only used to get $\bar{y} \in \partial E \setminus \Sigma$. Under this condition (2) always holds.

Idea of proof

For $\varphi \in C^2(\partial E \setminus \Sigma)$ s.t. $\varphi(x) - S(x) \ge \varphi(\bar{x}) - S(\bar{x})$, the function $G(x, y) = \varphi(x) - S(x, y)$

is minimal at (\bar{x}, \bar{y}) . Indeed, since $S(x) = \sup_{y} S(x, y)$,

$$egin{aligned} G(x,y) &= arphi(x) - S(x,y) \geq arphi(x) - S(x) \ &\geq arphi(ar{x}) - S(ar{x}) = arphi(ar{x}) - S(ar{x},ar{y}) = G(ar{x},ar{y}) \end{aligned}$$

Use 1st and 2nd order optimality conditions i.e. $\nabla_x G(\bar{x}, \bar{y}) = \nabla_y G(\bar{x}, \bar{y}) = 0$ and $\nabla^2_{x,y} G(\bar{x}, \bar{y}) \ge 0$ and in particular

$$(
abla_x^i+
abla_y^i)(
abla_x^i+
abla_y^i)G(ar x,ar y)\geq 0.$$

From Lemma to negative variation

Recall: E critical point $\Longrightarrow H^{\Phi} + g = \mu$ for $\mu \in \mathbb{R}$. Differentiating we get $\nabla H^{\Phi}(\bar{x}) = -\nabla g(\bar{x})$, Lemma \Longrightarrow

$$egin{aligned} & L_{\Phi}S(ar{x}) \geq H^{\Phi}(ar{x}) - H^{\Phi}(ar{y}) + \langle
abla H^{\Phi}(ar{x}), ar{y} - ar{x}
angle \ &= g(ar{y}) - g(ar{x}) - \langle
abla g(ar{x}), ar{y} - ar{x}
angle \end{aligned}$$

Since $D_{\nu}g(\bar{x})S(\bar{x}) = D_{\nu}g(\bar{x})\langle \nu, \bar{y} - \bar{x}
angle$ and $Dg = \nabla g + (D_{\nu}g)\nu$,

$$L_\Phi S(ar x) - D_
u g(ar x) S(ar x) \geq g(ar y) - g(ar x) - \langle Dg(ar x), ar y - ar x
angle \geq 0$$

where last line used convexity of g.

Multiply by (-S) and integrate to get negative second variation.

Conclusion of the proof:

- If E minimizes (P) then E is stable and we can use S as test for the stability to get S ≡ 0 ⇒ E convex.
- ▶ If *E* minimizes (P_V), *E* must not be stable and *S* is not admissible (since $\int_{\partial E} S \neq 0$). However, if ∂E disconnected, one of its component must be stable $\implies E$ is convex $\implies \partial E$ is connected.

Rk: Minimality just used for regularity issues. If E is a smooth stable critical point then same proof applies.

Question about uniqueness

Question: For d = 2 and for $V \gg 1$, minimizers are unique, is it the case for every V > 0?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If YES then for Φ uniformly elliptic maybe convexity can be obtained by a continuity argument.

Some related problems:

Sessile drops (Taylor-Almgren): $g = x_d$, $\sigma > 0$

$$\min_{|E|=V,E\subset\mathbb{R}^d_+}\int_{\partial E\cap\mathbb{R}^d_+}\Phi(\nu)d\mathcal{H}^{d-1}+\int_E x_ddx+\sigma\mathcal{H}^{d-1}(\partial E\cap\{x_d=0\})$$

▶ Isoperimetric problem inside convex bodies: Ω convex, $g = I_{\Omega}$

$$\min_{|E|=V,E\subset\Omega}P_{\Phi}(E)$$

If Ω bounded then $V \ll 1$ minimizer = Wulff shape, if $V \gg 1$ minimizer is unique and convex (Alter-Caselles-Chambolle).

Relative isoperimetric problem inside convex bodies: Ω convex

$$\min_{E|=V}\int_{\partial E\cap\Omega}\Phi(\nu)d\mathcal{H}^{d-1}.$$

If Ω bounded $\Longrightarrow \partial E$ connected (Sternberg-Zumbrun via stability). Conjecture: $\partial E \cap \Omega$ smooth (see S-Z, Jerison).

Semi-linear elliptic PDE

For $\Omega_0\subset\Omega_1$ convex sets, two-point (or more) functions have been used in Korevaar, Caffarelli-Spruck ... to study level-set convexity of solutions to

$$\begin{cases} \Delta u = f(u) & \text{in } \Omega_1 \backslash \Omega_0 \\ u = 1 & \text{on } \partial \Omega_0 \\ u = 0 & \text{on } \partial \Omega_1. \end{cases}$$
(3)

In particular, Weinkove used $S(x, y) = \langle Du(x) - Du(y), x - y \rangle$ restricted to $\{u(x) = u(y)\}$.

In general, by Hamel-Nadirashvili-Sire, solutions of (3) are not level-set convex but

Conjecture : if u is a solution of (3) which is stable i.e.

$$\int_{\Omega_1\setminus\Omega_0} |
abla arphi|^2 + f'(u) arphi^2 \geq 0 \qquad orall arphi \in C^1_c(\Omega_1\setminus\Omega_0)$$

then *u* is **level-set convex** (see Cabré-Chanillo).

Thank you for your attention.