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Overview - What?

Resurgence A framework to study perturbation theory and its
relation to non-perturbative phenomena.

Superconductors A non-perturbative phenomenon! And a very
physical one. We took the first steps into fitting
superconductivity into the language of resurgence.

Renormalons Looking at superconductivity from the
perspective of perturbation theory, we find it to
be a renormalon effect.

(The papers: arXiv:1905.09575 and arXiv:1905.09569)
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Overview - How?

7 We take a model that is simple enough to be tractable but
complex enough to be rich: the Gaudin-Yang model.

7 We find the exact coefficients of the perturbative
expansion of its ground state through integrability
techniques.

7 We relate this series to superconductivity and Feynman
diagrams.

7 We extract what might be the general lesson of this
exercise.
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Overview - The menu

7 Resurgence in a nutshell
7 The Gaudin-Yang model and its solutions
7 Results, resummation and renormalons
7 Beyond Gaudin-Yang, a conjecture and the conclusion
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The divergence menace

O ten in QM/QFT, observables f(g) computed pertubatively in
some variable g result in asymptotic series.

A series expansion of a function is asymptotic if for any
sufficiently large truncation N the remainder is smaller than gN

when g → 0.

They o ten don’t converge (Dyson, 1953)!

Many series expansions in physics are of the form

FN(g) =
N∑

k=1
akgk, ak ∼ A−kk! k ≫ 1. (2.1)

Since the series doesn’t converge, we can show that the best
approximation we can get is

F(g)− FNoptimal(g) ∼ e−|A/g|. (2.2)
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Borel resummation - An old hope

Many series, including some conventionally divergent series,
can be resummed through Borel (re)summation (1899).

The Borel transform of a series is given by

φ(z) ≈
∑
k≥0

bkzk → φ̂(ζ) =
∑
k≥0

bk
k! ζ

k (2.3)

If its Laplace transform converges, φ is Borel summable with
Borel sum

s(φ)(z) =
∫ ∞

0
e−ζφ̂(zζ)dζ (2.4)

which recovers the “true” function φ(z).
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Borel resummation - The ambiguity strikes back

Let us look at the Borel transform of our example from before

Fp(g) ∼
∞∑

k≥0
(A−kk!)gk ⇒ F̂(ζ) = 1

1 − ζ/A (2.5)

Which has a pole on R+ if A > 0 !

We can deform the contour
to go slightly above or below the real axis.

But there is an ambiguity

s+(F)(g)− s−(F)(g) = 2πie−A/g (2.6)
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Borel resummation - The return of the non-pertubative sector

Ambiguities can be cancelled by non-perturbative sectors.

The “true” function is then given by a trans-series

φ(z) =
∑
k≥0

ckzk +
∑
l≥1,i

Cl,ie−lAi/z
∑
k≥0

c(l,i)k zk (2.7)

we can further augment with the monomials log(z),
exp(− exp(Ai/z)), log(log(z)), exp(− exp(exp(Ai/z))), ...

We can reverse this and learn about non-perturbative
phenomena by inspecting the asymptotics of the perturbative
sectors. The non-pertubative sectors “resurge”.

Road to a better understanding of QFT and non-perturbative
physics.
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The Gaudin-Yang model

The Gaudin-Yang model (1967)

7 is a one dimensional N -particle gas of spin 1/2 fermions
in a circle of length L

7 has an attractive interaction given by a δ-function
interaction potential of coupling g

We take the limit of finite particle density n = N/L and
N ,L → ∞.

Characterised by the dimensionless coupling

γ =
g
n (3.8)

Note that the weakly coupled gas in one dimension is dense!
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Perturbation theory

We want to find ground-state energy as a function of γ

e(γ) = E(γ)
n3 = e0 +

∑
n≥1

cnγ
n (3.9)

We can start with free Fermi gas, then Hartree-Fock, then
bubble diagrams...

e(γ) = π2

12 − 1
2γ − 1

12γ
2 − ζ(3)

π4 γ3 + · · · (3.10)

e(�)� e0 =
<latexit sha1_base64="atNU6rv7a8bIF5hOLsSXtJ0nWEI=">AAAB9XicbVBNSwMxEM36WetX1aOXYBHqwbJbBUUQCl48VrAf0K4lm862oUl2SbJKWfo/vHhQxKv/xZv/xrTdg7Y+GHi8N8PMvCDmTBvX/XaWlldW19ZzG/nNre2d3cLefkNHiaJQpxGPVCsgGjiTUDfMcGjFCogIODSD4c3Ebz6C0iyS92YUgy9IX7KQUWKs9AClTp8IQU5OoetedwtFt+xOgReJl5EiylDrFr46vYgmAqShnGjd9tzY+ClRhlEO43wn0RATOiR9aFsqiQDtp9Orx/jYKj0cRsqWNHiq/p5IidB6JALbKYgZ6HlvIv7ntRMTXvopk3FiQNLZojDh2ER4EgHuMQXU8JElhCpmb8V0QBShxgaVtyF48y8vkkal7J2VK3fnxepVFkcOHaIjVEIeukBVdItqqI4oUugZvaI358l5cd6dj1nrkpPNHKA/cD5/AOzekXU=</latexit>

+
<latexit sha1_base64="L7dec7yNCE+kgmxsc6rc9AZvQtw=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGE3CoqngBePCZgHJEuYnfQmY2Znl5lZIYR8gRcPinj1k7z5N06SPWhiQUNR1U13V5AIro3rfju5tfWNza38dmFnd2//oHh41NRxqhg2WCxi1Q6oRsElNgw3AtuJQhoFAlvB6G7mt55QaR7LBzNO0I/oQPKQM2qsVL/oFUtu2Z2DrBIvIyXIUOsVv7r9mKURSsME1brjuYnxJ1QZzgROC91UY0LZiA6wY6mkEWp/Mj90Ss6s0idhrGxJQ+bq74kJjbQeR4HtjKgZ6mVvJv7ndVIT3vgTLpPUoGSLRWEqiInJ7GvS5wqZEWNLKFPc3krYkCrKjM2mYEPwll9eJc1K2bssV+pXpeptFkceTuAUzsGDa6jCPdSgAQwQnuEV3pxH58V5dz4WrTknmzmGP3A+fwBwa4yr</latexit>

+
<latexit sha1_base64="L7dec7yNCE+kgmxsc6rc9AZvQtw=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGE3CoqngBePCZgHJEuYnfQmY2Znl5lZIYR8gRcPinj1k7z5N06SPWhiQUNR1U13V5AIro3rfju5tfWNza38dmFnd2//oHh41NRxqhg2WCxi1Q6oRsElNgw3AtuJQhoFAlvB6G7mt55QaR7LBzNO0I/oQPKQM2qsVL/oFUtu2Z2DrBIvIyXIUOsVv7r9mKURSsME1brjuYnxJ1QZzgROC91UY0LZiA6wY6mkEWp/Mj90Ss6s0idhrGxJQ+bq74kJjbQeR4HtjKgZ6mVvJv7ndVIT3vgTLpPUoGSLRWEqiInJ7GvS5wqZEWNLKFPc3krYkCrKjM2mYEPwll9eJc1K2bssV+pXpeptFkceTuAUzsGDa6jCPdSgAQwQnuEV3pxH58V5dz4WrTknmzmGP3A+fwBwa4yr</latexit>

+ · · ·
<latexit sha1_base64="C09ldC/hjQvpSoLvCktFvHfjMwg=">AAAB73icbVBNS8NAEJ34WetX1aOXxSIIQkmqoHgqePFYwX5AG8pms2mXbrJxdyKU0j/hxYMiXv073vw3btsctPXBwOO9GWbmBakUBl3321lZXVvf2CxsFbd3dvf2SweHTaMyzXiDKal0O6CGS5HwBgqUvJ1qTuNA8lYwvJ36rSeujVDJA45S7se0n4hIMIpWap+TLgsVml6p7FbcGcgy8XJShhz1XumrGyqWxTxBJqkxHc9N0R9TjYJJPil2M8NTyoa0zzuWJjTmxh/P7p2QU6uEJFLaVoJkpv6eGNPYmFEc2M6Y4sAselPxP6+TYXTtj0WSZsgTNl8UZZKgItPnSSg0ZyhHllCmhb2VsAHVlKGNqGhD8BZfXibNasW7qFTvL8u1mzyOAhzDCZyBB1dQgzuoQwMYSHiGV3hzHp0X5935mLeuOPnMEfyB8/kDasOPig==</latexit>

+
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Figure 1: Feynman diagrams.
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BCS approximation

The GY-model ground state can be modelled as a
superconductor.

Using the BCS approximation (1957) we assume the
wave-function of the ground state to consist of Cooper pairs.

Solving the gap equation, we find the BCS gap (binding energy
of a Cooper pair)

∆BCS ≈
(

32n2

π2

)
e−

π2
2γ (3.11)

and
eBCS(γ) ≈

π2

12 − γ

2 − 2π2e−
π2
γ (3.12)
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Bethe Ansatz

The GY model is integrable, so we can instead describe its
ground state by a Bethe Ansatz integral equation

f(x)
2 +

1
2π

∫ B

−B

f(y)dy
(x − y)2 + 1 = 1, −B < x < B. (3.13)

where f(x) is the density of Bethe roots and B ∼ n/g.

We can relate it to our observables. The dimensionless
coupling is given by

1
γ
=

n
g =

1
π

∫ B

−B
f(x)dx, (3.14)

and the ground state energy is

e(γ) = −γ2

4 + π2
∫ B
−B f(x)x2dx(∫ B
−B f(x)dx

)3 . (3.15)
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Bethe Ansatz

2 4 6 8 10

-20

-15

-10

-5

Figure 2: BCS approximation for the ground state energy (blue) vs.
exact numeric solution of the ground state energy (red).
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Bethe Ansatz - Exact perturbative solution

The exact perturbative method finds a solution in for f(x) as a
series in 1/B, from which we can obtain e(γ).

It was developed by D. Volin (2009) in the context of AdS/CFT,
though key steps had been assembled before (Hutson 1963,
Popov 1977, Iida-Wadati 2005, Tracy-Widom 2016,...).

We study the integral equation in two regimes and then match
the two to fix unknown coefficients.

-10 -5 5 10

1.2

1.3

1.4

Figure 3: Numerical solution of f(x) when B = 10.
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Bethe Ansatz - I think we should see other models

Other models described by similar integral equations

7 The GY gas with Ns spin components (in GY Ns = 2)
7 The GY with a repulsive interaction
7 The Lieb-Liniger model (1963), a 1D gas of bosons
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Results, resummation and
renormalons
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Large order behaviour - The energy

e(γ) = e0 +
∑
k≥0

ckγ
k

=
π2

12 − γ

2 +
γ2

6 − ζ(3)
π4 γ3 − 3ζ(3)

2π6 γ4 − 3ζ(3)
π8 γ5

− 5(5ζ(3) + 3ζ(5))
4π10 γ6 −

3
(
12ζ(3)2 + 35ζ(3) + 75ζ(5)

)
8π12 γ7

−
63

(
12ζ(3)2 + 7ζ(3) + 35ζ(5) + 12ζ(7)

)
16π14 γ8

−
3
(
404ζ(3)2 + 240ζ(5)ζ(3) + 77ζ(3) + 735ζ(5) + 882ζ(7)

)
4π16 γ9

+O
(
γ10)

(4.16)

Agrees with numerical predictions (Prolhac 2017).
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Large order behaviour - Results

ck ∼ A−b−kΓ(k + b) ⇒ sk =
kck
ck+1

∼ A +O
(

1
k

)
, k ≫ 1 (4.17)

10 20 30 40 50

8

10

12

14

Figure 4: sk (in blue) and its Richardson transform (in orange), which
should converge to A faster.
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Large order behaviour - Resurgence

We find numerically

ck ∼ − 1
π
(π2)−k+1Γ(k − 1), k ≫ 1. (4.18)

This leads to a Borel singularity at ζ = π2 and a
non-perturbative ambiguity

−2γe−π2/γ (4.19)

Same non-perturbative scale as the ∆2
BCS! We thus expect a

trans-series

e(γ) ∼
∑
n≥0

cnγ
n +

∑
ℓ≥1

Cℓ e−ℓπ2/γγbℓ
∑
n≥0

c(ℓ)n γn. (4.20)

What type of non-pertubative effect is it?
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Renormalons - Less is more

With instantons, coefficients are factorially divergent because
the number of diagrams gets too big.

They are associated to non-trivial saddle points.

We can rule
out instantons (Parisi 1977, Baker-Pirner 1983).

With renormalons, coefficients are factorially divergent
because individual Feynman diagrams through their momenta
integration become too big.

In particle physics renormalon diagram typically come from log

divergences at k → 0,∞. In condensed matter, at q → 0, 2kF.
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Renormalons - An unfortunate name

They were first found in (renormalizable) asymptotically free
theories by ’t Hoo t, where they dominate over instantons.
Hence the misnomer.

Figure 5: A typical renormalon diagram in particle physics.

There is no clear semi-classical description of renormalons yet,
though there is work in that direction by Argyres, Unsal et al.

When there is an OPE picture, we can associate renormalons
with non-zero condensates in the vacuum.
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Diagrammatics - One diagram to rule them all...

e1(�) = + + + · · ·

Figure 6: Ring diagrams.

Ring diagrams...

7 are factorially divergent in one dimension
7 dominate at large Ns

7 provide the correct weight
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Diagrammatics - A sequence of Escher drawings

We can also have ladder diagrams

+ + + · · ·

Figure 7: Ladder diagrams.

They feature in traditional calculations of superconductivity.

But they underestimate the divergence. They are, however,
more relevant in higher dimensions (Baker 1971). And there’s
more than one family of them.
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What do we learn from GY

7 Lack of resummability and bad vacua, an old tale.
7 A mathematical view into the Cooper instability
7 A physical picture, but no semiclassical picture.
7 Renormalons in a new context.

22



A conjecture

We thus conjecture

7 The perturbative expansion of the ground state of a
superconductor is non-Borel resummable.

7 The divergence is caused by renormalon effects.
7 The weight of the non-perturbative effects is given by the
square of the BCS gap.

23



Beyond Gaudin-Yang

We what can we say about...

7 repulsive gas? The repulsive GY turns out to be
Borel-summable, as expected.

7 discrete models? In the Hubbard model at half filling, the
series is known exactly and we confirm our conjecture.

7 higher dimensions? In the 3d gas we can show there are
diverging diagrams, hence evidence for renormalons, but
can’t yet confirm the right weight.

7 bosons? In the Lieb-Liniger model we find a
non-perturbative correction ∼ e−8π/√γ but its origin
remains elusive... for now.

7 relativistic models? In asymptotically free integrable QFTs
we also have renormalons. (arXiv:1909.12134)
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Conclusion

7 Resurgence can help understand many-body theory.
7 The superconductor gap is a robust energy scale in
attractive fermion systems, so it should dictate
non-perturbative effects.

7 The Cooper instability can be phrased more precisely
using Borel summability.

7 Renormalons can appear in condensed matter systems.
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The end.

Thank you!
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