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Insulators and metals
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Insulators versus metals (band theory)

Figure: A band insulator (left) and metal (right). The ground state is
obtained by filling all the states below EF . In the insulator there is an
energy gap to excite the system, while on the metal there isn’t.
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Phenomenology of the insulating state

I Intuitively, the insulating character of a system of electrons
has to do with the way the electrons are organized in space.

I If the electrons are free to move in every direction, then by
turning on an external electric field, we will generate a
longitudinal current. This is the case of a metal.

I On the contrary, if the electrons are localized, applying an
electric field will produce no longitudinal current.
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Phenomenology of the insulating state (cont.)

I The property of a system of electrons being in an insulating
state is related to the conductivity tensor σij .

I When we apply a uniform external electric field E i , we have a
current

〈j i 〉 = σijE
j + O(||E ||2).

I An insulator has a zero direct current (symmetric part of)
conductivity at zero temperature, while a metal has a
non-zero direct current conductivity.

I The anti-symmetric part of the conductivity describes the
transverse conductivity and it is responsible for the anomalous
Hall effect.
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I The intuition concerning electron localization is right, as the
conductivity tensor can be explicitly related to the localization
tensor

Gµν = 〈XµX ν〉 − 〈Xµ〉〈X ν〉,

where Xµ, µ = 1, ..., d , denotes the center of mass position
operator and 〈·〉 is the ground state expectation value.

I The quantity Gµν is finite for an insulator and it diverges for
metals, in accordance with intuition.
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The geometry of threading a flux
through the system in the case of

band insulators
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Setup

I We have a system of fermions on a 2-dimensional lattice with
periodic boundary conditions. The period on each direction is
N.

I Later, we will take the N →∞ thermodynamic limit.
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Figure: Position space.
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Figure: Topologically, the positions of the fermions take values in a
two-torus.

11 / 56



I We can thread fluxes associated with the generators of the
fundamental group of the torus, i.e., those loops which are
not contractible to a point.

I It means that the fermions get phases when they are
adiabatically moved around these loops.

I This does not introduce a magnetic field, it is equivalent to
introducing “twisted” boundary condition on the
wave-functions.
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Figure: Twisted boundary conditions.
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I In the thermodynamic limit the real space becomes the lattice
Z2 and the allowed momenta live in the Brillouin zone, which
itself is topologically a torus B.Z. = R2/2πZ2:

e ik·r = e i(k+K)·r, for r ∈ Z2 and K ∈ 2πZ2.

I With the standard trivial boundary conditions, the allowed
momenta for the fermions are

k =
2π

N
m, with m ∈ {0, ...,N − 1}2,

which should be understood as taking values in B.Z. In some
appropriate sense, we recover B.Z. as N →∞.
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I When we thread a flux through the system,

k =
2π

N
m +

φ

N
, with m ∈ {0, ...,N − 1}2.

I Again, we will recover the Brillouin zone when N →∞.
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Figure: Observe that as we change the fluxes φ1, φ2 from 0 to 2π, we
cover the whole Brillouin zone. Moreover, the allowed momenta for φ
and φ + 2π(m, n) are the same for m, n ∈ Z.
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Tight binding free fermion models

I Simplest example: 1d chain with no internal degrees of
freedom with nearest neighbour hoppings,

H = −t
∑
x

(|x + 1〉〈x |+ |x〉〈x + 1|)− µI

=
∑
k

(−2t cos(k)− µ)|k〉〈k |.

I In second quantization language this corresponds to

H =
∑
k

(−2t cos(k)− µ)ψ†kψk ,

with ψk , ψ
†
k fermionic annihilation and creation operators.
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Tight binding free fermion models (cont.)

I More generally, in the translation invariant, charge preserving
setting, in 2 spatial dimensions,

H =
∑
k

ψ†kH(k)ψk,

where now ψ†k = [ψ†k,1...ψ
†
k,n] is an array of fermion creation

operators, accounting for internal degrees of freedom and
H(k) is an n × n Hermitian matrix yielding the action of H in
the single particle sector.

I If the hoppings in real space decay fast enough, the map
B.Z . 3 k 7→ H(k) is smooth.
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I Assume that we are in a band insulating state, so that there
are bands below the Fermi level and bands above.

I The valence band projector

P(k) = Θ(EF − H(k))

is smooth and defines a vector bundle, the Bloch bundle
E → B.Z ., over the Brillouin zone.

I Over each k ∈ B.Z ., we take the vector space of eigenvectors
with energy below EF , i.e., Ek = ImP(k).

I Smoothness of P guarantees smoothness of E .
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Figure: The Bloch bundle E → B.Z . defined by the valence band
projector k 7→ P(k). Notice that the Ek is naturally a subspace of a fixed
vector space Cn since H(k) is an n × n matrix.
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Berryology: microscopic Berry connection

I Since each space Ek ⊂ Cn, we can define a parallel
transportation rule.

I Namely, we have a connection/ covariant derivative on
E → B.Z ., ∇Ψ(k) = P(k)dΨ(k), for single particle wave
functions Ψ on E (sections of E ).

I This connection is a microscopic Berry connection as it is seen
by single particle wave-functions in the valence band in
momentum space.
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Berryology: microscopic Berry connection (cont.)

I Given a local orthonormal basis for E provided by wave
functions {Ψi}ri=1, the associated U(r) gauge field, known as
the Berry gauge field, is given by

A = [Aij ] = [〈Ψi |d |Ψj〉] = Aµdk
µ.

I The Berry curvature is given by

F = dA + A ∧ A = [Fij ] =
1

2
Fµνdk

µ ∧ dkν ,

with Fµν =
∂Aν
∂kµ

− ∂Aµ
∂kν

+ [Aµ,Aν ].
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Ground state

I Now it we are considering the finite system with periodic
boundary conditions, we are sampling H(k) at points
k = (2π/N)m, with m ∈ {0, ...,N − 1}2.

I The ground state is obtained by filling the bands below EF .

I This state is constructed as follows.
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Ground state (cont.)

I Forgetting about the periodicity of H(k) in k, we obtain a
family of matrices in R2. Since R2 is contractible, we can find
global assignments

R2 3 k 7→ si (k) = (a1
i (k), ..., ani (k)) ∈ Cn, i = 1, ..., r ,

such that for each k, they form an orthonormal basis of Ek.
The si ’s induce, generally, multivalued wave functions over the
Brillouin zone.

I The si ’s give rise to creation operators (Bogoliubov-Valatin
transformation)

ξ†i ,k =
n∑

j=1

aji (k)ψ†j ,k, i = 1, ..., r .

24 / 56



Ground state (cont.)

I The many-body ground state is at size for the finite size and
periodic boundary conditions is then

|GS〉 =
∏

m∈{0,...,N−1}2

r∏
i=1

ξ†
i ,k= 2πm

N

|0〉.

I By threading a flux/twist-angle φ, we obtain a family of
ground states

|GS(φ)〉 =
∏

m∈{0,...,N−1}2

r∏
i=1

ξ†
i ,k= 2πm

N
+φ

N

|0〉

I Since the theory returns to itself (H(k) is periodic) when
φ 7→ φ + 2πγ with γ ∈ Z2, we get a family of ground states
parametrized by the twist-angle torus T 2.

25 / 56



Berryology: macroscopic Berry connection

I Now at each flux φ ∈ T 2 we attach the one-dimensional
subspace of the many-body Hilbert space generated by
|GS(φ)〉. We get a line bundle L → T 2.

I The Berry connection (defined through projection) gives us a
parallel transportation rule consistent with the adiabatic
theorem of quantum mechanics. The associated gauge field is

A = 〈GS(φ)|d |GS(φ)〉 = Aµdφµ.

I We refer to this connection as a macroscopic Berry
connection as it is a property of the many-body ground state
of the full theory.
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Berryology: micro-to-macroscopic

I The remarkable consequence of the Slater determinant ground
state is the relation between the macroscopic connection on
L → T 2 and the microscopic connection E → B.Z . ∼= T 2,
namely,

A(φ) =
1

N

∑
m

Tr
[
Aµ(

2πm

N
+

φ

N
)
]
dφµ,

and

F(φ) =
1

2N2

∑
m

Tr
[
Fµν(

2πm

N
+

φ

N
)
]
dφµ ∧ dφν .
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Observable consequences

I One can show that the transverse Hall conductivity is
σxy = ie2F12(φ = 0).

I As we take the thermodynamic limit N →∞,

F(φ) =
1

2N2

∑
m

Tr
[
Fµν(

2πm

N
+

φ

N
)
]
dφµ ∧ dφν

→
[ ∫

B.Z .
Tr
( F

(2π)2

)]
dφ1 ∧ dφ2 = − ic1

2π
dφ1 ∧ dφ2,

where c1 is the 1st Chern number of E , so that
σxy = e2c1/2π, which is the famous result of Thouless for the
integer plateaus in the Hall effect.

I So the curvature became constant in the thermodynamic
limit, what about other quantities?
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The quantum metric in twist-angle
space, the localization tensor and the

complex structure τ
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Quantum metric in twist-angle space

I The family of quantum states {|GS(φ)〉}φ∈T 2 , provides a
notion of infinitesimal distance between fluxes:

|〈GS(φ)|GS(φ + δφ)〉|2 ≈ 1− Gµν(φ)δφµδφν .

I The quantity G = Gµν(φ)dφµdφν is the pullback of the
Fubini-Study metric on the projective space PH,

gFS = |d |Ψ〉 − 〈Ψ|d |Ψ〉|Ψ〉|2.
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Marzari-Vanderbilt theory
I Most remarkably, denoting 〈·〉 = 〈GS(φ)| · |GS(φ)〉, we have

Gµν(φ) = 〈XµX ν〉 − 〈Xµ〉〈X ν〉.

I The intuition behind the previous formula is that in the
thermodynamic limit Xµ = i∂/∂kµ, and

|GS(φ + δφ)〉 = exp(−iδφµXµ)|GS(φ)〉.

I Then

〈GS(φ)|GS(φ + δφ)〉
= 〈GS(φ)| exp(−iδφµXµ)|GS(φ)〉 := Z (δφ).

I So

− ∂2 logZ

∂δφµ∂δφν

∣∣∣
δφ=0

= 〈XµX ν〉 − 〈Xµ〉〈Xµ〉.
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I Thus, the quantum metric in twist-angle space is a measure of
electron localization!

I For a family of quantum states, it is a known result that if the
gap closes while changing some parameter, the quantum
metric becomes singular.

I This is ultimately tied to the fact that if the family
{|Ψ0(x)〉}x∈M is the ground state of a family {H(x)}x∈M we
have the formula

quantum metric =
∑
j 6=0

〈Ψ0|dH|Ψj〉〈Ψj |dH|Ψ0〉
(Ej − E0)2

,

resembling perturbation theory (not a coincidence).

I As a consequence, if the system became metallic by tunning
some external parameter, the localization tensor blows up.
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Quantum metric in twist-angle space

I The Slater determinant induces a similar form for the
quantum metric as it did for the Berry curvature:

Gµν(φ) =
1

N2

∑
m

gµν(
2πm

N
+

φ

N
)dφµdφν ,

where g = gµν(k)dkµdkν = Tr(PdPdP) is the quantum
metric in momentum space.

I The thermodynamic limit now provides us with a flat metric:

Gµν(φ) =

∫
B.Z .

d2k

(2π)2
gµν(k),

clearly independent of φ.

33 / 56



I A flat metric in the two torus is described by the Riemannian
volume V =

∫
T 2

√
detGdφ1dφ2 and by a complex parameter

τ :

τ =
G12

G11
+ i

√
detG

G11
∈ H = {z ∈ C : Im(z) > 0},

so that

G =
V

(2π)2Im(τ)
(dφ2

1 + 2Re(τ)dφ1dφ2 + |τ |2dφ2
2).

I The latter determines a complex coordinate on the torus
φ = φ1 + τφ2, so that

G ∝ |dφ|2 = d φ̄dφ.
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Figure: Illustration of the complex torus of twist-angles/fluxes.
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Physical interpretation

I Notice that since Gµν = 〈XµX ν〉 − 〈Xµ〉〈X ν〉, τ is naturally
related to the anisotropy of position correlations and the
Riemannian volume the strength of these correlations.

I For instance, the standard τ = i corresponding to the lattice
Z2, gives G 12 = 0 for so that the directions X 1 and X 2

decouple 〈X 1X 2〉 = 〈X 1〉〈X 2〉.
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Gauge ambiguity

I We have to identify τ and τ ′ such that

τ ′ =
aτ + b

cτ + d
, with

[
a b
c d

]
∈ GL(2;Z)

I The reason is that this corresponds to an observer choosing a
different basis for the lattice Z2 in real space Xµ 7→ AµνX ν ,
with A ∈ GL(2;Z). Essentially, it is a gauge choice.

I From the math side, this corresponds to choosing a different
element in the isomorphism class of the complex torus.

I Thus, in principle, by changing the insulator, we could move
around the space of complex structures of the torus.
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Figure: The quotient space H/SL(2;Z) has a fundamental domain given
by D = {τ ∈ H : |τ | ≥ 1 and Re(z) ≤ 1/2}. The points τ, τ ′ ∈ D with
Re(τ) = ±1/2 and τ ′ = τ ± 1 or |τ | = 1 and τ ′ = −1/τ are the same in
the quotient space.
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Relation to the low-energy theory
near a quantum phase transition and

the geometric character of τ
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I Suppose we are given a single-particle Hamiltonian and that
two levels cross generically at a critical momentum kc by
tuning a parameter M of the system to a value Mc .

I By a shift of the variables we can assume kc = 0 and Mc = 0.

I The two-level crossing can be described, in a neighborhood of
(k,M) = 0, by a 2× 2 low energy Hamiltonian of the form

H(k,M) ≈ (ak1 + bk2)σ1 + (ck1 + dk2)σ2 + Mσ3,

with ad − bc 6= 0.

I In the absence of symmetries this case is completely generic,
in the sense that other types of crossings, like quadratic band
crossing, can be be adiabatically connected to this one.
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I Define new momenta[
q1

q2

]
= A

[
k1

k2

]
, with A =

[
a b
c d

]
rendering this block an isotropic Dirac Hamiltonian,

q1σ1 + q2σ2 + Mσ3.

I The new momenta q explicitly violate the dual lattice 2πZ2,
since

k + K 7→ q + AK,

and if K ∈ 2πZ2 we will have AK ∈ 2πZ2 iff A ∈ GL(2;Z).
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Quantum metric

I To compute the quantum metric in twist-angle space,
Gµν =

∫
B.Z . gµν(k)d2k/(2π)2, we need to compute the

quantum metric in momentum space, gµν(k), which near the
critical point k = 0, assumes the form in the q coordinates: q2

1+M2

(q2+M2)2 − q1q2

(q2+M2)2

− q1q2

(q2+M2)2

q2
2+M2

(q2+M2)2

+ regular

I The first term becomes singular at the critical point.

I One can then see that as M → 0, the most relevant
contribution is given by a small neighbourhood of k = 0,
which we take {q : |q| < Λ}.

I The transformation q = Ak is linear and has a constant
Jacobian, therefore, we can safely perform the integration in q
and then go back to the original coordinates (this actually
corresponds to changing the φ coordinates appropriately).
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I The quantum metric Gµν =
∫
B.Z . gµν(k)d2k/(2π)2 will

assume the form

G̃ = [Gµν ] = C ln
(M2 + Λ2

M2

) [ a2 + c2 ab + cd
ab + cd b2 + d2

]
+ regular.

I Through a conformal transformation we can make the regular
part vanish as M → 0 and

τ =
ab + cd + i | detA|

a2 + c2
=
ω2

ω1
,

with ω2 = a + ic and ω1 = b + id .

I Thus, the columns of A =

[
a b
c d

]
determine the basis for

the lattice determining a finite τ at the gapless point M = 0.

I If A ∈ GL(2;Z) then we end up with the lattice Z2 and τ is
equivalent to τ = i .
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I We also remark that

V ∼ log(
M2 + Λ2

M2
),

so that V →∞ when the system becomes gapless. Hence,
the Riemannian volume is responsible for the singularity in the
localization tensor when M → 0.
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Quantum metric vs Berry curvature

I The behaviour of the momentum space quantum metric
associated to the Dirac point:

[gµν(q)] ∼

 q2
1+M2

(q2+M2)2 − q1q2

(q2+M2)2

− q1q2

(q2+M2)2

q2
2+M2

(q2+M2)2


should be compared to the behaviour of the momentum space
Berry curvature:

F (q) ∼ − i

2

M(
M2 + q2

)3/2
dq1 ∧ dq2.
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I A transition in which M changes sign, known as a band
inversion, passing through M = 0, involves a change in
topology of the Bloch bundle E as the change in the Chern
number is naturally associated with the sign of M.

I This signature is present in the local form of F , it is odd under
M → −M, and it is natural to expect since c1 ∝

∫
B.Z . F .

I Since F is odd under M → −M and g is even, we understand
that G as well as τ do not distinguish between topological
phase transitions ∆c1 = +1 or ∆c1 = −1.

I Note however that G captures the gap closing point through
the Riemannian volume and τ the information about the
anisotropy of the local low-energy theory.

I This emphasizes the topological character of the flat F versus
the geometric character of G .
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Example: A modified massive Dirac
model
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Modified massive Dirac model

I We consider spinless fermions with a pseudo spin internal
degree of freedom such that the tight binding model is

H(k,M) = [sin(k1) + a sin(k2)]σ1 + b sin(k2)σ2

+ [M − cos(k1)− cos(k2)]σ3,

with a ∈ R, b > 0.

I The usual massive Dirac model is recovered for a = 0 and
b = 1 and it has a low energy theory which is the familiar
2 + 1 dimensional Dirac Hamiltonian with mass M
q1σ1 + q2σ2 + Mσ3.
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Modified massive Dirac model (cont.)

I The model has a topological phase diagram independent of a
and b:

c1 =


0, |M| > 2

+1, −2 < M < 0

−1, 0 < M < 2

,

where c1 denotes the 1st Chern number of the bundle
E → B.Z . defined previously and it generates transverse Hall
conductivity plateaus. Mc = −2, 0,+2 are the points of phase
transition.

I Using the previous results one can show that τ = a + ib for
Mc = ±2 and τ = −a + ib for Mc = 0.

I Observe the usual isotropic massive Dirac model has τ = i .

I Thus, this model allows to swipe the whole space of complex
structures.
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Conclusions and outlook
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Conclusions

I We have shown how in two spatial dimensions the anisotropy
of the localization tensor is related to a complex structure τ
over the twist-angle torus.

I τ is a geometric quantity and not topological. It is sensitive to
adiabatic perturbations.
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Conclusions

I τ is finite, even when undergoing a phase transition where the
gap closes, and thus going through a metallic state.

I τ is intimately related to the anisotropy of the low-energy
Dirac theory near the critical points. Indeed, at the critical
points of phase transition, τ is determined by the low energy
theory.

I The complex structure τ and the Riemannian volume V are
physically sensible gauge-invariant observables which
completely characterize the localization tensor.
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What about interactions?

I τ can be defined in the presence of interactions, provided some
gap condition exists and we have a family {|GS(φ)〉}φ∈T 2 .

I The family {|GS(φ)〉}φ∈T 2 cannot be trivial since if it were
trivial, i.e., constant, the metric would be automatically
degenerate.

I In the interacting case G will not, generically, be flat.
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What about interactions? (cont.)

I The procedure to determine τ is to determine a flat metric in
the conformal class of G , which involves solving a differential
equation for the conformal factor which enforces the Ricci
scalar to be zero.

I τ and V will no longer, in general, completely specify the
localization tensor since it will not be flat.

I In the presence of translation invariance, this can also be seen
as a measure of how interacting the system is.

I Namely, the failure of describing the localization tensor
completely through τ and V measures the fluctuations from a
quasi-free-fermion description.
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If you want to read through details check my paper:
Phys. Rev. B, 101:115128, Mar 2020.

A big thanks to João, Zé, Thomas, Nathan, Nikola,
Raffaele and Roger for fruitful discussions!
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Thank you, and stay safe!
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