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• Lattice: ΛN = {1, . . . ,N− 1};
• Site: x ∈ ΛN;
• Bond: {x, y} with x, y ∈ ΛN;

• Process: η = (η(1), . . . , η(N− 1));
• State Space: ΩN = {0, 1}ΛN ;
• ”Boundary”: I− = {1, . . . ,K} and I+ = {N− 1−K, . . . ,N− 1} for K ≥ 1.
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Formal Description

Poisson Clocks
• Nx,x+1, for x ∈ {1, . . . ,N− 2} (Exclusion rule):

• Poisson Process associated to bond {x, x + 1}, with parameter
η(x)(1 − η(x + 1)) + η(x + 1)(1 − η(x));

• N0,j, for j ∈ I− (Creation/Anihilation for the left):
• Poisson process associated to the bond {0, j}, with parameter

αj(η)(1 − η(j)) + γj(1 − η)η(j), where

αj(η) := η(1) . . . η(j − 1)αj,

γj(1 − η) := (1 − η(1)) . . . (1 − η(j − 1))γj

Time Evolution
Starting from a random initial configuration η0, the (jump) process η evolves
according to the Poisson clocks. For example,
• Nx,x+1 rings at time t, then x, x + 1 are flipped:

• ηt−(x) = 1, ηt−(x + 1) = 0 =⇒ ηt(x) = 0, ηt(x + 1) = 1;
• ηt−(x) = 0, ηt−(x + 1) = 1 =⇒ ηt(x) = 1, ηt(x + 1) = 0;
• Otherwise, we see nothing since the particles are unlabbeled.

We can show that η is a Markov Process.
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Generator description

Definition (Generator)

Let LN = LN,0 + N−θLN,b act on functions f : ΩN → R be defined by

Generator

(LN,0f)(η) =
N−2∑
x=1
{f(ηx,x+1)− f(η)},

(LN,bf)(η) = (LN,−f)(η) + (LN,+f)(η),

where

(LN,±f)(η) =
∑
I±

c±x (η){f(ηx)− f(η)}

Flip

ηx,y(z) =


η(z), z ̸= x, y
η(y), z = x
η(x), z = y

ηx(z) =
{
η(z), z ̸= x,
1− η(x), z = x

Rates

c−x (η) = αx(η)(1− η(x)) + γx(1− η)η(x), c+x (η) = (1− η(x))βx(η) + η(x)δx(1− η).
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Context
• On [4] the authors introduced the dynamics with αx = δx = j constant, and
γx = βx = 0 for θ = 1;

• On [6] the authors show the Hydrodynamic Limit and Fick’s Law, and on [5] the
Hydrostatic Limit. These results are in some form consequence of the
Propagation of Chaos property: particles become independent as the size of the
system increases.

• On [1] the authors show the Hydrodynamic and Hydrostatic for θ ≥ 0 and
K = 1.
• On [8] is developed a method that encompasses the case θ = 0 and K ≥ 1,

based on a work on [9].
• On [7] we show the Hydrodynamic Limit and the Hydrostatic Limit for K = 2

by adapting the method above, which relies on duality arguments and
correlation estimates, for θ ∈ (0, 1);
• For the moment we have no information regarding Large Deviations neither

equilibrium or non-equilibrium Fluctuations (behavior around the expected
value).
• The Matrix Product Ansatz and Bethe Ansatz do not work, and on an

ongoing work we are investigating the extension for the Matrix Product
Ansatz for similar models with K = 2.



Setup Hydrodynamic Limit Empirical Currents Hydrostatic Limit

1 Setup

2 Hydrodynamic Limit

3 Empirical Currents

4 Hydrostatic Limit



Setup Hydrodynamic Limit Empirical Currents Hydrostatic Limit

Scalling Limit
To study the Local density we shall consider the accelerated process {ηN2t}t≥0.
This scale is achived by considering the generator L := N2LN.

Definition (Empirical measure)

πN(η, du) = 1
N− 1

∑
x∈ΛN

η(x)δ x
N
(du),

and its time evolution by πN
t (du) := πN(ηN2t, du).

Definition (Associated profile)
We say that a sequence of probability measures {µN}N≥1 on ΩN is associated with
a profile ρ0 : [0, 1]→ [0, 1] if for any continuous function G : [0, 1]→ R and every
δ > 0

lim
N→∞

µN

(
η ∈ ΩN :

∣∣⟨πN,G⟩ − ⟨G, ρ0⟩
∣∣ > δ

)
= 0.
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The Hydrodynamic Limit extends the initial association to all (bounded) times.
But before that, we need to introduce the Hydrodynamic Equations (HDE).

Hydrodynamic Equation
Consider the Heat Equation on [0, 1]{

∂tρt(u) = ∂2
u ρt(u), (t, u) ∈ [0,T]× (0, 1),

ρ(0, ·) = f0(·),

and the boundary conditions

θ = 1

{
∂uρt(0) = −Dα,γρt(0), t ∈ [0,T],

∂uρt(1) = Dβ,δρt(1), t ∈ [0,T],

θ > 1

{
∂uρt(0) = 0, t ∈ [0,T],

∂uρt(1) = 0, t ∈ [0,T],

where for λ = (λ1, . . . , λK), σ = (σ1, . . . , σK) and f : [0, 1]→ R we defined

(Dλ,σf)(u) :=
K∑

x=1
{λx(1− f(u))fx−1(u)− σxf(u)(1− f(u))x−1}.
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Weak Formulation

Definition
For θ ≥ 1 and measurable f0 ∈ [0, 1] define

Fθ(ρ,G, t) = ⟨ρt,Gt⟩ − ⟨f0,G0⟩ −
∫ t

0
⟨ρs,

(
∂2

u + ∂s

)
Gs⟩ds

+

∫ t

0

{
ρs(1)∂uGs(1)− ρs(0)∂uGs(0)

}
ds

− 1θ=1

(∫ t

0
Gs(1)(Dβ,δρs)(1)ds +

∫ t

0
Gs(0)(Dα,γρs)(0)ds

)
.

We say that ρ : [0,T]× [0, 1]→ [0, 1] is a weak solution of the heat equation (with
boundary conditions depending on θ) if

1. ρ ∈ L2(0,T;H1),
2. ρ satisfies the weak formulation Fθ(ρ,G, t) = 0 for all t ∈ [0,T] and function

G ∈ C1,2([0,T]× [0, 1]).

Remark
Note that we do not ask (weak) time-differentiability of the solution.
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Hydrodynamic Limit

Hypotesis

The (finite) sequences α, γ, β and δ are non-increasing, (H0)

Lemma (Uniqueness)
The weak solution of the Heat Equation with Neumann b.c. is unique. Assuming
(H0), the weak solution of the Heat Equation with nonlinear Robin b.c. is unique.

Theorem (Hydrodynamic Limit)
Let f0 : [0, 1]→ [0, 1] be a measurable function and let {µN}N≥1 be a sequence of
probability measures in ΩN associated with f0. Then, for any t ∈ [0,T],

lim
N→∞

PµN

(∣∣⟨πN
t ,G⟩ − ⟨G, ρt⟩

∣∣ > δ
)
= 0,

where ρt(·) is the unique weak solution of the Heat Equation with Neumann b.c.
(θ > 1) or nonlinear Robin b.c. (under (H0) and for θ = 1).
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Some tools

Dynkin’s Martingale
Let {Xt}t≥0 be a Markov process with generator L and countable state space E,
and f : R+ × E −→ R bounded with some regularity assumptions. For all t ≥ 0 let

Mt(f) := f(t,Xt)− f(0,X0)−
∫ t

0
(∂s + L)f(s,Xs)ds,

Bt(f) := Lf(t,Xt)
2 − 2f(t,Xt)Lf(t,Xt),

Nt(f) := (Mt(f))2 −
∫ t

0
Bs(f)ds.

Then {Mt(f)}t≥0 and {Nt(f)}t≥0 are martingales w.r.t. the natural filtration of
{Xt}t≥0. In particular, [M(f)]t :=

∫ t
0 Bs(f)ds is the quadratic variation of Mt(f).

Remark
Note that the absence of time derivatives of ρ comes from the formula for Mt(f).
Computing Mt(f) allow us to ”guess” the Hydrodynamic Equation. Having an
explicit formula for the quadratic variation allow us to control it.
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Dynkin’s formula

MN
t (G) = ⟨πN

t ,Gt⟩ − ⟨πN
0 ,G0⟩ −

∫ t

0
⟨πN

s , (∂s +∆N)Gs⟩ ds

−
∫ t

0

{
∇+

NGs(0)ηsN2(1)−∇−
N Gs(1)ηsN2(N− 1)

}
ds

− N2

Nθ

∫ t

0

{
⟨πN(DN,−

α,γ ηsN2 , ·),Gs⟩+ ⟨πN(DN,+
β,δ ηsN2 , ·),Gs⟩

}
ds,

with (DN,−
λ,σ f)(x) = 1x∈I−{λx(1− f(x))

∏x−1
y=1 f(x)− σxf(x)

∏x−1
y=1(1− f(x))}. More

precisely,

N2

Nθ
⟨πN(DN,−

α,γ η, ·),Gs⟩ =
1

Nθ

∑
x∈I−

DN,−
α,γ η(x)∇Gs(0) + O(K2

N )

Remark (Main technical issue (θ = 1))
While for θ > 1 the correlation terms vanish as N→∞, for θ = 1 we need to show

N2

Nθ ⟨πN(DN,−
α,γ ηsN2 , ·),Gs⟩

PµN−−→ (Dα,γρs)(0)Gs(0).
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Strategy
• Convergence in subsequences:

• Prokhorov’s Theorem + Aldous’ criterion for tightness;
• Characterization of the Limit points:

• Absolute continuity: πt(du) = ρt(u)du;
• Existence of solutions via microscopic system;
• Replacement Lemmas (mean field estimates to control correlation terms) [1, 3];

• Uniqueness of the Limit (PDE’s problem):
• Choice of test function (backwards heat equation) [2]
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Replacement Lemma

Box average

−→η εN
s (1) := 1

εN

1+εN∑
x=2

ηs(x), ←−η εN
s (N− 1) := 1

εN

N−1−εN∑
x=N−2

ηs(x).

For N sufficiently large, −→η εN
s (1) ∼ ρs(0) (resp. −→η εN

s (N− 1) ∼ ρs(1)).

Lemma (Replacement Lemma)

Let ψ : Ω→ Ω be a positive and bounded function which satisfies ψ(η) = ψ(ηz,z+1)
for any z = x + 1, · · · , x + εN− 1. For any t ∈ [0,T] and x ∈ ΛN such that
x ∈ {1, · · · ,N− εN− 2} we have that

lim sup
ε→0

lim sup
N→+∞

EµN

[ ∣∣∣∣∫ t

0
ψ(ηsN2)(ηsN2(x)−−→η εN

sN2(x))ds
∣∣∣∣ ] = 0.



Setup Hydrodynamic Limit Empirical Currents Hydrostatic Limit

Idea of the proof

Definition (Bernoulli product measure)

Let α : [0, 1]→ [0, 1] be a measurable profile and νN
α (η : η(x) = 1) = α( x

N ).

Definition (Dirichlet form/Carré du champ)
Let µ be probability measure on ΩN and f : ΩN → R a density w.r.t. µ.
• Dirichlet form: ⟨

√
f,−LN

√
f⟩µ;

• Carrè du champ: DN(
√

f, µ) := DN,0(
√

f, µ) + DN,b(
√

f, µ), where

DN,0(
√

f, µ) :=
n−2∑
x=1

∫
ΩN

[√
f(ηx,x+1)−

√
f(η)

]2
dµ,

DN,±(
√

f, µ) =
∑

x∈IK
±

∫
c±x (η)

[√
f(ηx)−

√
f(η)

]2 dµ.

Using ab− b2 = − 1
2 (a− b)2 + 1

2 (a
2 − b2) they are related by

⟨
√

f,−LN
√

f⟩µ =
1
2DN(

√
f, µ)− 1

2Eµ [(LNf)(η)]
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Idea of the proof

1 We are able to reduce the problem to that of estimating

H(µ|νN
α )

NB + t sup
f density

{
⟨ψ(η)(η(x)− η̄ϵN(x)), f⟩νN

α
+

N
B ⟨LN

√
f,
√

f⟩νN
α

}
2 We now see that for α(x/N) = α,∣∣∣⟨φ(η)(η(x)− η(y)), f⟩νN

α

∣∣∣ ≤ C1
A DN(

√
f, νN

α ) + C2A(y− x),

with A,B > 0 arbitrary, C1,C2 > 0 constants.
3 Since H(µ|νN

α ) = O(N) and since θ ≥ 1, we have Eµ [(LNf)(η)] = O(N−θ), and
we may choose appropriate A ≡ A(θ,N),B ≡ B(θ,N).

Advantages
• Trade natural measure by a more suitable one (H(µ|νN

α ));
• Trade time evolution by variational formula;
• Trade entropy control by controlling distance from equilibrium (µ invariant

=⇒ Eµ [(LNf)(η)] = 0).
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Uniqueness

The proof of uniqueness of weak solutions for the Robin case relies on a choice of
test function and monotonicity of the boundary operators. As test function we
choose the backward heat equation with Robin b.c, similarly to [2].

Lemma

For any t ∈ (0,T], the following problem with Robin boundary conditions
∂sφ(s, u) + a∂2

uφ(s, u) = λφ(s, u), (s, u) ∈ [0, t]× (0, 1),
∂uφ(s, 0) = b(s, 0)φ(s, 0), s ∈ [0, t),
∂uφ(s, 1) = −b(s, 1)φ(s, 1), s ∈ [0, t),
φ(t, u) = h(u), u ∈ (0, 1),

with h(u) ∈ C2
0([0, 1]) , λ ≥ 0 , 0 < a(u, t) ∈ C2,2([0,T]× [0, 1]), and for u ∈ {0, 1},

0 < b(u, t) ∈ C2[0,T], has a unique solution φ ∈ C1,2([0, t]× [0, 1]). Moreover, if
h ∈ [0, 1] then we have ∀(s, u) ∈ [0, t]× [0, 1]:

0 ≤ φ(s, u) ≤ e−λ(t−s).
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Insipired by [6], we can show:

Lemma

Let λ = (λ1, . . . , λK) and σ = (σ1, . . . , σK) and recall that

Dλ,σf :=
K∑

x=1
{λx(1− f)fx−1 − σxf(1− f)x−1}.

Then for fi : R→ R with i = 1, 2, we have

Dλ,σf1 −Dλ,σf2 = −(f1 − f2)Vλ,σ(f1, f2),

where Vλ,σ(f1, f2) = Vλ(f1, f2) + Vσ(1− f1, 1− f2) with the operator Vϕ, for any
sequence ϕ = (ϕx)1≤x≤K, acting on functions (f1, f2) : R2 → R2, as

Vϕ(f1, f2) =

K∑
x=1

ϕK+1:=0

(ϕx − ϕx+1)

x−1∑
i=0

fx−1−i
1 fi

2.

In particular, if λ and σ are non-negative, non-increasing and fi ≥ 0 for i = 1, 2
then there is a constant vK(λ, σ), such that

Vλ,σf ≥ vK(λ, σ) > 0.
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Letting w = ρ1 − ρ2 with ρ1, ρ2 solutions starting from the same initial data, we
have

⟨wt,Gt⟩ =
∫ t

0
⟨ws,

(
∂2

u + ∂s

)
Gs⟩ds +

∫ t

0
ws(0)

(
∂uGs(0)−Gs(0)Vα,γ(0, s)

)
ds

−
∫ t

0
ws(1)

(
∂uGs(1) + Gs(1)Vβ,δ(1, s)

)
ds,

with Vλ,σ(ρ
(1)
s , ρ

(2)
s )(v, v) := ws(v)Vλ,σ(v, s).

• For G = φ, recall that ∂uφ(s, 0) = b(s, 0)φ(s, 0) and ∂uφ(s, 1) = −b(s, 1)φ(s, 1).
• We can regularize b(s, 0) (resp. b(s, 1)) and approximate it to Vα,γ(s, 0) (resp.

Vβ,δ(s, 1)), but only since V > 0;
• We then choose a, h, λ accordingly to show w+ < ϵ, then repeat the proof for

w− < ϵ.
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Definition (Local current)
• JN

t (x) - conservative current through bond {x, x + 1} up to time t :
• counts the number of particles that jumped from the site x to the site x + 1

minus the number of particles that jumped from the site x + 1 to the site x.
• KN

t (x) - non-conservative current at the site x up to time t :
• counts the number of particles that have been created minus the number of

particles that have been removed of the system at site x.

Definition (Empirical current)
The empirical measure associated with the conservative/non-conservative current:

JN
t :=

1
N2

N−2∑
x=1

JN
t (x)δx/N, KN

t :=
1
N

∑
x∈IK

+∪IK
−

KN
t (x)δx/N.

Remark (On some technical details)
To use the same approach we need to consider instead the joint generator of the
processes (η, JN) and (η,KN), which gets a bit ”messy” [?], but identified the PDE
through Dynkin’s martingale, the L.L.N. for the current becomes a corollary of the
Hydrodynamic Limit.
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Main result

Theorem (Law of large Numbers for the current)

For any t ∈ [0,T] and f ∈ C1([0, 1]),

lim
N→+∞

PµN

[∣∣∣⟨JN
t , f⟩ −

∫ t

0

∫ 1

0
f(u) ∂uρs(u) du ds

∣∣∣ > δ

]
= 0 ,

lim
N→+∞

PµN

[∣∣∣⟨KN
t , f⟩ − 1{θ=1}

∫ t

0
f(0)(Dα,γρs)(0) + f(1)(Dβ,δρs)(1) ds

∣∣∣ > δ

]
= 0 ,

where ρt(·) is the unique weak solution of (HDE)θ.
In other words, writing jN

t = JN
t + KN

t , we have that jN converges weakly to jdu,
where j is a weak solution to

j = −∇ρ.
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Hydrostatic Limit
• The Hydrodynamic Limit states that starting from some measure, the local

density of particles is associated (in some sense) to the solution of a
Hydrodynamic Equation.
• Unsurprisingly, taking the stationary measure, we are associated to the

stationary solution of the Hydrodynamic Equation. This association takes the
name of Hydrostatic Limit.
• The proofs usually rely on estimating correlations w.r.t. the stationary

measure, or derive (in particular cases) the Hydrostatic as a limiting case of
the Hydrodynamic.
• Only in 2018, [11], based on [10] the Hydrostatic Limit was shown, in general,

to be consequence of the Hydrodynamic Limit.
• The main argument comes from a concentration result for classical solutions of

the HDE (which is easily adapted to weak solutions)
• Uniqueness of stationary solutions (may be relaxed if the measure is

concentrated on a particular solution, in the vein of []) and convergence to the
stationary solution.



Setup Hydrodynamic Limit Empirical Currents Hydrostatic Limit

Hypotesis

The (finite) sequences α, γ, β and δ are non-increasing, (H0)

δ1 ≤ α1 and β1 ≤ γ1, (H1)

α+ β and γ + δ are non increasing. (H2)

Theorem (Hydrostatic Limit)

For θ = 1, assuming (H1) there exists a unique stationary solution ρ∗ of the HDE,
and assuming also (H0), µss

N is associated with it:

lim
N→∞

µss
N

(∣∣⟨πN,G⟩ − ⟨G, ρ∗⟩
∣∣ > δ

)
= 0.

For θ > 1, assuming (H2) there exists a unique constant m∗ ∈ [0, 1], such that µss
N

is associated with the constant profile ρ∗ ≡ m∗. More precisely, letting i = α+ β
and o = γ + δ, we have m∗ = limt→∞ m(t) where

m(t) = m0 +

∫ t

0
(Di,om)(s)ds.
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Set of weak stationary solutions to the (HDE)θ

Eθ :=
{
π ∈ M+ : π(du) = ρ∗(u)du , Fθ(ρ

∗,G, t) = 0, ∀t ∈ [0,T], ∀G ∈ C1,2([0,T]× [0, 1])
}
.

Let PN := µss
N ◦ (πN)−1 be the distribution of the stationary empirical measure.

Proposition (Analogous to [10])
{PN}N∈N is concentrated in E, i.e., ∀δ > 0,

lim
N→∞

PN

(
π ∈M+ : inf

π̃∈E
d(π, π̃) ≥ δ

)
= 0.

To prove this, one needs two ingredients:
1 The empirical measure macroscopically governed by a HDE;
2 The existence of a ”unique” solution of the HDE and its convergence, w.r.t.

the L2 norm, as time goes to infinity, to a stationary solution.
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θ = 1
Proof follows directly from the previous concentration result. The main difficulty
is showing uniqueness of/convergence to stationary solutions.

Stationary solution
Under assumptions (H0),(H1), E = {ρ∗(u)du} where

ρ∗(u) = (1− u)ρ∗(0) + uρ∗(1)

with its value at the boundary determined by the unique solution of the nonlinear
system of equations ρ∗(1)− ρ∗(0) = −Dα,γρ

∗(0) = Dβ,δρ
∗(1).

Remark (on uniqueness)
Although Dα,γ ,Dβ,δ induces a K−degree polynomial, we are able to guarantee
uniqueness on [0, 1] thanks to:
• D is Lipschitz monotone decreasing: Dλ,σf1 −Dλ,σf2 = −(f1 − f2)Vλ,σ(f1, f2),

with 0 < Vλ,σ(f1, f2) <∞;
• −σ1 = Dλ,σ1 ≤ Dλ,σf ≤ Dλ,σ0 = λ1;

• Intermediate Value Theorem.
with no need to resort to some maximum principle.
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Convergence to steady state

Motivation
Proceeding with an energy estimate approach, we want to take w := ρ− ρ∗ as a
test function to obtain that F(ρt,w,T)− F(ρ∗,w,T) = 0, which implies

0 ≥ 1
2

d
dt∥wt∥2

L2 + C∥wt∥2
L2 + w2

t (0)Vα,γ(ρt, ρ
∗)(0, 0) + w2

t (1)Vβ,δ(ρt, ρ
∗)(1, 1),

then use that V > 0 and conclude with Gronwall inequality that

∥wt∥L2 = O(e−2Ct), C > 0.

Main issue
We cannot take w as test function, since we do not know if ρ has weak
time-derivatives. To solve this issue, we show that ρ is weakly continuous w.r.t.
time.

For that, we relate the weak and mild formulations.
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Definition (Mild solution, [6])
We call mild solution of the (HDE)1 any function ρ : [0,T]× [0, 1]→ [0, 1]
satisfying M(ρ, t) := ρt − Sρt = 0, with

Sρt(u) =
∫ 1

0
Pt(u, v)f0(v)dv +

∫ t

0

{
Pt−s(u, 0)(Dα,γρs)(0) + Pt−s(u, 1)(Dβ,δρs)(1)

}
ds,

where Pt is the density kernel generated by the Laplacian ∂2
u on [0, 1] with

reflecting Neumann boundary conditions.

The following result is insipired by [10]

Proposition
If ρ : [0,T]→ [0, 1] is a weak solution , then ρ also satisfies M(ρ, t) = 0 a.e. ∀t > 0.
Moreover, if ρ : [0,T]× [0, 1] satisfies ⟨M(ρ, t),G⟩ = 0 for any
G ∈ C1,2([0,T]× [0, 1]), then F(Sρ,G, t) = 0.

Approach

F(ρt,G, t) = 0 =⇒ ⟨ρt − Sρt,G⟩ = 0 =⇒ F(Sρ,Sρ, t) = 0
=⇒ F(Sρ,Sρ, t)− F(ρ∗,Sρ, t) = 0 =⇒ ∥Sρt − ρ∗∥L2 = O(e−2Ct).
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θ > 1

Strategy
For the Neumann case we do not have uniqueness of stationary solutions, since
Neumann Laplacian has no global atractor, hence any constant is solution. What
we do instead is follow a similar approach to [11].
• Show L.L.N. for the total mass under N1+θ time-scale;
• Show that the mass converges to a constant as t→∞;

• Show that the stationary measure is concentrated on this particular constant,
under the N2 time-scale.

To relate the configurations under different time-scalles we take advantage of the
measure being stationary.

Definition (Mass of the system)

mN
t =

1
N− 1

∑
x∈ΛN

ηN
tN1+θ (x),

We study mN
t by following the same Dynkin+Tightness+Characterization

approach.
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Let QN := µss
N ◦ (mN)−1 be the distribution of the trajectories on the Skorokhod

space started from the stationary distribution µss
N .

1 Dynkin: mN
t = mN

0 + MN
t +

∫ t
0{

∑
x∈I−(DN,−

α,γ ηs)(x) +
∑

x∈I+(D
N,+
β,δ ηs)(x)}ds;

2 Tightness: Q∗ := limN→∞QN exists;
3 Characterization of the Limit points:

• Adapt Replacement Lemmas:

lim sup
N→+∞

EµN

[ ∣∣∣∣∫ t

0
ηsN1+θ (z)(ηsN1+θ (x)− mN

s )ds
∣∣∣∣ ] = 0.

• Concentration of the trajectories:
Q∗

(
m(·) : m(t) = m0 +

∫ t
0(Dα+β,γ+δm)(s)ds

)
= 1;

• Uniqueness of solutions and convergence to m∗ := m(∞):
• Both consequence of D being Lipschitz and monotone decreasing.

• Relationship with Hydrodynamic Limit:
• Consequence of

lim
N→∞

PN

(
π ∈ M+ : inf

π̃∈E
d(π, π̃) ≥ δ

)
= 0, lim

N→∞
PN

(
π ∈ M+ : inf

π̃∈E
d(π, π̃) ≥ δ

)
= 0.
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