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Insulators and metals
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Insulators versus metals (band theory)
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Figure: A band insulator (left) and metal (right). The ground state is
obtained by filling all the states below Ef. In the insulator there is an
energy gap to excite the system, while on the metal there isn't.
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Phenomenology of the insulating state

> Intuitively, the insulating character of a system of electrons
has to do with the way the electrons are organized in space.

» If the electrons are free to move in every direction, then by
turning on an external electric field, we will generate a
longitudinal current. This is the case of a metal.

» On the contrary, if the electrons are localized, applying an
electric field will produce no longitudinal current.
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Phenomenology of the insulating state (cont.)

» The property of a system of electrons being in an insulating
state is related to the conductivity tensor o;.

» When we apply a uniform external electric field E/, we have a
current

(') = ojE + O(||EI?).

» An insulator has a zero direct current (symmetric part of)
conductivity at zero temperature, while a metal has a
non-zero direct current conductivity.

» The anti-symmetric part of the conductivity describes the
transverse conductivity and it is responsible for the anomalous
Hall effect.
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» The intuition concerning electron localization is right, as the
conductivity tensor can be explicitly related to the localization
tensor

G = (XX") = (XM)(X"),

where X#, p=1,...,d, denotes the center of mass position
operator and (-) is the ground state expectation value.

» The quantity G*” is finite for an insulator and it diverges for
metals, in accordance with intuition.
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The geometry of threading a flux
through the system in the case of
band insulators
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Setup

» We have a system of fermions on a 2-dimensional lattice with

periodic boundary conditions. The period on each direction is
N.

» Later, we will take the N — oo thermodynamic limit.
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Figure: Position space.
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Figure: Topologically, the positions of the fermions take values in a

two-torus.
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» We can thread fluxes associated with the generators of the
fundamental group of the torus, i.e., those loops which are
not contractible to a point.

» It means that the fermions get phases when they are
adiabatically moved around these loops.

» This does not introduce a magnetic field, it is equivalent to
introducing “twisted” boundary condition on the
wave-functions.
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Figure:

Twisted boundary conditions.
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> In the thermodynamic limit the real space becomes the lattice
72 and the allowed momenta live in the Brillouin zone, which
itself is topologically a torus B.Z. = R? /27 Z2:

elkr — ei(k+K)~r’ for r € Z2 and K ¢ 2772

» With the standard trivial boundary conditions, the allowed
momenta for the fermions are

2
k= W”m, with m € {0, ..., N — 1}2,

which should be understood as taking values in B.Z. In some
appropriate sense, we recover B.Z. as N — oc.
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» When we thread a flux through the system,

2
k= Nﬂm + % with m € {0,.., N — 1}2.

> Again, we will recover the Brillouin zone when N — oo.
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Figure: Observe that as we change the fluxes ¢1, ¢> from 0 to 27, we
cover the whole Brillouin zone. Moreover, the allowed momenta for ¢
and ¢ + 2w(m, n) are the same for m,n € Z.
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Tight binding free fermion models

» Simplest example: 1d chain with no internal degrees of
freedom with nearest neighbour hoppings,

H = —tz x + 1) x| + [x)(x + 1) —

—Z —2t cos(k) — p)| k) (k|.

» In second quantization language this corresponds to

H= Z —2t cos(k )ﬂ)kz,bk,

with wk,w;ﬂ fermionic annihilation and creation operators.
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Tight binding free fermion models (cont.)

» More generally, in the translation invariant, charge preserving
setting, in 2 spatial dimensions,

Ho= " dfHK),
k

where now wl = [1/1171...1[)&7”] is an array of fermion creation
operators, accounting for internal degrees of freedom and
H(k) is an n x n Hermitian matrix yielding the action of H in
the single particle sector.

» If the hoppings in real space decay fast enough, the map
B.Z. > k — H(k) is smooth.
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Assume that we are in a band insulating state, so that there
are bands below the Fermi level and bands above.

The valence band projector
P(k) = ©(Er — H(K))

is smooth and defines a vector bundle, the Bloch bundle
E — B.Z., over the Brillouin zone.

Over each k € B.Z., we take the vector space of eigenvectors
with energy below Ef, i.e., Ex = ImP(k).

Smoothness of P guarantees smoothness of E.
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Figure: The Bloch bundle E — B.Z. defined by the valence band
projector k — P(k). Notice that the Ey is naturally a subspace of a fixed
vector space C” since H(k) is an n x n matrix.
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Berryology: microscopic Berry connection

» Since each space Ex C C", we can define a parallel
transportation rule.

» Namely, we have a connection/ covariant derivative on
E — B.Z.,, VVU(k) = P(k)dV¥(k), for single particle wave
functions W on E (sections of E).

» This connection is a microscopic Berry connection as it is seen

by single particle wave-functions in the valence band in
momentum space.
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Berryology: microscopic Berry connection (cont.)

» Given a local orthonormal basis for E provided by wave
functions {W;}_,, the associated U(r) gauge field, known as
the Berry gauge field, is given by

A= [Ay] = [(Wild|V))] = Aydk".

» The Berry curvature is given by

1
F=dA+ANA=[Fjl = 5 Fudk" A dk",

0A, _ A,
okt Okv

with F,, = + [AL Al
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Ground state

» Now it we are considering the finite system with periodic
boundary conditions, we are sampling H(k) at points
k = (27/N)m, with m € {0,..., N — 1}2.

> The ground state is obtained by filling the bands below Ef.

» This state is constructed as follows.
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Ground state (cont.)

» Forgetting about the periodicity of H(k) in k, we obtain a
family of matrices in R2. Since R? is contractible, we can find
global assignments

R? 5 k — si(k) = (a}(k),...,a"(k)) €C", i=1,...r,

such that for each k, they form an orthonormal basis of Ey.
The s;'s induce, generally, multivalued wave functions over the
Brillouin zone.

» The s;'s give rise to creation operators (Bogoliubov-Valatin
transformation)

n
ehe=>"alkl,, i=1,..,r
j=1
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Ground state (cont.)

» The many-body ground state is at size for the finite size and
periodic boundary conditions is then

’G5>_ H Hgk 27rm|0

me{0,...,N—-1}2 i=1

» By threading a flux/twist-angle ¢, we obtain a family of
ground states

es(e) = ]I kazﬂmr

me{0,..,N—1}2 i=1

» Since the theory returns to itself (H(k) is periodic) when
¢ — ¢ + 21y with v € Z?, we get a family of ground states
parametrized by the twist-angle torus T2.
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Berryology: macroscopic Berry connection

» Now at each flux ¢ € T? we attach the one-dimensional
subspace of the many-body Hilbert space generated by
|GS(¢)). We get a line bundle £ — T2

» The Berry connection (defined through projection) gives us a
parallel transportation rule consistent with the adiabatic
theorem of quantum mechanics. The associated gauge field is

A= (G5(9)[d|GS5(¢)) = Audg”.

» We refer to this connection as a macroscopic Berry
connection as it is a property of the many-body ground state
of the full theory.
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Berryology: micro-to-macroscopic

> The remarkable consequence of the Slater determinant ground
state is the relation between the macroscopic connection on
L — T? and the microscopic connection E — B.Z. =2 T2,
namely,

A=y SACE + e
and

F(¢) = ﬁ ZTr[FW(%Tm + %)} dok A dg”.
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Observable consequences

» One can show that the transverse Hall conductivity is
Oxy = ie2]-"12(¢) = 0)
» As we take the thermodynamic limit N — oo,

F0) = o X[l g + ] 1 a0

= /B,Z_ Tf((zi)z)} 49" N = 3o’ 1 de?,

where ¢; is the 1st Chern number of E, so that
Oxy = e2c1/27r, which is the famous result of Thouless for the
integer plateaus in the Hall effect.

» So the curvature became constant in the thermodynamic
limit, what about other quantities?
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The quantum metric in twist-angle
space, the localization tensor and the
complex structure 7
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Quantum metric in twist-angle space

» The family of quantum states {|GS(®))} 472, provides a
notion of infinitesimal distance between fluxes:

(GS()1GS(¢ + 0¢))|* ~ 1 — Gpu(d)30"6¢".
» The quantity G = G, (¢)d¢"d¢” is the pullback of the
Fubini-Study metric on the projective space PH,

grs = |d|W) — (V|d|W)|¥)[%.
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Marzari-Vanderbilt theory
» Most remarkably, denoting (-) = (GS(¢)| - |GS(¢)), we have
G (@) = (XIXY) — (XF)(XT).

» The intuition behind the previous formula is that in the

thermodynamic limit X* = id/0k,,, and
|GS(¢ + 0¢p)) = exp(—idp, XH)|GS(¢h)).

» Then

(G5()|GS(¢ + 09))
= (G5(¢)| exp(—i6¢u X")|GS(@)) := Z(3).

» So

9?log Z B )
T 060,000y lapmo — ¢ X1~ XEXE).
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Thus, the quantum metric in twist-angle space is a measure of
electron localization!

For a family of quantum states, it is a known result that if the
gap closes while changing some parameter, the quantum
metric becomes singular.

This is ultimately tied to the fact that if the family

{|Wo(x))}xem is the ground state of a family {H(x)}xem we
have the formula

(Wo|dH|W;) (V;|dH|Wy)
(Ej — Eo)? ’

quantum metric = Z
J#0
resembling perturbation theory (not a coincidence).

As a consequence, if the system became metallic by tunning
some external parameter, the localization tensor blows up.
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Quantum metric in twist-angle space

» The Slater determinant induces a similar form for the
quantum metric as it did for the Berry curvature:

1 2
Gl ®) = 33 gl 5 + B )dordr,

where g = g, (k)dk" dk” = Tr(PdPdP) is the quantum
metric in momentum space.

» The thermodynamic limit now provides us with a flat metric:

2
G (9) = /B B (;ﬁzgw(k),

clearly independent of ¢.
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» A flat metric in the two torus is described by the Riemannian
volume V = sz vV detGdpi1dg, and by a complex parameter

T

T:@+/MEH:{ZGC:|m(Z)>O}7
Gt G11
so that
4
G = 5 (d62 + 2Re(T)dp1dd, + |7[2d¢3).

(27)2Im(7)

» The latter determines a complex coordinate on the torus
¢ = ¢! + 1¢?, so that

G  |do|? = dpdo.
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Figure: lllustration of the complex torus of twist-angles/fluxes.
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Physical interpretation

» Notice that since G = (XHX") — (X*)(X"), T is naturally
related to the anisotropy of position correlations and the
Riemannian volume the strength of these correlations.

» For instance, the standard 7 = i corresponding to the lattice
72, gives G'? = 0 for so that the directions X! and X2
decouple (X1X2) = (X1)(X?).
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Gauge ambiguity

» We have to identify 7 and 7/ such that

, ar+b with | 2 b
ct+d’ d

] € GL(2;Z)

> The reason is that this corresponds to an observer choosing a
different basis for the lattice Z?2 in real space X* — AM XY,
with A € GL(2;Z). Essentially, it is a gauge choice.

» From the math side, this corresponds to choosing a different
element in the isomorphism class of the complex torus.

» Thus, in principle, by changing the insulator, we could move
around the space of complex structures of the torus.
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Figure: The quotient space H/SL(2;Z) has a fundamental domain given
by D={r € H:|r| >1and Re(z) <1/2}. The points 7,7 € D with
Re(r) =£1/2and 7' =7+ 1or 7| =1 and 7/ = —1/7 are the same in
the quotient space.
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Relation to the low-energy theory
near a quantum phase transition and
the geometric character of 7
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Suppose we are given a single-particle Hamiltonian and that
two levels cross generically at a critical momentum k. by
tuning a parameter M of the system to a value M..

By a shift of the variables we can assume k. = 0 and M. = 0.

The two-level crossing can be described, in a neighborhood of
(k, M) =0, by a 2 x 2 low energy Hamiltonian of the form

H(k, M) ~ (ak1 + bk2)01 + (Ckl + dk2)0'2 + Mos,

with ad — bc # 0.

In the absence of symmetries this case is completely generic,
in the sense that other types of crossings, like quadratic band
crossing, can be be adiabatically connected to this one.
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> Define new momenta
a | _ ki . ~[a b
[%]_A[b],w.th/\_[c d}
rendering this block an isotropic Dirac Hamiltonian,

q101 + q202 + Mos.

» The new momenta q explicitly violate the dual lattice 2772,
since

k+ K— q-+ AK,

and if K € 27Z2 we will have AK € 2772 iff A € GL(2;Z).
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Quantum metric

» To compute the quantum metric in twist-angle space,
Guw = [5 7 8u(k)d?k/(27)?, we need to compute the
quantum metric in momentum space, g,,,(k), which near the
critical point k = 0, assumes the form in the q coordinates:

o — e
(a*+M2) (g>+M?)
regular
192 @ +M? Treg

T (@2+M2)2 (@2 +M2)2

» The first term becomes singular at the critical point.

» One can then see that as M — 0, the most relevant
contribution is given by a small neighbourhood of k = 0,
which we take {q: |q| < A}.

» The transformation q = Ak is linear and has a constant
Jacobian, therefore, we can safely perform the integration in q
and then go back to the original coordinates (this actually
corresponds to changing the ¢ coordinates appropriately).
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The quantum metric G = [ gu(k)d?k/(2m)? will
assume the form

~ M2 + N2 a2+c2 ab+cd
G=[Gwl=Cn(T5m—) | spicd B2+ a2

Through a conformal transformation we can make the regular
part vanish as M — 0 and

ab+cd +i|detAl  w>
T= = —
a2+ c2 w1

with wp = a4+ ic and wy = b+ id.

)

a

Thus, the columns of A = [ c ] determine the basis for

d
the lattice determining a finite 7 at the gapless point M = 0.

If A€ GL(2;Z) then we end up with the lattice Z? and 7 is
equivalent to 7 = /.

+ regular.
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» We also remark that

M2 + N2
Vo~ |0g(T),

so that V — oo when the system becomes gapless. Hence,
the Riemannian volume is responsible for the singularity in the
localization tensor when M — 0.

44
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Quantum metric vs Berry curvature

» The behaviour of the momentum space quantum metric
associated to the Dirac point:

qZ%J’_IV,ZzZ - 2q1q22 2
~ (9*+M?) (g?+M?)
[g1(a)] s g2+ M?2

T {2+ M2)2 (@2+M2)2
should be compared to the behaviour of the momentum space
Berry curvature:

dgi A dqgo.

i M
F(q)N_ 3/2

E (M2 +q2)
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v

A transition in which M changes sign, known as a band
inversion, passing through M = 0, involves a change in
topology of the Bloch bundle E as the change in the Chern
number is naturally associated with the sign of M.

This signature is present in the local form of F, it is odd under
M — —M, and it is natural to expect since ¢; x fB.Z_ F.

Since F is odd under M — —M and g is even, we understand
that G as well as 7 do not distinguish between topological
phase transitions Ac; = +1 or Ac; = —1.

Note however that G captures the gap closing point through
the Riemannian volume and 7 the information about the
anisotropy of the local low-energy theory.

This emphasizes the topological character of the flat F versus
the geometric character of G.
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Example: A modified massive Dirac
model
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Modified massive Dirac model

» We consider spinless fermions with a pseudo spin internal
degree of freedom such that the tight binding model is

H(k, M) = [sin(k1) + asin(k2)]o1 + bsin(kz)o2
+ [M — cos(ky) — cos(k2)]os,

with a e R, b > 0.

» The usual massive Dirac model is recovered for a = 0 and
b =1 and it has a low energy theory which is the familiar
2 + 1 dimensional Dirac Hamiltonian with mass M
G101 + q202 + Mos.
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Modified massive Dirac model (cont.)

» The model has a topological phase diagram independent of a
and b:

0, M| >2
a=4+4+1, 2<M<0 ,
-1, 0<M<?2

where ¢; denotes the 1st Chern number of the bundle

E — B.Z. defined previously and it generates transverse Hall
conductivity plateaus. M. = —2,0, +2 are the points of phase
transition.

» Using the previous results one can show that 7 = a + ib for
M. ==+2and 7 = —a+ ib for M. = 0.

» Observe the usual isotropic massive Dirac model has 7 = /.

» Thus, this model allows to swipe the whole space of complex
structures.
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Conclusions and outlook
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Conclusions

» We have shown how in two spatial dimensions the anisotropy
of the localization tensor is related to a complex structure 7
over the twist-angle torus.

> 7 is a geometric quantity and not topological. It is sensitive to
adiabatic perturbations.
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Conclusions

» 7 is finite, even when undergoing a phase transition where the
gap closes, and thus going through a metallic state.

> 7 is intimately related to the anisotropy of the low-energy
Dirac theory near the critical points. Indeed, at the critical

points of phase transition, 7 is determined by the low energy
theory.

» The complex structure 7 and the Riemannian volume V are
physically sensible gauge-invariant observables which
completely characterize the localization tensor.

52 /56



What about interactions?

> 7 can be defined in the presence of interactions, provided some
gap condition exists and we have a family {|GS(®))}pcT2.

» The family {|GS(®))}pecT2 cannot be trivial since if it were
trivial, i.e., constant, the metric would be automatically
degenerate.

> In the interacting case G will not, generically, be flat.
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What about interactions? (cont.)

» The procedure to determine 7 is to determine a flat metric in
the conformal class of G, which involves solving a differential
equation for the conformal factor which enforces the Ricci
scalar to be zero.

» 7 and V will no longer, in general, completely specify the
localization tensor since it will not be flat.

> In the presence of translation invariance, this can also be seen
as a measure of how interacting the system is.
> Namely, the failure of describing the localization tensor

completely through 7 and V measures the fluctuations from a
quasi-free-fermion description.
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If you want to read through details check my paper:
Phys. Rev. B, 101:115128, Mar 2020.

A big thanks to Jodo, Zé, Thomas, Nathan, Nikola,
Raffaele and Roger for fruitful discussions!
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Thank you, and stay safe!
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