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The problem

For g : Rd → R convex and coercive, Φ : Rd → R+ convex
one-homogeneous i.e. Φ(λx) = |λ|Φ(x), with Φ > 0 on Rd\{0}
and V > 0 we consider

min
|E |=V

∫
∂E

Φ(ν)dHd−1 +

∫
E
gdx (PV )

E

ν

Conjecture (Almgren): every minimizer is convex.
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To avoid some complications, we will assume g strictly convex.



Motivation and variant

This models equilibrium shapes of liquid drops/ crystals in the
presence of an external field (−∇g). See e.g. Herring

We also consider the problem without volume constraint:

min
E

∫
∂E

Φ(ν)dHd−1 +

∫
E
gdx (P)

which appears in Almgren-Taylor-Wang scheme for MCF.



Notation

We let

PΦ(E ) =

∫
∂E

Φ(ν)dHd−1.

When Φ = | · | this is just the perimeter (denoted by P(E )). We
also define

G(E ) =

∫
E
gdx .

=⇒ we minimize F(E ) = PΦ(E ) + G(E ).



The case g = 0

Let
W = {x ∈ Rd : x · ν ≤ Φ(ν) ∀|ν| = 1}.

This is the Wulff shape associated to Φ.

Theorem (Wulff, Dinghas,Taylor,Fonseca,Müller)

Up to translation W is the unique minimizer of

min
|E |=|W |

PΦ(E ).

In particular: W is convex



Idea of proofs

Various proofs:

I symmetrization for PΦ = P: De Giorgi

I Brunn-Minkowski: Dinghas, Taylor, Fonseca

I Optimal transport: Gromov, Figalli-Maggi-Pratelli

I Second variation: Barbosa-Do Carmo

I ...

No ’direct’ proof of convexity.



The case Φ = 0

For V > 0, let tV be such that |{g ≤ tV }| = V then the convex
set {g ≤ tV } minimizes

min
|E |=V

∫
E
gdx



Scaling

For λ > 0,

F(λE ) = λd−1PΦ(E ) + λd
∫
E
g(λx)dx

I for V � 1, PΦ(E ) dominates and E ∼W

I for V � 1, G(E ) dominates and E ∼ {g ≤ t}.



Terminology

I If W is polyhedral we say that Φ is crystalline

I We say that Φ ∈ C 2(Rd\{0}) is uniformly elliptic if

〈D2Φ(ν)ξ, ξ〉 ≥ |ξ − 〈ν, ξ〉ν|2 ∀|ξ| = |ν| = 1.

In this case W is uniformly convex and C 2.



General properties of minimizers

Recall: Φ & | · | convex one-homogeneous and g convex coercive,
F = PΦ + G with PΦ(E ) =

∫
∂E Φ(ν) and G(E ) =

∫
E g

min
|E |=V

F(E ) (PV ) and min
E
F(E ) (P)

I There always exist minimizers for (PV ) and (P). Every such
minimizer is bounded.

I Every minimizer satisfies densities estimates =⇒ E ∼ E̊ .

I PΦ(F ) ≥ PΦ(E ) if F ⊃ E (E is outward minimizing the
perimeter).

I If Φ ∈ C 3,α is uniformly elliptic and g ∈ C 1,α, then ∃ Σ with
Hd−3(Σ) = 0 and such that ∂E\Σ is C 3,α



Notation from differential geometry

For a smooth (d − 1)−manifold M ⊂ Rd ,

I D is the gradient in Rd and ∇ is the tangential gradient

I A is the second fondamental form

I HΦ = divM(DΦ(ν)) = tr(D2Φ(ν)A) is the anisotropic mean
curvature

I if Φ = | · |, HΦ = H is the classical mean curvature.



First and second variation for (P)

If E is a minimizer of (P) and Φ is uniformly elliptic then

1) First variation: HΦ + g = 0 on ∂E\Σ
2) Second variation: for ϕ ∈ C 1

c (∂E\Σ),∫
∂E\Σ
〈D2Φ(ν)∇ϕ,∇ϕ〉−tr(D2Φ(ν)A2)ϕ2+Dνg ϕ

2 ≥ 0 (1)

If E satisfies (1) for every ϕ ∈ C 1
c (∂E\Σ), we say that it is stable.

Rk: if Φ = | · |, then (1) reads:∫
∂E\Σ

|∇ϕ|2 − tr(A2)ϕ2 + Dνg ϕ
2 ≥ 0.



First and second variation for (PV )

If E is a minimizer of (PV ) and Φ is uniformly elliptic then

1) First variation: ∃µ ∈ R s.t. HΦ + g = µ on ∂E\Σ
2) Second variation: for ϕ ∈ C 1

c (∂E\Σ) with
∫
∂E ϕ = 0,∫

∂E\Σ
〈D2Φ(ν)∇ϕ,∇ϕ〉 − tr(D2Φ(ν)A2)ϕ2 + Dνg ϕ

2 ≥ 0



A first remark

If E is minimizing (P) or (PV ),

PΦ(F ) ≥ PΦ(E ) if F ⊃ E =⇒ E is mean convex i.e. HΦ ≥ 0.



A second (important) remark

If E is a minimizer of (PV ) with disconnected boundary, then at
least one connected component of ∂E is stable.

ϕ1

E2

ϕ2

E1

Otherwise ∃ ϕ1, ϕ2 with
∫
∂E1

ϕ1 = −
∫
∂E2

ϕ2 > 0 s.t. ϕ = ϕ1 + ϕ2

satisfies∫
∂E\Σ
〈D2Φ(ν)∇ϕ,∇ϕ〉 − tr(D2Φ(ν)A2)ϕ2 + Dνg ϕ

2 < 0



Convexity for d = 2

Theorem (McCann, Okikiolu)

If d = 2, for every g, Φ and V > 0, every minimizer of (PV ) can
be decomposed as E = ∪Ni=1Ei where |Ei | = mi with mi 6= mj and
Ei is convex and is the unique minimizer of

min
|K |=mi , K convex

F(E ).

Idea of proof: since E mean convex =⇒ Ei convex. Uniqueness
follows from OT argument (displacement convexity)



The case V � 1

Theorem (Figalli-Maggi+Figalli-Zhang)

Assume V � 1 then

i) E is connected and E ∼W. In particular if d = 2 and
V � 1 =⇒ E convex and unique (cf McCann).

ii) if Φ is crystalline =⇒ E convex polytope with sides parallel to
W .

iii) g ∈ C 1, Φ ∈ C 2,α unif. elliptic =⇒ E is convex.

Rk: Result more quantitative. Proof relies on quant. isoper.
inequality. Quantitative version of iii) uses second variation
argument inspired by Barbosa-Do Carmo.



The case V � 1

Theorem (Caselles-Chambolle)

∀ Φ and g, if V � 1 the minimizer of

min
|E |=V

∫
∂E

Φ(ν) +

∫
E
g (PV )

is unique and convex.

Rk: this Theorem is not explicitely stated.



Idea of proof

I for every t ∈ R, every minimizer Et of

min
E

PΦ(E ) +

∫
E

(g − t) (Pt)

is a minimizer of (PV ) for V = |Et |.
I If u is the local minimizer of∫

Φ(Du) +
1

2

∫
(u − g)2,

then it is unique and convex. Convexity follows from
Alvarez-Lasry-Lions.

I For every t ∈ R, Et = {u < t} is the unique solution of (Pt).

=⇒ minimizer of (PV ) is unique and convex for V > |{min u}|.



I Observe that the proof of Caselles-Chambolle works in the
regime where (PV ) (P).

I Also proves that solutions of (P) are generically unique and
convex.



The case V ∼ 1

Theorem (G.-De Philippis)

If Φ ∈ C 3,α uniformly elliptic and g ∈ C 1,α then for every
minimizer E of (PV ), ∂E is connected.

Combining with mean convexity (cf McCann)

Corollary

If d = 2, Φ ∈ C 3,α uniformly elliptic and g ∈ C 1,α, then E is
convex and unique.

Also

Theorem (G.-De Philippis)

If Φ ∈ C 3,α uniformly elliptic and g ∈ C 1,α then every minimizer of
(P) is convex.



Idea of the proof:

The idea is to consider the two-point function

S(x , y) = 〈ν(x), y − x〉 x ∈ ∂E\Σ, y ∈ ∂E

and then
S(x) = sup

∂E
S(x , y) = sup

∂E
〈ν(x), y − x〉.

We have S ≥ 0 and S ≡ 0⇐⇒ E convex.

x

y



Similar (but different) two-point functions introduced by Andrews
to show preservation of interior ball condition by MCF, see also
solution of Lawson’s conjecture by Brendle.

Also reminiscent of doubling of the variable trick for viscosity
solutions.



The Jacobi operator

Let
LΦϕ = div∂E (D2Φ(ν)∇ϕ) + Tr(D2Φ(ν)A2)ϕ

so that stability rewrites as∫
∂E\Σ

(−LΦϕ)ϕ+ Dνgϕ
2 ≥ 0

Aim: prove that for minimizers of (P) or (PV ), S gives a negative
variation i.e. ∫

∂E\Σ
(−LΦS)S + DνgS

2 < 0

unless S ≡ 0.



Main Lemma

Recall: HΦ = div∂E (DΦ(ν)) = tr(D2Φ(ν)A).

Lemma

If E is a minimizer of (P) or (PV ) then for x̄ ∈ ∂E\Σ if
S(x̄) = S(x̄ , ȳ), ȳ ∈ ∂E\Σ and

LΦS(x̄) ≥ HΦ(x̄)− HΦ(ȳ) + 〈∇HΦ(x̄), ȳ − x̄〉 (2)

in the viscosity sense.

Rk: minimality only used to get ȳ ∈ ∂E\Σ. Under this condition
(2) always holds.



Idea of proof

For ϕ ∈ C 2(∂E\Σ) s.t. ϕ(x)− S(x) ≥ ϕ(x̄)− S(x̄), the function

G (x , y) = ϕ(x)− S(x , y)

is minimal at (x̄ , ȳ). Indeed, since S(x) = supy S(x , y),

G (x , y) = ϕ(x)− S(x , y) ≥ ϕ(x)− S(x)

≥ ϕ(x̄)− S(x̄) = ϕ(x̄)− S(x̄ , ȳ) = G (x̄ , ȳ)

Use 1st and 2nd order optimality conditions i.e.
∇xG (x̄ , ȳ) = ∇yG (x̄ , ȳ) = 0 and ∇2

x ,yG (x̄ , ȳ) ≥ 0 and in
particular

(∇i
x +∇i

y )(∇i
x +∇i

y )G (x̄ , ȳ) ≥ 0.



From Lemma to negative variation

Recall: E critical point =⇒ HΦ + g = µ for µ ∈ R.
Differentiating we get ∇HΦ(x̄) = −∇g(x̄), Lemma =⇒

LΦS(x̄) ≥ HΦ(x̄)− HΦ(ȳ) + 〈∇HΦ(x̄), ȳ − x̄〉
= g(ȳ)− g(x̄)− 〈∇g(x̄), ȳ − x̄〉

Since Dνg(x̄)S(x̄) = Dνg(x̄)〈ν, ȳ − x̄〉 and Dg = ∇g + (Dνg)ν,

LΦS(x̄)− Dνg(x̄)S(x̄) ≥ g(ȳ)− g(x̄)− 〈Dg(x̄), ȳ − x̄〉 ≥ 0

where last line used convexity of g .

Multiply by (−S) and integrate to get negative second variation.



Conclusion of the proof:

I If E minimizes (P) then E is stable and we can use S as test
for the stability to get S ≡ 0 =⇒ E convex.

I If E minimizes (PV ), E must not be stable and S is not
admissible (since

∫
∂E S 6= 0). However, if ∂E disconnected,

one of its component must be stable =⇒ E is convex =⇒ ∂E
is connected.

Rk: Minimality just used for regularity issues. If E is a smooth
stable critical point then same proof applies.



Question about uniqueness

Question: For d = 2 and for V � 1, minimizers are unique, is it
the case for every V > 0?

If YES then for Φ uniformly elliptic maybe convexity can be
obtained by a continuity argument.



Some related problems:

I Sessile drops (Taylor-Almgren): g = xd , σ > 0

min
|E |=V ,E⊂Rd

+

∫
∂E∩Rd

+

Φ(ν)dHd−1+

∫
E
xddx+σHd−1(∂E∩{xd = 0})

I Isoperimetric problem inside convex bodies: Ω convex, g = IΩ

min
|E |=V ,E⊂Ω

PΦ(E )

If Ω bounded then V � 1 minimizer = Wulff shape, if V � 1
minimizer is unique and convex (Alter-Caselles-Chambolle).

I Relative isoperimetric problem inside convex bodies: Ω convex

min
|E |=V

∫
∂E∩Ω

Φ(ν)dHd−1.

If Ω bounded =⇒ ∂E connected (Sternberg-Zumbrun via
stability). Conjecture: ∂E ∩ Ω smooth (see S-Z, Jerison).



Semi-linear elliptic PDE

For Ω0 ⊂ Ω1 convex sets, two-point (or more) functions have been
used in Korevaar, Caffarelli-Spruck ... to study level-set convexity
of solutions to 

∆u = f (u) in Ω1\Ω0

u = 1 on ∂Ω0

u = 0 on ∂Ω1.

(3)

In particular, Weinkove used S(x , y) = 〈Du(x)− Du(y), x − y〉
restricted to {u(x) = u(y)}.
In general, by Hamel-Nadirashvili-Sire, solutions of (3) are not
level-set convex but
Conjecture : if u is a solution of (3) which is stable i.e.∫

Ω1\Ω0

|∇ϕ|2 + f ′(u)ϕ2 ≥ 0 ∀ϕ ∈ C 1
c (Ω1\Ω0)

then u is level-set convex (see Cabré-Chanillo).



Thank you for your attention.


