The Rule 54:
Completely Solvable Statistical Mechanics Model of Deterministic Interacting Dynamics

Tomaž Prosen

Faculty of mathematics and physics, University of Ljubljana, Slovenia

U Lisbon, Zoom Seminar, 22 April 2020

- Can matrix product ansatz be useful for encoding (time-dependent, or steady) states of deterministic reversible interacting systems?
- Find minimal interacting deterministic $(1+1) d$ model about which we can 'know everything' (without approximations and assumptions)
- Check if the model has generic physical (say transport) properties
- Can matrix product ansatz be useful for encoding (time-dependent, or steady) states of deterministic reversible interacting systems?
- Find minimal interacting deterministic $(1+1) d$ model about which we can 'know everything' (without approximations and assumptions)
- Check if the model has generic physical (say transport) properties
- Can matrix product ansatz be useful for encoding (time-dependent, or steady) states of deterministic reversible interacting systems?
- Find minimal interacting deterministic $(1+1)$ d model about which we can 'know everything' (without approximations and assumptions)
- Check if the model has generic physical (say transport) properties
- Can matrix product ansatz be useful for encoding (time-dependent, or steady) states of deterministic reversible interacting systems?
- Find minimal interacting deterministic $(1+1) \mathrm{d}$ model about which we can 'know everything' (without approximations and assumptions)
- Check if the model has generic physical (say transport) properties

Outline

(3) The model: Integrable reversible interacting cellular automaton (Rule 54) A.Bobenko, M.Bordemann, C.Gunn, U.Pinkall, Commun. Math. Phys. 158, 127 (1993)
(2) Rule 54 chain between stochastic soliton baths - steady state problem TP and C. Mejia-Monasterio, J. Phys. A 49, 185003 (2016) see also: A. Inoue, S. Takesue, arXiv:1806.07099
(3) Matrix product form of eigenvectors and diagionalization of Liouvillian TP and B. Buča, J. Phys. A 50, 395002 (2017)
(Explicit matrix product form of time-dependent observables and analytical evaluation of dynamic structure factor, as well as the solution of inhomogeneous quench problem K. Klobas, M. Medenjak, TP, M. Vanicat, Commun. Math. Phys. 371, 651 (2019)
(3) Exact large deviations for space-time extensive obervables in terms of an inhomogeneous martrix product ansatz
B. Buča, J. P. Garrahan, TP, M. Vanicat, Phys. Rev. E 100, 020103 (2019)

- Time-states: Exact multi-time correlation functions in terms of matrix product ansatz
K. Klobas, M. Vanicat, J. P. Garrahan, TP, arXiv:1912.09742; K. Klobas, TP, arXiv:2004.01671

Outline

(1) The model: Integrable reversible interacting cellular automaton (Rule 54) A.Bobenko, M.Bordemann, C.Gunn, U.Pinkall, Commun. Math. Phys. 158, 127 (1993)
(3) Rule 54 chain between stochastic soliton baths - steady state problem TP and C. Mejia-Monasterio, J. Phys. A 49, 185003 (2016) see also: A. Inoue, S. Takesue, arXiv:1806.07099
(3) Matrix product form of eigenvectors and diagionalization of Liouvillian TP and B. Buča, J. Phys. A 50, 395002 (2017)
(Explicit matrix product form of time-dependent observables and analytical evaluation of dynamic structure factor, as well as the solution of inhomogeneous quench problem K. Klobas, M. Medenjak, TP, M. Vanicat, Commun. Math. Phys. 371, 651 (2019)
(6) Exact large deviations for space-time extensive obervables in terms of an inhomogeneous martrix product ansatz
B. Buča, J. P. Garrahan, TP, M. Varicat, Phys. Rev. E 100, 020103 (2019)

- Time-states: Exact multi-time correlation functions in terms of matrix product ansatz K. Klobas, M. Vanicat, J. P. Garrahan, TP, arXiv:1912.09742; K. Klobas, TP, arXiv:2004.01671

Outline

(1) The model: Integrable reversible interacting cellular automaton (Rule 54) A.Bobenko, M.Bordemann, C.Gunn, U.Pinkall, Commun. Math. Phys. 158, 127 (1993)
(2) Rule 54 chain between stochastic soliton baths - steady state problem TP and C. Mejia-Monasterio, J. Phys. A 49, 185003 (2016) see also: A. Inoue, S. Takesue, arXiv:1806.07099
(3) Matrix product form of eigenvectors and diagionalization of Liouvillian TP and B. Buča, J. Phys. A 50, 395002 (2017)
(Explicit matrix product form of time-dependent observables and analytical evaluation of dynamic structure factor, as well as the solution of inhomogeneous quench problem K. Klobas, M. Medenjak, TP, M. Vanicat, Commun. Math. Phys 371, 651 (2019)
(3) Exact large deviations for space-time extensive obervables in terms of an inhomogeneous martrix product ansatz
B. Buča, J. P. Garrahan, TP, M. Vanicat, Phys. Rev. E 100, 020103 (2019)
(- Time-states: Exact multi-time correlation functions in terms of matrix product ansatz K. Klobas, M. Vanicat, J. P. Garrahan, TP, arXiv:1912.09742;

Outline

(1) The model: Integrable reversible interacting cellular automaton (Rule 54) A.Bobenko, M.Bordemann, C.Gunn, U.Pinkall, Commun. Math. Phys. 158, 127 (1993)
(2) Rule 54 chain between stochastic soliton baths - steady state problem TP and C. Mejia-Monasterio, J. Phys. A 49, 185003 (2016) see also: A. Inoue, S. Takesue, arXiv:1806.07099
(3) Matrix product form of eigenvectors and diagionalization of Liouvillian TP and B. Buča, J. Phys. A 50, 395002 (2017)
(-) Explicit matrix product form of time-dependent observables and analytical evaluation of dynamic structure factor, as well as the solution of inhomogeneous quench problem K. Klobas, M. Medenjak, TP, M. Vanicat, Commun. Math. Phys 371, 651 (2019)
(3) Fxact large deviations for space-time extensive obervables in terms of an inhomogeneous martrix product ansatz
B. Buča, J. P. Garrahan, TP, M. Vanicat, Phys. Rev. E 100, 020103 (2019)
(5) Time-states: Exact multi-time correlation functions in terms of matrix product ansatz K. Klobas, M. Vanicat, J. P. Garrahan, TP, arXiv:1912.09742;

Outline

(1) The model: Integrable reversible interacting cellular automaton (Rule 54) A.Bobenko, M.Bordemann, C.Gunn, U.Pinkall, Commun. Math. Phys. 158, 127 (1993)
(2) Rule 54 chain between stochastic soliton baths - steady state problem TP and C. Mejia-Monasterio, J. Phys. A 49, 185003 (2016) see also: A. Inoue, S. Takesue, arXiv:1806.07099
(3) Matrix product form of eigenvectors and diagionalization of Liouvillian TP and B. Buča, J. Phys. A 50, 395002 (2017)
(a) Explicit matrix product form of time-dependent observables and analytical evaluation of dynamic structure factor, as well as the solution of inhomogeneous quench problem K. Klobas, M. Medenjak, TP, M. Vanicat, Commun. Math. Phys. 371, 651 (2019)
(5) Exact large deviations for space-time extensive obervables in terms of an inhomogeneous martrix product ansatz
B. Buča, J. P. Garrahan, TP, M. Vanicat, Phys. Rev. E 100, 020103 (2019)

(6) Time-states: Exact multi-time correlation functions in terms of matrix

 product ansatz K. Klobas, M. Vanicat, J. P. Garrahan, TP, arXiv:1912.09742;
Outline

(1) The model: Integrable reversible interacting cellular automaton (Rule 54) A.Bobenko, M.Bordemann, C.Gunn, U.Pinkall, Commun. Math. Phys. 158, 127 (1993)
(2) Rule 54 chain between stochastic soliton baths - steady state problem TP and C. Mejia-Monasterio, J. Phys. A 49, 185003 (2016)
see also: A. Inoue, S. Takesue, arXiv:1806.07099
(3) Matrix product form of eigenvectors and diagionalization of Liouvillian TP and B. Buča, J. Phys. A 50, 395002 (2017)
(a) Explicit matrix product form of time-dependent observables and analytical evaluation of dynamic structure factor, as well as the solution of inhomogeneous quench problem K. Klobas, M. Medenjak, TP, M. Vanicat, Commun. Math. Phys. 371, 651 (2019)
(3) Exact large deviations for space-time extensive obervables in terms of an inhomogeneous martrix product ansatz
B. Buča, J. P. Garrahan, TP, M. Vanicat, Phys. Rev. E 100, 020103 (2019)
(- Time-states: Exact multi-time correlation functions in terms of matrix product ansatz

Outline

(1) The model: Integrable reversible interacting cellular automaton (Rule 54) A.Bobenko, M.Bordemann, C.Gunn, U.Pinkall, Commun. Math. Phys. 158, 127 (1993)
(2) Rule 54 chain between stochastic soliton baths - steady state problem TP and C. Mejia-Monasterio, J. Phys. A 49, 185003 (2016) see also: A. Inoue, S. Takesue, arXiv:1806.07099
(3) Matrix product form of eigenvectors and diagionalization of Liouvillian TP and B. Buča, J. Phys. A 50, 395002 (2017)
(a) Explicit matrix product form of time-dependent observables and analytical evaluation of dynamic structure factor, as well as the solution of inhomogeneous quench problem K. Klobas, M. Medenjak, TP, M. Vanicat, Commun. Math. Phys. 371, 651 (2019)
(3) Exact large deviations for space-time extensive obervables in terms of an inhomogeneous martrix product ansatz
B. Buča, J. P. Garrahan, TP, M. Vanicat, Phys. Rev. E 100, 020103 (2019)

- Time-states: Exact multi-time correlation functions in terms of matrix product ansatz
K. Klobas, M. Vanicat, J. P. Garrahan, TP, arXiv:1912.09742;
K. Klobas, TP, arXiv:2004.01671

$$
s_{2}^{\prime}=\chi\left(s_{1}, s_{2}, s_{3}\right)=s_{1}+s_{2}+s_{3}+s_{1} s_{3} \quad(\bmod 2)
$$

$$
0 \times 2^{0}+1 \times 2^{1}+1 \times 2^{2}+0 \times 2^{3}+1 \times 2^{4}+1 \times 2^{5}+0 \times 2^{6}+0 \times 2^{7}=54
$$

Bobenko et al., Commun. Math. Phys. 158, 127 (1993)

$$
s_{2}^{\prime}=\chi\left(s_{1}, s_{2}, s_{3}\right)=s_{1}+s_{2}+s_{3}+s_{1} s_{3} \quad(\bmod 2)
$$

$$
0 \times 2^{0}+1 \times 2^{1}+1 \times 2^{2}+0 \times 2^{3}+1 \times 2^{4}+1 \times 2^{5}+0 \times 2^{6}+0 \times 2^{7}=54
$$

Bobenko et al., Commun. Math. Phys. 158, 127 (1993)

三

TP and C.Mejia-Monasterio, JPA 49, 185003 (2016)
Describe an evolution of probability state vector for n-cell automaton

$$
\begin{gathered}
\mathbf{p}(t)=U^{t} \mathbf{p}(0) \\
\mathbf{p}=\left(p_{0}, p_{1}, \ldots, p_{2^{n}-1}\right) \equiv\left(p_{s_{1}, s_{2}, \ldots, s_{n}} ; s_{j} \in\{0,1\}\right)
\end{gathered}
$$

$U=U_{o} U_{\mathrm{e}}$,

$$
U_{\mathrm{e}}=P_{123} P_{345} \cdots P_{n-3, n-2, n-1} P_{n-1, n}^{\mathrm{R}},
$$

$$
U_{\mathrm{o}}=P_{n-2, n-1, n} \cdots P_{456} P_{234} P_{12}^{\mathrm{L}}
$$

$$
\begin{aligned}
& U=U_{\mathrm{o}} U_{\mathrm{e}} \\
& U_{\mathrm{e}}=P_{123} P_{345} \cdots P_{n-3, n-2, n-1} P_{n-1, n}^{\mathrm{R}}, \\
& U_{\mathrm{o}}=P_{n-2, n-1, n} \cdots P_{456} P_{234} P_{12}^{\mathrm{L}}
\end{aligned}
$$

$$
\begin{aligned}
& P=\left(\begin{array}{llllllll}
1 & & & & & & & \\
& & & 1 & & & & \\
& & 1 & & & & & \\
& 1 & & & & & & \\
& & & & & & 1 & \\
& & & & 1 & & & 1 \\
& & & & & 1 & &
\end{array}\right) \\
& P^{\mathrm{L}}=\left(\begin{array}{cccc}
\alpha & 0 & \alpha & 0 \\
0 & \beta & 0 & \beta \\
1-\alpha & 0 & 1-\alpha & 0 \\
0 & 1-\beta & 0 & 1-\beta
\end{array}\right) \\
& P^{\mathrm{R}}=\left(\begin{array}{cccc}
\gamma & \gamma & 0 & 0 \\
1-\gamma & 1-\gamma & 0 & 0 \\
0 & 0 & \delta & \delta \\
0 & 0 & 1-\delta & 1-\delta
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& U=U_{\mathrm{o}} U_{\mathrm{e}}, \\
& U_{\mathrm{e}}=P_{123} P_{345} \cdots P_{n-3, n-2, n-1} P_{n-1, n}^{\mathrm{R}}, \\
& U_{\mathrm{o}}=P_{n-2, n-1, n} \cdots P_{456} P_{234} P_{12}^{\mathrm{L}}
\end{aligned}
$$

Some Monte-Carlo to warm up...

$X \longrightarrow$

Theorem
 The $2^{n} \times 2^{n}$ matrix U is irreducible and aperiodic for generic values of driving parameters, more precisely, for an open set $0<\alpha, \beta, \gamma, \delta<1$.

Theorem

The $2^{n} \times 2^{n}$ matrix U is irreducible and aperiodic for generic values of driving parameters, more precisely, for an open set $0<\alpha, \beta, \gamma, \delta<1$.

Consequence (via Perron-Frobenius theorem): Nonequilibrium steady state (NESS), i.e. fixed point of U

$$
U \mathbf{p}=\mathbf{p}
$$

is unique, and any initial probability state vector is asymptotically (in t) relaxing to \mathbf{p}.

Holographic ergodicity

Theorem

The $2^{n} \times 2^{n}$ matrix U is irreducible and aperiodic for generic values of driving parameters, more precisely, for an open set $0<\alpha, \beta, \gamma, \delta<1$.

Consequence (via Perron-Frobenius theorem): Nonequilibrium steady state (NESS), i.e. fixed point of U

$$
U \mathbf{p}=\mathbf{p}
$$

is unique, and any initial probability state vector is asymptotically (in t) relaxing to \mathbf{p}.

Idea of the proof:
Show that for any pair of configurations $\mathbf{s}, \mathbf{s}^{\prime}$, such t_{0} exists that

$$
\left(U^{t}\right)_{\mathrm{s}, \mathbf{s}^{\prime}}>0, \quad \forall t \geq t_{0}
$$

Unified matrix ansatz for NESS and decay modes: some magic at work
[TP and B. Buča, JPA 50, 395002 (2017)]
[TP and B. Buča, JPA 50, 395002 (2017)]
Consider a pair of matrices:

$$
W_{0}=\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\xi & \xi & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad W_{1}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & \xi & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & \omega
\end{array}\right), \quad \mathbf{w}=\binom{W_{0}}{W_{1}}
$$

and $W_{s}^{\prime}(\xi, \omega):=W_{s}(\omega, \xi)$.
[TP and B. Buča, JPA 50, 395002 (2017)]
Consider a pair of matrices:

$$
W_{0}=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\xi & \xi & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad W_{1}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & \xi & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & \omega
\end{array}\right), \quad \mathbf{W}=\binom{W_{0}}{W_{1}}
$$

and $W_{s}^{\prime}(\xi, \omega):=W_{s}(\omega, \xi)$. These satisfy a remarkable bulk relation:

$$
P_{123} W_{1} S \mathbf{W}_{2} \mathbf{W}_{3}^{\prime}=W_{1} \mathbf{W}_{2}^{\prime} \mathbf{W}_{3} S
$$

or component-wise

$$
W_{s} S W_{\chi\left(s s^{\prime} s^{\prime \prime}\right)} W_{s^{\prime \prime}}^{\prime}=W_{s} W_{s^{\prime}}^{\prime} W_{s^{\prime \prime}} S
$$

where S is a "delimiter" matrix

$$
S=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Suppose there exists pairs and quadruples of vectors $\left\langle I_{s}\right|,\left\langle I_{s s^{\prime}}^{\prime}\right|,\left|r_{s s^{\prime}}\right\rangle,\left|r_{s}^{\prime}\right\rangle$, and a scalar parameter λ, satisfying the following boundary equations

$$
\begin{aligned}
& P_{123}\left\langle\mathbf{I}_{1}\right| \mathbf{W}_{2} \mathbf{W}_{3}^{\prime}=\left\langle\mathbf{I}_{12}^{\prime}\right| \mathbf{W}_{3} S, \\
& P_{12}^{\mathrm{R}}\left|\mathbf{r}_{12}\right\rangle=\mathbf{W}_{1}^{\prime} S\left|\mathbf{r}_{2}^{\prime}\right\rangle, \\
& P_{123} \mathbf{W}_{1}^{\prime} \mathbf{W}_{2}\left|\mathbf{r}_{3}^{\prime}\right\rangle=\lambda \mathbf{W}_{1}^{\prime} S\left|\mathbf{r}_{23}\right\rangle, \\
& P_{12}^{\mathrm{L}}\left\langle\mathbf{I}_{12}^{\prime}\right|=\lambda^{-1}\left\langle\mathbf{l}_{1}\right| \mathbf{W}_{2} S
\end{aligned}
$$

Suppose there exists pairs and quadruples of vectors $\left\langle I_{s}\right|,\left\langle I_{s s^{\prime}}^{\prime}\right|,\left|r_{s s^{\prime}}\right\rangle,\left|r_{s}^{\prime}\right\rangle$, and a scalar parameter λ, satisfying the following boundary equations

$$
\begin{aligned}
& P_{123}\left\langle\mathbf{I}_{1}\right| \mathbf{W}_{2} \mathbf{W}_{3}^{\prime}=\left\langle\mathbf{I}_{12}^{\prime}\right| \mathbf{W}_{3} S, \\
& P_{12}^{\mathrm{R}}\left|\mathbf{r}_{12}\right\rangle=\mathbf{W}_{1}^{\prime} S\left|\mathbf{r}_{2}^{\prime}\right\rangle, \\
& P_{123} \mathbf{W}_{1}^{\prime} \mathbf{W}_{2}\left|\mathbf{r}_{3}^{\prime}\right\rangle=\lambda \mathbf{W}_{1}^{\prime} S\left|\mathbf{r}_{23}\right\rangle, \\
& P_{12}^{\mathrm{L}}\left\langle\mathbf{I}_{12}^{\prime}\right|=\lambda^{-1}\left\langle\mathbf{I}_{1}\right| \mathbf{W}_{2} S
\end{aligned}
$$

Then, the following probability vectors

$$
\begin{aligned}
\mathbf{p} & \equiv \mathbf{p}_{12 \ldots n}=\left\langle\mathbf{I}_{1}\right| \mathbf{W}_{2} \mathbf{W}_{3}^{\prime} \mathbf{W}_{4} \cdots \mathbf{W}_{n-3}^{\prime} \mathbf{W}_{n-2}\left|\mathbf{r}_{n-1, n}\right\rangle, \\
\mathbf{p}^{\prime} & \equiv \mathbf{p}_{12 \ldots n}^{\prime}=\left\langle\mathbf{I}_{12}^{\prime}\right| \mathbf{W}_{3} \mathbf{W}_{4}^{\prime} \cdots \mathbf{W}_{n-3} \mathbf{W}_{n-2}^{\prime} \mathbf{W}_{n-1}\left|\mathbf{r}_{n}^{\prime}\right\rangle
\end{aligned}
$$

satisfy the NESS fixed point condition

$$
U_{\mathrm{e}} \mathbf{p}=\mathbf{p}^{\prime}, \quad U_{\mathrm{o}} \mathbf{p}^{\prime}=\mathbf{p}
$$

Suppose there exists pairs and quadruples of vectors $\left\langle I_{s}\right|,\left\langle l_{s s^{\prime}}^{\prime}\right|,\left|r_{s s^{\prime}}\right\rangle,\left|r_{s}^{\prime}\right\rangle$, and a scalar parameter λ, satisfying the following boundary equations

$$
\begin{aligned}
& P_{123}\left\langle\mathbf{I}_{1}\right| \mathbf{W}_{2} \mathbf{W}_{3}^{\prime}=\left\langle\mathbf{I}_{12}^{\prime}\right| \mathbf{W}_{3} S, \\
& P_{12}^{\mathrm{R}}\left|\mathbf{r}_{12}\right\rangle=\mathbf{W}_{1}^{\prime} S\left|\mathbf{r}_{2}^{\prime}\right\rangle, \\
& P_{123} \mathbf{W}_{1}^{\prime} \mathbf{W}_{2}\left|\mathbf{r}_{3}^{\prime}\right\rangle=\lambda \mathbf{W}_{1}^{\prime} S\left|\mathbf{r}_{23}\right\rangle, \\
& P_{12}^{\mathrm{L}}\left\langle\mathbf{I}_{12}^{\prime}\right|=\lambda^{-1}\left\langle\mathbf{l}_{1}\right| \mathbf{W}_{2} S .
\end{aligned}
$$

Then, the following probability vectors

$$
\begin{aligned}
\mathbf{p} & \equiv \mathbf{p}_{12 \ldots n}=\left\langle\mathbf{l}_{1}\right| \mathbf{W}_{2} \mathbf{W}_{3}^{\prime} \mathbf{W}_{4} \cdots \mathbf{W}_{n-3}^{\prime} \mathbf{W}_{n-2}\left|\mathbf{r}_{n-1, n}\right\rangle, \\
\mathbf{p}^{\prime} & \equiv \mathbf{p}_{12 \ldots n}^{\prime}=\left\langle\mathbf{I}_{12}^{\prime}\right| \mathbf{W}_{3} \mathbf{W}_{4}^{\prime} \cdots \mathbf{W}_{n-3} \mathbf{W}_{n-2}^{\prime} \mathbf{W}_{n-1}\left|\mathbf{r}_{n}^{\prime}\right\rangle,
\end{aligned}
$$

satisfy the NESS fixed point condition

$$
U_{\mathrm{e}} \mathbf{p}=\mathbf{p}^{\prime}, \quad U_{\mathrm{o}} \mathbf{p}^{\prime}=\mathbf{p}
$$

Proof: Observe the bulk relations

$$
\begin{aligned}
P_{123} \mathbf{W}_{1} S \mathbf{W}_{2} \mathbf{W}_{3}^{\prime} & =\mathbf{W}_{1} \mathbf{W}_{2}^{\prime} \mathbf{W}_{3} \mathbf{S} \\
P_{123} \mathbf{W}_{1}^{\prime} \mathbf{W}_{2} \mathbf{W}_{3}^{\prime} \mathbf{S} & =\mathbf{W}_{1}^{\prime} \mathbf{S W}_{2}^{\prime} \mathbf{W}_{3}
\end{aligned}
$$

to move the delimiter S around, when it 'hits' the boundary observe one of the boundary equations. After the full cycle, you obtain $U_{\mathrm{a}} U_{\mathrm{e}} \mathbf{p}=\lambda \lambda^{-1} \mathbf{p}$.

This yields a consistent system of equations which uniquely determine the unknown parameters, namely for the left boundary:

$$
\xi=\frac{(\alpha+\beta-1)-\lambda^{-1} \beta}{\lambda^{-2}(\beta-1)}, \quad \omega=\frac{\lambda^{-1}\left(\alpha-\lambda^{-1}\right)}{\beta-1}
$$

and for the right boundary:

$$
\xi=\frac{\lambda(\gamma-\lambda)}{\delta-1}, \quad \omega=\frac{\gamma+\delta-1-\lambda \delta}{\lambda^{2}(\delta-1)}
$$

yielding

$$
\begin{aligned}
& \xi=\frac{(\gamma(\alpha+\beta-1)-\beta)(\beta(\gamma+\delta-1)-\gamma)}{(\alpha-\delta(\alpha+\beta-1))^{2}} \\
& \omega=\frac{(\delta(\alpha+\beta-1)-\alpha)(\alpha(\gamma+\delta-1)-\delta)}{(\gamma-\beta(\gamma+\delta-1))^{2}}
\end{aligned}
$$

and explicit expressions for the boundary vectors..

Can we diagonalize U with a similar ansatz?

Can we diagonalize U with a similar ansatz?
Yes, a good deal of decay modes can be written as a compact MPA with explicitly positionally dependent matrices

$$
\mathbf{W}^{(x)}, \quad \mathbf{W}^{\prime(x)}
$$

depending on $x \in\{2,3, \ldots, n-1\}$ via multiplicative momentum variable z, containing linear combinations of

$$
\left\{1, z^{x}, z^{-x}\right\}
$$

Can we diagonalize U with a similar ansatz?
Yes, a good deal of decay modes can be written as a compact MPA with explicitly positionally dependent matrices

$$
\mathbf{W}^{(x)}, \quad \mathbf{W}^{\prime(x)}
$$

depending on $x \in\{2,3, \ldots, n-1\}$ via multiplicative momentum variable z, containing linear combinations of

$$
\left\{1, z^{x}, z^{-x}\right\}
$$

For example:

$$
\begin{aligned}
& \mathbf{W}^{(x)}=\left(e_{11} \otimes \mathbf{W}(\xi z, \omega / z)+e_{22} \otimes \mathbf{W}(\xi / z, \omega z)\right)\left(\mathbb{1}_{8}+e_{12} \otimes \frac{c_{+} z^{x} F_{+}+c_{-} z^{-x} F_{-}}{\xi \omega-1}\right) \\
& F_{+}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & z \\
0 & 0 & \frac{\xi \omega-1}{\omega z^{2}} & 0 \\
0 & 0 & 0 & \xi z^{2}
\end{array}\right), \quad F_{-}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{\xi^{2} z^{3}} \\
0 & 0 & \frac{\xi \omega-1}{\xi z^{2}} & 0 \\
0 & 0 & 0 & \omega+\frac{1}{\xi}\left(\frac{1}{z^{2}}-1\right)
\end{array}\right) .
\end{aligned}
$$

The Bethe-like equations for the Markov spectrum

$$
U_{\mathrm{e}} \mathbf{p}(z)=\Lambda_{\mathrm{L}} \mathbf{p}^{\prime}(z), \quad U_{\mathrm{o}} \mathbf{p}^{\prime}(z)=\Lambda_{\mathrm{R}} \mathbf{p}(z)
$$

$$
\begin{aligned}
& \frac{z(\alpha+\beta-1)-\beta \Lambda_{\mathrm{L}}}{(\beta-1) \Lambda_{\mathrm{L}}^{2}}=\frac{\Lambda_{\mathrm{R}}\left(\gamma z-\Lambda_{\mathrm{R}}\right)}{(\delta-1) z} \\
& \frac{z(\gamma+\delta-1)-\delta \Lambda_{\mathrm{R}}}{(\delta-1) \Lambda_{\mathrm{R}}^{2}}=\frac{\Lambda_{\mathrm{L}}\left(\alpha z-\Lambda_{\mathrm{L}}\right)}{(\beta-1) z} \\
& z^{2 n-6-4 p}=\frac{(\alpha+\beta-1)^{p}(\gamma+\delta-1)^{p}}{\Lambda_{\mathrm{L}}^{4 p} \Lambda_{\mathrm{R}}^{4 p}}
\end{aligned}
$$

Consider a (commutative C^{*}) algebra of observables on infinite lattice $x \in \mathbb{Z}$.

Consider a (commutative C^{*}) algebra of observables on infinite lattice $x \in \mathbb{Z}$.
Ultralocal basis $\left\{[0]_{\times},[1]_{\times}\right\}$:

$$
[\alpha]_{x}(\mathbf{s})=\delta_{\alpha, s_{x}}, \quad\left([\alpha]_{x}[\beta]_{y}\right)(\mathbf{s})=[\alpha]_{x}(\mathbf{s})[\beta]_{y}(\mathbf{s}), \quad \alpha, \beta \in\{0,1\}, \mathbf{s} \in\{0,1\}^{\mathbb{Z}}
$$

Consider a (commutative C^{*}) algebra of observables on infinite lattice $x \in \mathbb{Z}$. Ultralocal basis $\left\{[0]_{\times},[1]_{\times}\right\}$:

$$
[\alpha]_{x}(\mathbf{s})=\delta_{\alpha, s_{x}}, \quad\left([\alpha]_{x}[\beta]_{y}\right)(\mathbf{s})=[\alpha]_{x}(\mathbf{s})[\beta]_{y}(\mathbf{s}), \quad \alpha, \beta \in\{0,1\}, \mathbf{s} \in\{0,1\}^{\mathbb{Z}}
$$

r-local basis centred on site x :

$$
\left[\alpha_{1} \alpha_{2} \ldots \alpha_{r}\right]_{x} \equiv\left[\alpha_{1}\right]_{x-\left\lfloor\frac{r}{2}\right\rfloor}\left[\alpha_{2}\right]_{x-\left\lfloor\frac{r}{2}\right\rfloor+1} \cdots\left[\alpha_{r}\right]_{x+\left\lfloor\frac{r-1}{2}\right\rfloor} .
$$

Consider a (commutative C^{*}) algebra of observables on infinite lattice $x \in \mathbb{Z}$. Ultralocal basis $\left\{[0]_{x},[1]_{x}\right\}$:

$$
[\alpha]_{x}(\mathbf{s})=\delta_{\alpha, s_{x}}, \quad\left([\alpha]_{x}[\beta]_{y}\right)(\mathbf{s})=[\alpha]_{x}(\mathbf{s})[\beta]_{y}(\mathbf{s}), \quad \alpha, \beta \in\{0,1\}, \mathbf{s} \in\{0,1\}^{\mathbb{Z}}
$$

r-local basis centred on site x :

$$
\left[\alpha_{1} \alpha_{2} \ldots \alpha_{r}\right]_{x} \equiv\left[\alpha_{1}\right]_{x-\left\lfloor\frac{r}{2}\right\rfloor}\left[\alpha_{2}\right]_{x-\left\lfloor\frac{r}{2}\right\rfloor+1} \cdots\left[\alpha_{r}\right]_{x+\left\lfloor\frac{r-1}{2}\right\rfloor} .
$$

Using unit element $\mathbb{1}=[0]_{x}+[1]_{\times}$, we can extend the support of each r-local basis element as

$$
\begin{aligned}
& {\left[\alpha_{1} \alpha_{2} \ldots \alpha_{r}\right]_{x} \equiv \mathbb{1}_{x-\left\lfloor\frac{r+2}{2}\right\rfloor} \cdot\left[\alpha_{1} \alpha_{2} \ldots \alpha_{r}\right]_{x} \cdot \mathbb{1}_{x+\left[\frac{r+1}{2}\right\rfloor} \equiv} \\
& \quad \equiv\left[0 \alpha_{1} \alpha_{2} \ldots \alpha_{r} 0\right]_{x}+\left[0 \alpha_{1} \alpha_{2} \ldots \alpha_{r} 1\right]_{x}+\left[1 \alpha_{1} \alpha_{2} \ldots \alpha_{r} 0\right]_{x}+\left[1 \alpha_{1} \alpha_{2} \ldots \alpha_{r} 1\right]_{x} .
\end{aligned}
$$

Separable (strongly clustering) states p defined by expectation values $p(x)$ of ultralocal observables

$$
\left\langle\left[\alpha_{1} \alpha_{2} \ldots \alpha_{r}\right]_{x}\right\rangle_{p}=p_{x-\left\lfloor\frac{r}{2}\right\rfloor}\left(\alpha_{1}\right) \cdot p_{x-\left\lfloor\frac{r}{2}\right\rfloor+1}\left(\alpha_{2}\right) \cdots p_{x+\left\lfloor\frac{r-1}{2}\right\rfloor}\left(\alpha_{r}\right)
$$

Separable (strongly clustering) states p defined by expectation values $p(x)$ of ultralocal observables

$$
\left\langle\left[\alpha_{1} \alpha_{2} \ldots \alpha_{r}\right]_{x}\right\rangle_{p}=p_{x-\left\lfloor\frac{r}{2}\right\rfloor}\left(\alpha_{1}\right) \cdot p_{x-\left\lfloor\frac{r}{2}\right\rfloor+1}\left(\alpha_{2}\right) \cdots p_{x+\left\lfloor\frac{r-1}{2}\right\rfloor}\left(\alpha_{r}\right)
$$

Two examples of separable states that we consider:
(1) A maximum entropy state

$$
p_{x}(0)=p_{x}(1)=1 / 2, \quad \forall x \in \mathbb{Z}
$$

(2) An inhomogeneous initial state

$$
\begin{cases}p_{x}(0)=p_{x}(1)=1 / 2, & \text { for } x \leq 0 \\ p_{x}(0)=1, \quad p_{x}(1)=0 . & \text { for } x>0\end{cases}
$$

Dynamics: Time automorphism of algebra of observables

$$
a^{t}\left(\mathbf{s}^{0}\right)=a\left(\mathbf{s}^{t}\right)
$$

$$
a^{t}\left(\mathbf{s}^{0}\right)=a\left(\mathbf{s}^{t}\right)
$$

For 3-site observables, dynamical automorphism is defined as

$$
U_{x}[\alpha \beta \gamma]_{y}= \begin{cases}{[\alpha \chi(\alpha, \beta, \gamma) \gamma]_{y} ;} & x=y \\ {[\alpha \beta \gamma]_{y} ;} & |x-y| \geq 2\end{cases}
$$

while for any r-local observable it is defined as
a t-staggered linear homomorphism

$$
\begin{gathered}
a^{t+1}=U(t) a^{t} \\
U(t)=\left\{\begin{array}{lll}
\prod_{x \in 2 \mathbb{Z}} U_{x} ; & t \equiv 0 & (\bmod 2) \\
\prod_{x \in 2 \mathbb{Z}+1} U_{x} ; & t \equiv 1 & (\bmod 2)
\end{array}\right.
\end{gathered}
$$

Time-dependent matrix product ansatz

Theorem (Klobas et al. CMP (2019)): Time evolution of a local observable [1] ${ }_{x}$ reads

$$
[1]_{x}^{t}=\sum_{\substack{s_{-t}, \ldots, s_{t} \in\{0,1\}}} c_{s_{-t}, \ldots, s_{t}}(t)\left[s_{-t} s_{-t+1} \cdots s_{t}\right]_{x}
$$

where the amplitudes $c_{s_{-t}}, \ldots, s_{t}(t) \in\{0,1\}$ can be represented as MPA

$$
\begin{aligned}
c_{s_{-t}}, \ldots s_{t}(t) & =\langle I(t)| V_{s_{-t}} W_{s_{-t+1}} V_{s_{-t+\mathbf{2}}} \cdots W_{s_{t-1}} V_{s_{t}}|r\rangle+ \\
& +\left\langle I^{\prime}\right| V_{s_{-t}}^{\prime} W_{s_{-t+1}}^{\prime} V_{s_{-t+\mathbf{2}}}^{\prime} \cdots W_{s_{t-1}}^{\prime} V_{s_{t}}^{\prime}\left|r^{\prime}(t)\right\rangle .
\end{aligned}
$$

$V_{s}, W_{s}, V_{s}^{\prime}, W_{s}^{\prime} \in \operatorname{End}(\mathcal{V}), s \in\{0,1\}$, are linear operators over auxiliary Hilbert space $\mathcal{V}=\operatorname{lsp}\left\{|c, w, n, a\rangle ; c, w \in \mathbb{N}_{0}, n \in\{0,1,2\}, a \in\{0,1\}\right\}$, and can be explicitly expressed in terms of ladder operators and projectors

$$
\begin{array}{rlr}
\mathbf{c}^{+} & =\sum_{c, w, n, a}|c+1, w, n, a\rangle\langle c, w, n, a|, & \mathbf{c}^{-}=\left(\mathbf{c}^{+}\right)^{T}, \\
\mathbf{w}^{+} & =\sum_{c, w, n, a}|c, w+1, n, a\rangle\langle c, w, n, a|, & \mathbf{w}^{-}=\left(\mathbf{w}^{+}\right)^{T}, \\
\mathbf{e}_{c_{2} w_{2} n_{2} a_{2}, c_{1} w_{1} n_{1} a_{1}} & =\left|c_{2}, w_{2}, n_{2}, a_{2}\right\rangle\left\langle c_{1}, w_{1}, n_{1}, a_{1}\right|, & \\
\mathbf{e}_{n_{2} a_{2}, n_{1} a_{1}} & =\sum_{c, w}\left|c, w, n_{2}, a_{2}\right\rangle\left\langle c, w, n_{1}, a_{1}\right|, &
\end{array}
$$

$$
\begin{aligned}
V_{0} & =\mathbf{e}_{00,00}+\mathbf{e}_{10,00}+\mathbf{e}_{20,00}+\mathbf{c}^{+} \mathbf{e}_{10,01}+\mathbf{e}_{01,01}+\mathbf{c}^{+} \mathbf{w}^{+} \mathbf{e}_{11,01}+\mathbf{e}_{21,01}+ \\
& +\mathbf{e}_{0001,0001}+\mathbf{e}_{0011,0001}+\mathbf{e}_{0021,0001}, \\
V_{1} & =\mathbf{e}_{00,10}+\mathbf{e}_{10,20}+\mathbf{e}_{20,20}+\mathbf{e}_{00,11}+\mathbf{e}_{10,21}+\mathbf{e}_{20,21}+\mathbf{e}_{01,11}+ \\
& +\mathbf{w}^{+} \mathbf{e}_{11,21}+\mathbf{w}^{+} \mathbf{e}_{21,21}+\mathbf{e}_{0001,0011}+\mathbf{e}_{0011,0021}+\mathbf{e}_{0021,0021}, \\
W_{0} & =\mathbf{c}^{-} \mathbf{w}^{+}\left(\mathbf{e}_{00,00}+\mathbf{e}_{10,00}+\mathbf{e}_{20,00}\right)+\mathbf{w}^{+} \mathbf{e}_{10,01}+\mathbf{w}^{+} \mathbf{e}_{01,01}+ \\
& +\mathbf{c}^{+}\left(\mathbf{w}^{+}\right)^{2} \mathbf{e}_{11,01}+\mathbf{w}^{+} \mathbf{e}_{21,01}+\mathbf{e}_{1111,0001}+\mathbf{e}_{0001,0001}+\mathbf{e}_{0011,0001}+\mathbf{e}_{0021,0001}, \\
W_{1} & =\mathbf{c}^{-} \mathbf{w}^{+}\left(\mathbf{e}_{00,10}+\mathbf{e}_{10,20}+\mathbf{e}_{20,20}\right)+\mathbf{w}^{+} \mathbf{e}_{01,11}+\mathbf{c}^{+} \mathbf{w}^{+} \mathbf{e}_{11,21}+ \\
& +\mathbf{c}^{+} \mathbf{w}^{+} \mathbf{e}_{21,21}+\mathbf{e}_{0001,0011}+\mathbf{e}_{0011,0021}+\mathbf{e}_{0021,0021}, \\
V_{0}^{\prime} & =V_{0}^{T}-\left(\mathbf{e}_{0001,1111}+\mathbf{e}_{0101,1211}+\mathbf{e}_{0101,1110}\right), \\
V_{1}^{\prime} & =V_{1}^{T} \\
W_{0}^{\prime} & =W_{0}^{T}-\left(\mathbf{e}_{0001,1111}+\mathbf{e}_{0000,1211}\right), \\
W_{1}^{\prime} & =W_{1}^{T}-\left(\mathbf{e}_{0021,1111}+\mathbf{e}_{0021,1121}+\mathbf{e}_{0121,1211}+\mathbf{e}_{0121,1221}\right) .
\end{aligned}
$$

$$
\begin{aligned}
V_{0} & =\mathbf{e}_{00,00}+\mathbf{e}_{10,00}+\mathbf{e}_{20,00}+\mathbf{c}^{+} \mathbf{e}_{10,01}+\mathbf{e}_{01,01}+\mathbf{c}^{+} \mathbf{w}^{+} \mathbf{e}_{11,01}+\mathbf{e}_{21,01}+ \\
& +\mathbf{e}_{0001,0001}+\mathbf{e}_{0011,0001}+\mathbf{e}_{0021,0001} \\
V_{1} & =\mathbf{e}_{00,10}+\mathbf{e}_{10,20}+\mathbf{e}_{20,20}+\mathbf{e}_{00,11}+\mathbf{e}_{10,21}+\mathbf{e}_{20,21}+\mathbf{e}_{01,11}+ \\
& +\mathbf{w}^{+} \mathbf{e}_{11,21}+\mathbf{w}^{+} \mathbf{e}_{21,21}+\mathbf{e}_{0001,0011}+\mathbf{e}_{0011,0021}+\mathbf{e}_{0021,0021} \\
W_{0} & =\mathbf{c}^{-} \mathbf{w}^{+}\left(\mathbf{e}_{00,00}+\mathbf{e}_{10,00}+\mathbf{e}_{20,00}\right)+\mathbf{w}^{+} \mathbf{e}_{10,01}+\mathbf{w}^{+} \mathbf{e}_{01,01}+ \\
& +\mathbf{c}^{+}\left(\mathbf{w}^{+}\right)^{2} \mathbf{e}_{11,01}+\mathbf{w}^{+} \mathbf{e}_{21,01}+\mathbf{e}_{1111,0001}+\mathbf{e}_{0001,0001}+\mathbf{e}_{0011,0001}+\mathbf{e}_{0021,0001}, \\
W_{1} & =\mathbf{c}^{-} \mathbf{w}^{+}\left(\mathbf{e}_{00,10}+\mathbf{e}_{10,20}+\mathbf{e}_{20,20}\right)+\mathbf{w}^{+} \mathbf{e}_{01,11}+\mathbf{c}^{+} \mathbf{w}^{+} \mathbf{e}_{11,21}+ \\
& +\mathbf{c}^{+} \mathbf{w}^{+} \mathbf{e}_{21,21}+\mathbf{e}_{0001,0011}+\mathbf{e}_{0011,0021}+\mathbf{e}_{0021,0021}, \\
V_{0}^{\prime} & =V_{0}^{T}-\left(\mathbf{e}_{0001,1111}+\mathbf{e}_{0101,1211}+\mathbf{e}_{0101,1110}\right) \\
V_{1}^{\prime} & =V_{1}^{T} \\
W_{0}^{\prime} & =W_{0}^{T}-\left(\mathbf{e}_{0001,1111}+\mathbf{e}_{0000,1211}\right) \\
W_{1}^{\prime} & =W_{1}^{T}-\left(\mathbf{e}_{0021,1111}+\mathbf{e}_{0021,1121}+\mathbf{e}_{0121,1211}+\mathbf{e}_{0121,1221}\right)
\end{aligned}
$$

The time-dependent auxiliary space boundary vectors take the following form:

$$
\begin{align*}
\langle I(t)| & =\langle 0, t, 0,0| \\
|r\rangle & =|0,0,0,0\rangle+|0,0,0,1\rangle+|0,0,0,2\rangle \\
\left\langle I^{\prime}\right| & =\langle 0,0,0,1|+\langle 0,0,1,1|+\langle 0,0,2,1|+\langle 0,1,0,1|+\langle 0,1,2,1| \tag{1}\\
\left|r^{\prime}(t)\right\rangle & =|0, t+1,0,0\rangle
\end{align*}
$$

Proof: 'Real space, real time inverse scattering transform'

The weight of left MPA $\langle I(t)| V_{s_{-t}} W_{s_{-t+1}} V_{s_{-t+\mathbf{2}}} \cdots W_{s_{t-1}} V_{s_{t}}|r\rangle$ is 1 (or 0) if the configuration $\left(s_{-t}, s_{-t+1}, \ldots, s_{t}\right)$ can (cannot) be obtained in a light-cone with the left-mover at the origin!

$$
C(x, t)=\left\langle[1]_{x}[1]_{0}^{t}\right\rangle_{p}-\left\langle[1]_{x}\right\rangle_{p}\left\langle[1]_{0}^{t}\right\rangle_{p}=\left\langle[1]_{x}[1]_{0}^{t}\right\rangle_{p}-\frac{1}{4}
$$

$$
C(x, t)=\left\langle[1]_{x}[1]_{0}^{t}\right\rangle_{p}-\left\langle[1]_{x}\right\rangle_{p}\left\langle[1]_{0}^{t}\right\rangle_{p}=\left\langle[1]_{x}[1]_{0}^{t}\right\rangle_{p}-\frac{1}{4}
$$

Using time-dependent MPA:

$$
C(x, t)=\frac{1}{2^{2 t+1}}\left(\langle l(t)| T^{\frac{x+t}{2}} V_{1} \bar{T}^{t-\frac{x+t}{2}}|r\rangle+\left\langle l^{\prime}\right| \bar{T}^{\prime \frac{x+t}{2}} V_{1}^{\prime} T^{\prime t-\frac{x+t}{2}}\left|r^{\prime}(t)\right\rangle\right)-\frac{1}{4}
$$

with

$$
\begin{array}{ll}
T=\left(V_{0}+V_{1}\right)\left(W_{0}+W_{1}\right), & \bar{T}=\left(W_{0}+W_{1}\right)\left(V_{0}+V_{1}\right), \\
T^{\prime}=\left(W_{0}^{\prime}+W_{1}^{\prime}\right)\left(V_{0}^{\prime}+V_{1}^{\prime}\right), & \bar{T}^{\prime}=\left(V_{0}^{\prime}+V_{1}^{\prime}\right)\left(W_{0}^{\prime}+W_{1}^{\prime}\right) .
\end{array}
$$

For maximum entropy ('infinite temperature') state, tMPA yields

$$
\begin{aligned}
C(x, t) & =2^{-t-1} \sum_{m=0}^{\frac{t-|x|-2}{2}} 4^{m}\left(2\binom{t-2 m-3}{m}-\binom{t-2 m-2}{m}\right) \\
& \simeq \frac{1}{16 \sqrt{t \pi}} \exp \left(-\frac{4}{t}\left(|x|-\frac{t}{2}\right)^{2}\right)
\end{aligned}
$$

Exact solution of inhomogeneous quench problem

$$
\hat{\rho}(x, t)=\left\langle[1]_{x}\right\rangle_{p_{\text {inhom }}^{t}}=\left\langle[1]_{x}^{-t}\right\rangle_{p_{\text {inhom }}}
$$

Exact solution exhibits the following simple asymptotic behavior:

- Quasi-free regime

$$
\hat{\rho}\left(t \geq x \geq-\frac{t}{3}+1, t\right)=\frac{1}{3}\left(1-\left(-\frac{1}{2}\right)^{\left\lfloor\frac{t-x+1}{2}\right\rfloor}\right)
$$

- Thermalizing (diffusive) regime

$$
\lim _{t \rightarrow \infty} \hat{\rho}\left(-\frac{t}{2}+\zeta \sqrt{t}, t\right)=\frac{1}{12}(5-\operatorname{erf}(2 \zeta))
$$

Exact large deviations

[B.Buča, J.P.Garrahan, T.Prosen, M.Vanicat, PRE (2019)] Large deviation theory for arbitrary observable of the form:

$$
\mathcal{O}_{T}=\sum_{t=0}^{T-1} \sum_{x=1}^{N-1}\left[f_{x}\left(s_{x}^{t}, s_{x+1}^{t}\right)+g_{x}\left(s_{x}^{t+1 / 2}, s_{x+1}^{t+1 / 2}\right)\right]
$$

[B.Buča, J.P.Garrahan, T.Prosen, M.Vanicat, PRE (2019)]
Large deviation theory for arbitrary observable of the form:

$$
\mathcal{O}_{T}=\sum_{t=0}^{T-1} \sum_{x=1}^{N-1}\left[f_{x}\left(s_{x}^{t}, s_{x+1}^{t}\right)+g_{x}\left(s_{x}^{t+1 / 2}, s_{x+1}^{t+1 / 2}\right)\right]
$$

Tilted Markov generator:

$$
\begin{gathered}
\tilde{U}(s)=U_{\mathrm{o}} G(s) U_{\mathrm{e}} F(s) \\
F(s)=F_{12}^{(1)} F_{23}^{(2)} F_{34}^{(3)} \ldots F_{N-1, N}^{(N-1)} \text { and } G(s)=G_{12}^{(1)} G_{23}^{(2)} G_{34}^{(3)} \ldots G_{N-1, N}^{(N-1)}
\end{gathered}
$$

where

$$
F^{(x)}=\left(\begin{array}{cccc}
f_{0,0}^{(x)} & 0 & 0 & 0 \\
0 & f_{0,1}^{(x)} & 0 & 0 \\
0 & 0 & f_{1,0}^{(x)} & 0 \\
0 & 0 & 0 & f_{1,1}^{(x)}
\end{array}\right), \quad f_{s, s^{\prime}}^{(x)} \equiv e^{s f_{x}\left(s, s^{\prime}\right)}
$$

and similar for $G^{(x)}$.

There exist 3×3 matrices satisying bulk algebraic conditions:

$$
\begin{aligned}
& f_{s s^{\prime}}^{(j-1)} f_{s^{\prime}{ }^{\prime \prime}}^{(j)} W_{s}^{(j-1)} W_{s^{\prime}}^{(j)} X_{s^{\prime \prime}}^{(j+1)}=X_{s}^{(j-1)} V_{\chi\left(s^{\prime} s^{\prime \prime}\right)}^{(j)} V_{s^{\prime \prime}}^{(j+1)}, \\
& g_{s s^{\prime}}^{(j)} g_{s^{\prime} s^{\prime \prime}}^{(j)} X_{s}^{(j-2)} V_{s^{\prime}}^{(j-1)} V_{s^{\prime \prime}}^{(j)}=W_{s}^{(j-2)} W_{\chi\left(s^{\prime} s^{\prime \prime}\right)}^{(j-1)} X_{s^{\prime \prime}}^{(j)},
\end{aligned}
$$

There exist 3×3 matrices satisying bulk algebraic conditions:

$$
\begin{aligned}
& f_{s s^{\prime}}^{(j-1)} f_{s^{\prime} s^{\prime \prime}}^{(j)} W_{s}^{(j-1)} W_{s^{\prime}}^{(j)} X_{s^{\prime \prime}}^{(j+1)}=X_{s}^{(j-1)} V_{\chi\left(s s^{\prime} s^{\prime \prime}\right)}^{(j)} V_{s^{\prime \prime}}^{(j+1)}, \\
& g_{s s^{\prime}}^{(j-2)} g_{s^{\prime} s^{\prime \prime}}^{(j-1)} X_{s}^{(j-2)} V_{s^{\prime}}^{(j-1)} V_{s^{\prime \prime}}^{(j)}=W_{s}^{(j-2)} W_{\chi\left(s s^{\prime} s^{\prime \prime}\right)}^{(j-1)} X_{s^{\prime \prime}}^{(j)},
\end{aligned}
$$

and boundary equations

$$
\begin{aligned}
f_{s s^{\prime}}^{(1)} f_{s^{\prime} s^{\prime \prime}}^{(2)}\left\langle I_{s}\right| W_{s^{\prime}}^{(2)} X_{s^{\prime \prime}}^{(3)} & =\left\langle I_{s \chi\left(s s^{\prime} s^{\prime \prime}\right)}^{\prime}\right| V_{s^{\prime \prime}}^{(3)} \\
\sum_{m, m^{\prime}=0,1} R_{s s^{\prime}}^{m m^{\prime}} f_{m m^{\prime}}^{(N-1)}\left|r_{m m^{\prime}}\right\rangle & =\lambda_{\mathrm{R}} X_{s}^{(N-1)}\left|r_{s^{\prime}}^{\prime}\right\rangle \\
\sum_{m, m^{\prime}=0,1} L_{s s^{\prime}}^{m m^{\prime}} g_{m m^{\prime}}^{(1)}\left\langle I_{m m^{\prime}}^{\prime}\right| & =\lambda_{\mathrm{L}}\left\langle I_{s}\right| X_{s^{\prime}}^{(2)} \\
g_{s s^{\prime}}^{(N-2)} g_{s^{\prime} s^{\prime \prime}}^{(N-1)} X_{s}^{(N-2)} V_{s^{\prime}}^{(N-1)}\left|r_{s^{\prime \prime}}^{\prime}\right\rangle & =W_{s}^{(N-2)}\left|r_{\chi\left(s s^{\prime} s^{\prime \prime}\right) s^{\prime \prime}}\right\rangle,
\end{aligned}
$$

Inhomogeneous matrix ansatz cancellation mechanism

There exist 3×3 matrices satisying bulk algebraic conditions:

$$
\begin{aligned}
& f_{s s^{\prime}}^{(j-1)} f_{s^{\prime} s^{\prime \prime}}^{(j)} W_{s}^{(j-1)} W_{s^{\prime}}^{(j)} X_{s^{\prime \prime}}^{(j+1)}=X_{s}^{(j-1)} V_{\chi\left(s s^{\prime} s^{\prime \prime}\right)}^{(j)} V_{s^{\prime \prime}}^{(j+1)} \\
& g_{s s^{\prime}}^{(j-2)} g_{s^{\prime} s^{\prime \prime}}^{(j-1)} X_{s}^{(j-2)} V_{s^{\prime}}^{(j-1)} V_{s^{\prime \prime}}^{(j)}=W_{s}^{(j-2)} W_{\chi\left(s s^{\prime} s^{\prime \prime}\right)}^{(j-1)} X_{s^{\prime \prime}}^{(j)}
\end{aligned}
$$

and boundary equations

$$
\begin{aligned}
f_{s s^{\prime}}^{(1)} f_{s^{\prime} s^{\prime \prime}}^{(2)}\left\langle I_{s}\right| W_{s^{\prime}}^{(2)} X_{s^{\prime \prime}}^{(3)} & =\left\langle I_{s \chi\left(s s^{\prime} s^{\prime \prime}\right)}^{\prime}\right| V_{s^{\prime \prime}}^{(3)} \\
\sum_{m, m^{\prime}=0,1} R_{s s^{\prime}}^{m m^{\prime}} f_{m m^{\prime}}^{(N-1)}\left|r_{m m^{\prime}}\right\rangle & =\lambda_{\mathrm{R}} X_{s}^{(N-1)}\left|r_{s^{\prime}}^{\prime}\right\rangle \\
\sum_{m, m^{\prime}=0,1} L_{s s^{\prime}}^{m m^{\prime}} g_{m m^{\prime}}^{(1)}\left\langle I_{m m^{\prime}}^{\prime}\right| & =\lambda_{\mathrm{L}}\left\langle I_{s}\right| X_{s^{\prime}}^{(2)} \\
g_{s s^{\prime}}^{(N-2)} g_{s^{\prime} s^{\prime \prime}}^{(N-1)} X_{s}^{(N-2)} V_{s^{\prime}}^{(N-1)}\left|r_{s^{\prime \prime}}^{\prime}\right\rangle & =W_{s}^{(N-2)}\left|r_{\chi\left(s s^{\prime} s^{\prime \prime}\right) s^{\prime \prime}}\right\rangle,
\end{aligned}
$$

such that MPA:

$$
\begin{aligned}
p_{s_{1}, \ldots, s_{N}} & =\left\langle l_{s_{1}}\right| W_{s_{2}}^{(2)} W_{s_{3}}^{(3)} \cdots W_{s_{N-3}}^{(N-3)} W_{s_{N-2}}^{(N-2)}\left|r_{s_{N-1} s_{N}}\right\rangle \\
p_{s_{1}, \ldots, s_{N}}^{\prime} & =\left\langle l_{s_{1} s_{2}}^{\prime}\right| V_{s_{3}}^{(3)} V_{s_{4}}^{(4)} \cdots V_{s_{N-2}}^{(N-2)} V_{s_{N-1}}^{(N-1)}\left|r_{s_{N}}^{\prime}\right\rangle,
\end{aligned}
$$

solves the eigenalue equation

$$
\tilde{U}(s) \mathbf{p}=\Lambda(s) \mathbf{p}
$$

and $\Lambda(s)=e^{\theta(s)}$ is a root of third order polynomial.

K. Klobas, M. Vanicat, J. P. Garrahan, TP, arXiv:1912.09742; K. Klobas, TP, arXiv:2004.01671

Conclusions and Outlook

- Interacting integrable model about which we can compute everything: quenches, non-equilibrium steady states with baths, relaxation rates, dynamical structure factor, large deviations etc.
- Generalizations (stochastic/unitary branching)? Link to Yang-Baxter integrability missing?
- Testhed for computing diffusive corrections to generalized hydroduynamics. See e.g.: S. Gopalakrishnan, D. Huse, V. Khemani, R. Vasseur, PRB 98, 220303 (2018)
The work supported by Slovenian Research Agency (ARRS) and

European Research Council
Established by the European Commission

Conclusions and Outlook

- Interacting integrable model about which we can compute everything: quenches, non-equilibrium steady states with baths, relaxation rates, dynamical structure factor, large deviations etc.
- Generalizations (stochastic/unitary branching)? Link to Yang-Baxter integrability missing?

The work supported by Slovenian Research Agency (ARRS) and

European Research Council
Established by the European Commission

- Interacting integrable model about which we can compute everything: quenches, non-equilibrium steady states with baths, relaxation rates, dynamical structure factor, large deviations etc.
- Generalizations (stochastic/unitary branching)? Link to Yang-Baxter integrability missing?
- Testbed for computing diffusive corrections to generalized hydroduynamics. See e.g.: S. Gopalakrishnan, D. Huse, V. Khemani, R. Vasseur, PRB 98, 220303 (2018)

The work supported by Slovenian Research Agency (ARRS) and

European Research Council
Established by the European Commission

