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The Turing machine

The Turing machine

q

q0, qhalt

Controlo Finito

fita de input

fita de trabalho

n = |x|
tamanho do input

1 0 1 1 0 t t t t t . . .

1 X 1 Y 0 t t t t t . . .
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The Turing machine

Sending π at once!

“

#! / usr / bin / env python
import random
import math
countinside = 0
for count in range(0, 10000):

d = math.hypot(random.random(),
random.random())

if d < 1: countinside += 1
count += 1
print 4.0 * countinside / count

“

Poe, E., Near a Raven

Midnights so dreary, tired and weary.
Silently pondering volumes extolling all by-now obsolete lore.

During my rather long nap – the weirdest tap!
An ominous vibrating sound disturbing my chamber’s antedoor.

“This”, I whispered quietly, “I ignore”.

Perfectly, the intellect remembers: the ghostly fires, a glittering ember.
Inflamed by lightning’s outbursts, windows cast penumbras upon this floor.

Sorrowful, as one mistreated, unhappy thoughts I heeded:
That inimitable lesson in elegance – Lenore –

Is delighting, exciting... nevermore.

(Mike Keith, 1995)
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The Turing machine

Turing machine as an alarm clock

qa

p0 p1 p2 q1

q2 q3

0;t;t → R; 0̇,N; N

t;t;t → N; N; N

0; 0̇;t → N; N; N

t; 0̇;t → N; N; N

0; 0̇;t → R; N; 0̇,N
0; 0̇; 0̇→ R; R; R

t; 0̇; 0̇→ N; N; N

; 0; 0̇→ N; L; N

;t; 0̇→ N; L; N

;t; 0→ N; 0, R; L

;t;t →; 0, R; L

; 0;→ N; R; 0, R
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Collatz function

Collatz function

Iterating Collatz function
input n;
while n 6= 1 do if even(n) then n := n/2 else n = 3n + 1

Sequences generated by different inputs

4, 2, 1 HALT
5, 16, 8, 4, 2, 1 HALT
7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1 HALT
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Collatz function

Collatz function

Open problem

1 It is an open problem to know if the Collatz function takes value 1
after finitely many iterations.

2 If a suitable version of the halting problem were decidable, then it
would easy to solve Collatz open problem.
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The ARNN model

The ARNN model
Development of Physical Super-Turing Analog Hardware 

A. Steven Younger1, Emmett Redd1, Hava Siegelmann2 

1 Missouri State University, Springfield, MO, USA 
{steveyounger,emmettredd}@missouristate.edu 

2 University of Massachusetts-Amherst, Amherst, MA, USA hava@cs.umass.edu 

Abstract. In the 1930s, mathematician Alan Turing proposed a mathematical 
model of computation now called a Turing Machine to describe how people fol-
low repetitive procedures given to them in order to come up with final calcula-
tion result.  This extraordinary computational model has been the foundation of 
all modern digital computers since the World War II. Turing also speculated 
that this model had some limits and that more powerful computing machines 
should exist. In 1993, Siegelmann and colleagues introduced a Super-Turing 

-Turing 
computation models have no inherent problem to be realizable physically and 
biologically. This is unlike the general class of hyper-computer as introduced in 
1999 to include the Super-Turing model and some others.  This report is on re-
search to design, develop and physically realize two prototypes of analog recur-
rent neural networks that are capable of solving problems in the Super-Turing 
complexity hierarchy, similar to the class BPP/log*. We present plans to test 
and characterize these prototypes on problems that demonstrate anticipated Su-
per-Turing capabilities in modeling Chaotic Systems.  
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The dynamic system

Analogue Recurrent Neural Net [SS94, SS95, Sie99]

System equation

x(t + 1) = σ(Ax(t) + Bu(t) + c) .
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The dynamic system

Analogue Recurrent Neural Net [SS94, SS95, Sie99]

uk

xj cjxici

bjkbik

aij ajj

aji

aii

Figure: xi [t + 1] = σ

(
N∑

j=1
aij xj [t] +

M∑
j=1

bij uj [t] + ci

)
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The dynamic system

Common sigmoids

Sigmoids [MP43], [SS94, SS95] and [Hay94]
(a) The McCulloch-Pitts sigmoid,

σd (x) =
{

1 if x ≥ 0
0 if x < 0

(b) The saturated sigmoid,

σ(x) =

{ 1 if x > 1
x if 0 ≤ x ≤ 1
0 if x < 0

(c) The analytic sigmoid of parameter k,

σk(x) = 1
1 + e−kx
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The dynamic system

Computing successor in unary

Example (Successor in unary)

y +
1 = σ(a)

y +
a = σ(a + y1)

Example (Successor in unary)

t a y1 ya
0 0 0 0
1 1 0 0
2 1 1 1
3 0 1 1
4 0 0 1
5 0 0 0
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The dynamic system

Computing addition in binary

Example (Adition in binary)

y +
1 = σ(a + b + v + y1 − 2)

y +
2 = σ(a + b + v + y1 − 3)

y +
3 = σ(a − 2b + v − 2y1 − 1)

y +
4 = σ(−2a + b + v − 2y1 − 1)

y +
5 = σ(−2a − 2b + v + y1 − 1)

y +
6 = σ(−a − b − v + y1)

y +
7 = σ(a + b + v − 3y1)

y +
8 = σ(a − 3b + v + y1)

y +
9 = σ(−3a + b + v + y1)

y +
10 = σ(−a − b + v + y1)

y +
a+b = σ(y2 + y3 + y4 + y5 + y6)
y +

v = σ(y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + y10)
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The dynamic system

Computing addition in binary

Example (Addition in binary)
t a b v y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 ya+b yv

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 1 0 0 1 0 0 0 1 1 0 0 0 0
3 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1
4 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1
5 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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The computational power

Decidability

System equation

x(t + 1) = σ(Ax(t) + Bu(t) + c) .

Definition
A word w ∈ {0, 1}+ is said to be classified in time τ by a system N if the
input streams are (u1, u2), with u1 = 0w0ω and u2 = 01|w |0ω, and the
output streams are (v1, v2) with v2(t) ≡ (t = τ). If v1(τ) = 1, then the
word is said to be accepted, otherwise (if v1(τ) = 0) rejected.
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The computational power

Advice function vs oracle

Definition
Let B be a class of sets and F a class of total functions of signature
N→ Σ?. The non-uniform class B/F is the class of sets A for which some
B ∈ B and some f ∈ F are such that, for every w , w ∈ A if and only if
〈w , f (|w |)〉 ∈ B. If we take B as P and F as poly, then we get class
P/poly.
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The computational power

Advice function vs oracle

q, qhalt

Finite Control

input tape

1 0 1 1 0 t t t t t t · · ·

n = |x|

working tape

1 X 1 Y 0 t t t t t t · · ·

query tape

z1 . . . . . . . zn t t

· · ·
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The computational power

Lower and upper bounds in polynomial time

Proposition
The output of an ARNN after t steps is affected only by the first O(t)
digits in the expansion of the weights.

Proposition
ARNN[R]P = P/poly.
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The computational power

Computational power of ARNN under various restrictions

Weights Time restriction Computational power

Z none Regular sets
Q none Recursively enumerable sets
R polynomial P/poly
R none All sets
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The computational power

The BAM

V

Y

X0 · · · X2k−1 X2k · · · Xb−1

Z1

Z2

r

b
+1 b

−(2k − 1)

b

−(2k)

b
(−1)b−1

−(b − 1)

b/2 b/2

1/b
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The computational power

The standard sigmoid
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The computational power

P = NP relativise [CL13]

Proposition
The following propositions are equivalent for the standard analytic
activation function on the real weight:

1 P = NP
2 ARNN[Q]P = ARNN[Q]NP
3 ARNN[R]P = ARNN[R]NP
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Measurement theory

Measurement theory
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Measurement according to Hempel

Measurement according to Hempel [Hem52, KSLT09]

Definition
Given two binary relations E and L in O, L is E-irrefexive if, for all objects
a and b in a set O, if aEb is the case, then aLb does not hold.

Definition
Given two binary relations E and L in a set O, L is E-connected if, for all
objects a and b in O, if aEb is not the case, then either aLb or bLa holds.

Definition
Two binary relations E and L determine a comparative concept, or a
quasi-series, for the elements of O, if E is an equivalence relation and L is
transitive, E-irreflexive, and E-connected.

José Félix Costa (DMIST & CFCUL) Beamer February 8, 2019 25 / 63
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Measurement according to Hempel

Hempel: Measurement map [Hem52, KSLT09]

Definition
The map M : O → R is said to be a measurement map if

Axiom 1 If aEb, then M(a) = M(b).
Axiom 2 If aLb, then M(a) < M(b).
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Measurement according to Hempel

Hempel: Propositional

Proposition
For all a, b in O, one, and only one, of the following statements holds:
(a) aEb, (b) aLb, or (c) bLa.

Proposition
For all a, b in O:

If M(a) = M(b), then aEb
If M(a) < M(b), then aLb
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Measurement according to Hempel

Hempel: Propositional

Proposition
For all a, b in O, one, and only one, of the following statements holds:
(a) aEb, (b) aLb, or (c) bLa.

Proposition
For all a, b in O:

If M(a) = M(b), then aEb
If M(a) < M(b), then aLb
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Timed measurement systems

Timed measurement systems
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Measurement

Bachelard, Eddington

Gaston Bachelard
Let us briefly note that the behaviour of the precision balance, though it is faithful to the mass,
is not always clear: many students are surprised and disturbed by the slowness of the
measurement process. We can not say that, for everyone, there is a precise idea of measurement
of mass.a

aGaston Bachelard, The Philosophy of No: A Philosophy of the New Scientific Mind,
Viking Press, 1968 (1940).

Arthur Eddington
Yet space is a prominent feature of the physical world; and measurement of space — lengths,
distances, volumes — is part of the normal occupation of a physicist. Indeed it is rare to find
any quantitative physical observation which does not ultimately reduce to measuring distances.a

aArthur Eddington, The Expanding Universe, Cambridge University Press, First
published in 1933.
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Measurement

Collider experiment

2 m

P+ P+

O

before the collision

unknown masstest mass
~u
1 ms−1

P− P−

O

after the collision

unknown masstest mass
~vm ~vµ
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Measurement

Collider experiment

Implementing a comparative concept
1 Test particle m is detected backward, in time t: mLtµ;

2 Test particle m is detected forward, in time t: µLtm;
3 Test particle m not seen within time t: mEtµ.
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Complexity of a measurement

Timed relation [BCT10a]

Definition
A relation Et in O ×O, for the time bound t > 0, is said to be a timed
equivalence relation if there is a κ ≥ 1 so that

1 Et is reflexive;
2 Et is timed symmetric: for every a, b in O, if aEtb, then bEt/κa;
3 Et is timed transitive: for every a, b, and c in O, if aEtb and bEtc,

then aEt/κc;
4 if t < t ′ and aEt′b, then aEtb.

Axiom
The apparatus satisfies the separation property for the measurement map
M : O → R if, for every objects a and b in O, if M(a) < M(b), then there
exists a time bound t such that aLtb.
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José Félix Costa (DMIST & CFCUL) Beamer February 8, 2019 32 / 63



Complexity of a measurement

Timed relation [BCT10a]

Definition
A relation Et in O ×O, for the time bound t > 0, is said to be a timed
equivalence relation if there is a κ ≥ 1 so that

1 Et is reflexive;
2 Et is timed symmetric: for every a, b in O, if aEtb, then bEt/κa;
3 Et is timed transitive: for every a, b, and c in O, if aEtb and bEtc,

then aEt/κc;

4 if t < t ′ and aEt′b, then aEtb.

Axiom
The apparatus satisfies the separation property for the measurement map
M : O → R if, for every objects a and b in O, if M(a) < M(b), then there
exists a time bound t such that aLtb.
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José Félix Costa (DMIST & CFCUL) Beamer February 8, 2019 32 / 63



Complexity of a measurement

Timed relation [BCT10a]

Definition
A relation Et in O ×O, for the time bound t > 0, is said to be a timed
equivalence relation if there is a κ ≥ 1 so that

1 Et is reflexive;
2 Et is timed symmetric: for every a, b in O, if aEtb, then bEt/κa;
3 Et is timed transitive: for every a, b, and c in O, if aEtb and bEtc,

then aEt/κc;
4 if t < t ′ and aEt′b, then aEtb.

Axiom
The apparatus satisfies the separation property for the measurement map
M : O → R if, for every objects a and b in O, if M(a) < M(b), then there
exists a time bound t such that aLtb.

José Félix Costa (DMIST & CFCUL) Beamer February 8, 2019 32 / 63



Complexity of a measurement

BCT Conjecture

Conjecture
No reasonable physical measurement has an
associated measurement map with polynomial
time complexity.
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The three types of measurements

The three types of measurements

José Félix Costa (DMIST & CFCUL) Beamer February 8, 2019 34 / 63



Types of measurement

Three cases of measurability [BCT10c, BCT14]

The vertical axis measures the outcome of the experiment; we have to find the
first zero x by trial and error on the value a:

Type I

a

x

Figure: Measure both a < x and x < a.
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Types of measurement

Three cases of measurability [BCT10c, BCT14]

Type I

a x

Rigid block

O
h

Figure: Balance.
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Types of measurement

Three cases of measurability [BCT10c, BCT14]

The vertical axis measures the outcome of the experiment; we have to find the
first zero x by trial and error on the value a:

Type II

a

x
Figure: Can only measure a < x .
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Types of measurement

Three cases of measurability [BCT10c, BCT14]

The vertical axis measures the outcome of the experiment; we have to find the
first zero x by trial and error on the value a:

Type II

a

x
Figure: Can only measure a < x .
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Types of measurement

Three cases of measurability [BCT10c, BCT14]

Type II

a x

Rigid block

O
h

Figure: Broken balance.
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Types of measurement

Three cases of measurrement [BCT10c, BCT14]

The vertical axis measures the outcome of the experiment; we have to find the
first zero x by trial and error on the value a:

Type III

a
x

Figure: Can only measure (a < x or x < a).
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Types of measurement

Balance scale in vanishing mode

Type III

z y
O

Figure: Schematic depiction of the vanishing balance experiment.
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Resume to type I: The scatter machine model I
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Scatter machine...

The scatter machine [BT07]

5 m

5 m

left collecting box

right collecting box

cannon
sample trajectory
10 m/s

0

1

z

limit of traverse of cannon
cannon aims at dyadic z ∈ [0, 1]

0

1

x

limit of traverse
of point of wedge
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Scatter machine...

Query tape [BCLT08b, BCLT08a, BCLT09]

Query tape

q, qhalt

Finite Control

input tape

1 0 1 1 0 t t t t t t · · ·

n = |x|

working tape

1 X 1 Y 0 t t t t t t · · ·

query tape

0 . z1 . . . . . . . zn t t

· · ·
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Scatter machine...

Non-deterministic and probabilistic machines

qa

qj qk

t;t; Ẋ → t,N; 0,N;t,N
t;t; Ẋ → t,N; 1,N;t,N

t;t; X → t,N; 0, R;t, L
t;t; X → t,N; 1, R;t, L

t;t; X → t,N; 0̇, R;t, L
t;t; X → t,N; 1̇, R;t, L

t;t; X → t,N;t,N;t, L

t;t; Ẋ → t,N; 0̇,N;t,N
t;t; Ẋ → t,N; 1̇,N;t,N
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Scatter machine...

Analog-digital scatter machine: decidability
[BCLT08b, BCLT08a, BCLT09]

Error-free analog-digital scatter machine
Let A ⊆ Σ? be a set of words over Σ. We say that an error-free analog-digital
scatter machine M decides A if, for every input w ∈ Σ?, w is accepted if w ∈ A
and rejected if w /∈ A.

Error-prone analog-digital scatter machine
Let A ⊆ Σ? be a set of words over Σ. We say that an error-prone analog-digital
scatter machine M decides A if there is a number γ < 1

2 , such that the error
probability of M for any input w is smaller than γ.
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Scatter machine...

BPP// log?

Definition
BPP// log? is the class of sets A ⊆ Σ? for which a probabilistic Turing
machine M, clocked in polynomial time, a prefix function f ∈ log, and a
constant γ < 1

2 exist such that, for every length n and input w with
|w | ≤ n, M rejects 〈w , f (n)〉 with probability at most γ if w ∈ A and
accepts 〈w , f (n)〉 with probability at most γ if w /∈ A.
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Scatter machine...

ARNN case and the sharp scatter machine

cannon computational class

z infinite precision P/poly

z unbounded precision
z + 2−|z|−1

z − 2−|z|−1

P/poly

z fixed precision

z + ε

z − ε
BPP// log?
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José Félix Costa (DMIST & CFCUL) Beamer February 8, 2019 47 / 63



Scatter machine...

ARNN case and the sharp scatter machine

cannon computational class

z infinite precision P/poly

z unbounded precision
z + 2−|z|−1

z − 2−|z|−1

P/poly

z fixed precision

z + ε

z − ε
BPP// log?
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Resume to type I: The scatter machine model II

Resume to type I: The scatter machine model II
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Smooth scatter machine

Smooth scatter machine [BCT12]

5 m

5 m

cannon

sample trajectory
10 m/s

0

1

z

limit of traverse of cannon
cannon aims at dyadic z ∈ [0, 1]

0

1

y

limit of traverse
of point of wedge

V

φ
φ

w

x

left collecting box

right collecting box
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Smooth scatter machine

Complexity of the vertex position [BCT12]

Proposition
Consider that g(x) is the function describing the shape of the wedge of a
SmSE. Suppose that g(x) is n times continuously differentiable near
x = 0, all its derivatives up to (n − 1)-th vanish at x = 0, and the n-th
derivative is nonzero. Then, when the SmSE, with vertex position y, fires
the cannon at position z, the time needed to detect the particle in one of
the boxes is t(z), where:

A
|y − z|n−1 ≤ t(z) ≤ B

|y − z|n−1 , (1)

for some A,B > 0 and for |y − z | sufficiently small.
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Smooth scatter machine

Complexity of the vertex position [BCT12]

Proposition
Any particle hitting horizontally, sufficiently closer to the vertex V , will
bounce back covering an horizontal distance before detection that goes to
infinity as O( 1

|z−y |).

Proposition
The protocol that processes queries between a Turing machine and the
generalised scatter machine takes a time that is at least exponential in the
size of the dyadic rational specified by the query during the binary search
procedure.
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Smooth scatter machine

Protocol [ABC+16]

The cannon can be placed at the dyadic rational z — infinite precision

Algorithm 1: Measurement algorithm for infinite precision.
Data: Positive integer ` representing the desired precision

1 x0 = 0 ;
2 x1 = 1 ;
3 z = 0 ;
4 while x1 − x0 > 2−` do
5 z = (x0 + x1)/2 ;
6 s = Prot IP(z�`) ;
7 if s == “qr ” then
8 x1 = z ;

9 if s == “ql ” then
10 x0 = z ;
11 else
12 x0 = z ;
13 x1 = z ;

14 return Dyadic rational denoted by x0
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Smooth scatter machine

Protocol [ABC+16]

The cannon can be placed at the dyadic rational z, but only with unbounded but finite precision, say 2−|z|−1, i.e., the cannon
can be set at position z ± 2−|z|−1

Algorithm 5: Measurement algorithm for unbounded precision.
Data: Positive integer ` representing the precision

1 x0 = 0 ;
2 x1 = 1 ;
3 z = 0 ;
4 while x1 − x0 > 2−` do
5 z = (x0 + x1)/2 ;
6 s = Prot UP(z�`) ;
7 if s == “qr ” then
8 x1 = z ;

9 if s == “ql ” then
10 x0 = z;
11 else
12 x0 = z ;
13 x1 = z ;

14 return Dyadic rational denoted by x0
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Smooth scatter machine

Protocol [ABC+16]

The cannon can be placed at the dyadic rational z, but only with fixed a priori precision ε (dyadic rational), i.e., the cannon can
be set at position z ± ε

Algorithm 9: Measurement algorithm for fixed precision.
Data: Integer ` representing the precision

1 c = 0 ;
2 i = 0 ;
3 ξ = 22`+h ;
4 while i < ξ do
5 s = Prot FP(1�`) ;
6 if s == “ql ” then
7 c = c + 2 ;

8 if s == “qt ” then
9 c = c + 1 ;

10 i++ ;

11 return c/(2ξ)
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Hybrid computers

The digital-analog device as a biased coin

z − 2−`

z + 2−`

0

1
zy

The schedule limit T (`)

left collecting box

right collecting box

Figure: The SmSE with unbounded
precision as a coin.

z − ε

z + ε

0

1
y

The schedule limit T (`)

z

left collecting box

right collecting box

Figure: The SmSE with fixed precision
as a coin.
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Hybrid computers

Lower bounds

•

• •

• •

• •

—

computef (|w |)

—

generate coin tosses

—

simulate M

—

—

p3(|w |)

—

p2(|w |)

—

p1(|w |)

—

—

γ2

—

γ1

—

w
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The computational power of two-sided measurements

Computational power ([BCPT13, ABC+16, BCCT18])

Infinite Unbounded Fixed

Lower Bound P/ log? BPP// log? BPP// log?

Upper Bound P/ log? BPP// log2? BPP// log2?
Exponential schedule

Upper Bound — BPP// log? BPP// log?
Explicit Time Exponential schedule Exponential schedule
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The computational power of two-sided measurements

Results for different types, [BCT14, BCPT17]

Type of Oracle Infinite Unbounded Finite
lower bound P/ log? BPP// log? BPP// log?

Two-sided upper bound P/poly P/poly P/poly
upper bound (w/ exponential T ) P/ log? BPP// log? BPP// log?
lower bound P/ log? BPP// log? BPP// log?

Threshold upper bound −− −− −−
upper bound (w/ exponential T ) P/ log? BPP// log? BPP// log?
lower bound P/poly P/poly BPP// log?

Vanishing Type 1 upper bound P/poly P/poly BPP// log?
(Parallel) upper bound (w/ exponential T ) −− −− −−

lower bound P/ log? BPP// log? BPP// log?
Vanishing Type 2 upper bound P/poly P/poly BPP// log?

(Clock) upper bound (w/ exponential T ) −− BPP// log? −−
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Concept of a measurable quantity

Concept of a measurable quantity
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Measurable numbers

Geroch and Hartle [GH86]

Geroch and Hartle [GH86]
Every computable number is measurable. This is easy to see: Let the instructions direct that the
raw materials be assembled into a computer, and that a certain [...] program — one specified in
the instructions — be run on that computer. That is, every digital computer is at heart an
analog computer. a

aRobert Geroch and James B. Hartle, Computability and Physical Theories,
Foundations of Physics, 16(6), 1986.

Geroch and Hartle [GH86]
We now ask whether, conversely, every measurable number is computable — or, in more detail,
whether current physical theories are such that their measurable numbers are computable. This
question must asked with care. a

aRobert Geroch and James B. Hartle, Computability and Physical Theories,
Foundations of Physics, 16(6), 1986.
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Measurable numbers

Concept of measurable [BCT10b, ABC+16]

Definition
A distance y is said to be measurable if there exists a Turing machine,
equipped with a physical oracle with a computable schedule T , such that
it prints the first n bits of y on the output tape in less than T (n) time
steps without timing out in any query.

Proposition
There are uncountable many y ∈ [0, 1] so that, for any program P with
specified waiting times, there is a n so that P can not determine the first n
binary places of y .
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Measurable numbers

Measurable distances [BCT10b, ABC+16]

Proposition
For the SmSM with vertice at y (not a dyadic rational), written according to the
pattern:

y = 0·1 . . . 1︸ ︷︷ ︸
u1

0 . . . 0︸ ︷︷ ︸
u2

1 . . . 1︸ ︷︷ ︸
u3

0 . . . 0︸ ︷︷ ︸
u4

1 . . . 1︸ ︷︷ ︸
u5

0 . . . 0︸ ︷︷ ︸
u6

. . .

where u1 ≥ 0, ui ≥ 1 (i ≥ 2).

1 If y is measurable by any program, then the sequence uk is bounded by a
computable function.

2 If the sequence uk is bounded by a computable function, then y is
measurable by the linear search method.
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Open problems

Open problems
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[BCLT08b] Edwin Beggs, José Félix Costa, Bruno Loff, and John V. Tucker. On the complexity of measurement in classical
physics. In Manindra Agrawal, Dingzhu Du, Zhenhua Duan, and Angsheng Li, editors, Theory and Applications of
Models of Computation (TAMC 2008), volume 4978 of Lecture Notes in Computer Science, pages 20–30. Springer,
2008.
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