Coalescing random walks and the Kingman coalescent model

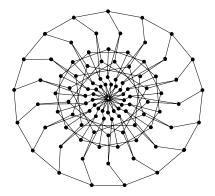
Johel Beltrán [johel.beltran@pucp.edu.pe]

Pontificia Universidad Católica del Perú (PUCP)

Joint with: Enrique Chávez, Claudio Landim

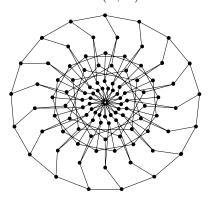
For a finite simple connected graph

$$G = (V, E)$$



For a finite simple connected graph

$$G = (V, E)$$

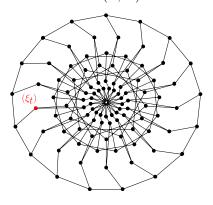


Discrete Laplacian Δ for G:

$$\Delta f(u) = -\sum_{v \in V} (f(v) - f(u)) \mathbf{1}_{v \sim u}, \quad u \in V.$$

For a finite simple connected graph

$$G = (V, E)$$



Discrete Laplacian Δ for G:

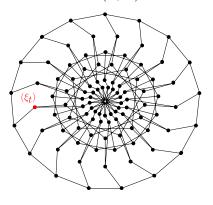
$$\Delta f(u) = -\sum (f(v) - f(u)) \mathbf{1}_{v \sim u}, \quad u \in V.$$

Thus, $-\Delta$ is the generator of a continuous-time Markov Chain (ξ_t) on V

with rates:
$$r(u, v) = \mathbf{1}_{v \sim u}$$

For a finite simple connected graph

$$G = (V, E)$$



Discrete Laplacian Δ for G:

$$\Delta f(u) = -\sum_{v} (f(v) - f(u)) \mathbf{1}_{v \sim u}, \quad u \in V.$$

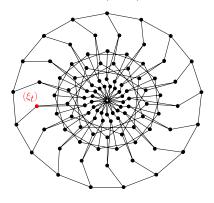
Thus, $-\Delta$ is the generator of a continuous-time Markov Chain (ξ_t) on V

with rates:
$$r(u, v) = \mathbf{1}_{v \sim u}$$

Eigenvalues of
$$\Delta$$
: $0 = \lambda_1$

For a finite simple connected graph

$$G = (V, E)$$



Discrete Laplacian Δ for G:

$$\Delta f(u) = -\sum_{v} (f(v) - f(u)) \mathbf{1}_{v \sim u}, \quad u \in V.$$

Thus, $-\Delta$ is the generator of a continuous-time Markov Chain (ξ_t) on V

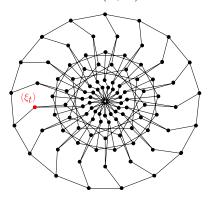
with rates:
$$r(u, v) = \mathbf{1}_{v \sim u}$$

Eigenvalues of
$$\Delta$$
: $0 = \lambda_1 < \lambda_2 \le \cdots \le \lambda_{|V|}$

Relaxation time:

For a finite simple connected graph

$$G = (V, E)$$



Discrete Laplacian Δ for G:

$$\Delta f(u) = -\sum_{v} (f(v) - f(u)) \mathbf{1}_{v \sim u}, \quad u \in V.$$

Thus, $-\Delta$ is the generator of a continuous-time Markov Chain (ξ_t) on V

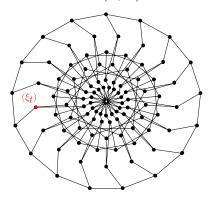
with rates:
$$r(u, v) = \mathbf{1}_{v \sim u}$$

Eigenvalues of
$$\Delta$$
: $0 = \lambda_1 < \lambda_2 \leq \cdots \leq \lambda_{|V|}$

Relaxation time:
$$\mathbf{t}_{rel}(G) = 1/\lambda_2$$

For a finite simple connected graph

$$G = (V, E)$$



Discrete Laplacian Δ for G:

$$\Delta f(u) = -\sum_{v} (f(v) - f(u)) \mathbf{1}_{v \sim u}, \quad u \in V.$$

Thus, $-\Delta$ is the generator of a continuous-time Markov Chain (ξ_t) on V

with rates: $r(u, v) = \mathbf{1}_{v \sim u}$

Eigenvalues of
$$\Delta$$
: $0 = \lambda_1 < \lambda_2 \leq \cdots \leq \lambda_{|V|}$

Relaxation time:
$$\mathbf{t}_{rel}(G) = 1/\lambda_2$$

Invar. meas. for (ξ_t) : m = unif. dist. on V

For a finite simple connected graph

$$G = (V, E)$$

Discrete Laplacian Δ for G:

$$\Delta f(u) = -\sum (f(v) - f(u)) \mathbf{1}_{v \sim u}, \quad u \in V.$$

Thus, $-\Delta$ is the generator of a continuous-time Markov Chain (ξ_t) on V with rates: $r(u, v) = \mathbf{1}_{v \sim u}$

Eigenvalues of
$$\Delta$$
: $0 = \lambda_1 < \lambda_2 \leq \cdots \leq \lambda_{|V|}$

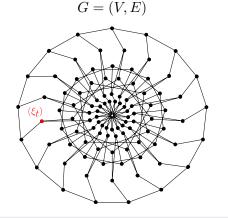
Relaxation time: $\mathbf{t}_{rel}(G) = 1/\lambda_2$

Invar. meas. for
$$(\xi_t)$$
: $m = unif. dist. on V$

Prop (Markov chains and Mixing times - Levin, Peres, Wilmer)

For
$$f: V \to \mathbb{R}$$
: $\mathbf{E}_{\boldsymbol{m}} \left(\underbrace{\frac{1}{T} \int_{0}^{T} f(\boldsymbol{\xi}_{\boldsymbol{s}}) \, ds}_{\text{time average}} - \underbrace{\boldsymbol{m} f}_{\boldsymbol{m}-average} \right)^{2} \le 1$

For a finite simple connected graph



Discrete Laplacian Δ for G:

$$\Delta f(u) = -\sum (f(v) - f(u)) \mathbf{1}_{v \sim u}, \quad u \in V.$$

Thus, $-\Delta$ is the generator of a continuous-time Markov Chain (ξ_t) on V

with rates:
$$r(u, v) = \mathbf{1}_{v \sim u}$$

Relaxation time:
$$\mathbf{t}_{\text{rel}}(G) = 1/\lambda_2$$

Invar. meas. for
$$(\xi_t)$$
: $m = unif. dist. on V$

Eigenvalues of Δ : $0 = \lambda_1 < \lambda_2 \leq \cdots \leq \lambda_{|V|}$

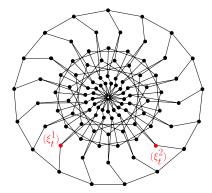
invar. meas. for (ζ_t) . m = anij. also. on V

Prop (Markov chains and Mixing times - Levin, Peres, Wilmer)

For $f: V \to \mathbb{R}$: $\mathbf{E}_{\boldsymbol{m}} \left(\underbrace{\frac{1}{T} \int_{0}^{T} f(\boldsymbol{\xi}_{s}) \, ds}_{\text{time average}} - \underbrace{\boldsymbol{m}f}_{\boldsymbol{m}-average} \right)^{2} \leq 2 \underbrace{\boldsymbol{m}(f - \boldsymbol{m}f)^{2}}_{\text{Var}_{\boldsymbol{m}}(f)} \left(\frac{\mathbf{t}_{rel}}{T} \right)$

For a finite simple connected graph

$$G = (V, E)$$

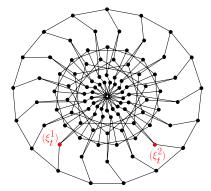


For (ξ_t^1, ξ_t^2) independent Δ -MChains:

•
$$T_{\{1,2\}} = \min \{ t \ge 0 : \xi_t^1 = \xi_t^2 \}$$

For a finite simple connected graph

$$G = (V, E)$$



For (ξ_t^1, ξ_t^2) independent Δ -MChains:

- $T_{\{1,2\}} = \min \left\{ t \ge 0 : \xi_t^1 = \xi_t^2 \right\}$
- $\theta(G) = \mathbf{E}_{\boldsymbol{m} \otimes \boldsymbol{m}} [T_{\{1,2\}}]$

For a finite simple connected graph

$$G = (V, E)$$

$$(\xi_t^2)$$

For (ξ_t^1, ξ_t^2) independent Δ -MChains:

- $T_{\{1,2\}} = \min \{ t \ge 0 : \xi_t^1 = \xi_t^2 \}$
- $\theta(G) = \mathbf{E}_{\boldsymbol{m} \otimes \boldsymbol{m}} [T_{\{1,2\}}]$

 $\underline{\mathbf{Thm}}$ (Aldous and Fill)

$$\sup_{t \ge 0} \left| \mathbf{P}_{\mathbf{m} \otimes \mathbf{m}} \left\{ \frac{T_{\{1,2\}}}{\theta} > t \right\} - e^{-t} \right| \le$$

For a finite simple connected graph

$$G = (V, E)$$

For (ξ_t^1, ξ_t^2) independent Δ -MChains:

- $T_{\{1,2\}} = \min \{ t \ge 0 : \xi_t^1 = \xi_t^2 \}$
- $\theta(G) = \mathbf{E}_{\boldsymbol{m} \otimes \boldsymbol{m}} [T_{\{1,2\}}]$

<u>**Thm**</u> (Aldous and Fill)

$$\sup_{t \ge 0} \left| \mathbf{P}_{\mathbf{m} \otimes \mathbf{m}} \left\{ \frac{T_{\{1,2\}}}{\theta} > t \right\} - e^{-t} \right| \le \frac{\mathbf{t}_{\mathrm{rel}}(G)}{\theta(G)}$$

For a finite simple connected graph

$$G = (V, E)$$

$$(\xi_t^1)$$

$$(\xi_t^2)$$

For (ξ_t^1, ξ_t^2) independent Δ -MChains:

- $T_{\{1,2\}} = \min \{ t \ge 0 : \xi_t^1 = \xi_t^2 \}$
- $\theta(G) = \mathbf{E}_{\boldsymbol{m} \otimes \boldsymbol{m}} [T_{\{1,2\}}]$

<u>Thm</u> (Aldous and Fill)

$$\sup_{t\geq 0} \left| \mathbf{P}_{\boldsymbol{m}\otimes \boldsymbol{m}} \left\{ \frac{T_{\{1,2\}}}{\boldsymbol{\theta}} > t \right\} - e^{-t} \right| \leq \frac{\mathbf{t}_{\mathrm{rel}}(G)}{\boldsymbol{\theta}(G)}$$

Reversib. \Rightarrow $T_{\{1,2\}}$ is CM (complet monot)

For a finite simple connected graph

$$G = (V, E)$$

For (ξ_t^1, ξ_t^2) independent Δ -MChains:

- $T_{\{1,2\}} = \min \{ t \ge 0 : \xi_t^1 = \xi_t^2 \}$
- $\theta(G) = \mathbf{E}_{m \otimes m} [T_{\{1,2\}}]$

<u>Thm</u> (Aldous and Fill)

$$\sup_{t \geq 0} \left| \mathbf{P}_{\boldsymbol{m} \otimes \boldsymbol{m}} \left\{ \frac{T_{\{\mathbf{1}, \mathbf{2}\}}}{\boldsymbol{\theta}} > t \right\} - e^{-t} \right| \; \leq \; \frac{\mathbf{t}_{\mathrm{rel}}(G)}{\boldsymbol{\theta}(G)}$$

Reversib. \Rightarrow $T_{\{1,2\}}$ is CM (complet monot)

 $\underline{\mathbf{Def}}$ Random $T \geq 0$ is CM if $\exists \mu$ on $[0, \infty)$ st

$$\mathbf{P}\{T > t\} =$$

For a finite simple connected graph

$$G = (V, E)$$

$$(\xi_t^1)$$

$$(\xi_t^2)$$

For (ξ_t^1, ξ_t^2) independent Δ -MChains:

- $T_{\{1,2\}} = \min \{ t \ge 0 : \xi_t^1 = \xi_t^2 \}$
- $\theta(G) = \mathbf{E}_{\boldsymbol{m} \otimes \boldsymbol{m}} [T_{\{1,2\}}]$

<u>Thm</u> (Aldous and Fill)

$$\sup_{t \geq 0} \left| \mathbf{P}_{\boldsymbol{m} \otimes \boldsymbol{m}} \left\{ \frac{T_{\{\mathbf{1}, \mathbf{2}\}}}{\boldsymbol{\theta}} > t \right\} - e^{-t} \right| \; \leq \; \frac{\mathbf{t}_{\mathrm{rel}}(G)}{\boldsymbol{\theta}(G)}$$

Reversib. \Rightarrow $T_{\{1,2\}}$ is CM (complet monot)

<u>**Def**</u> Random $T \ge 0$ is CM if $\exists \mu$ on $[0, \infty)$ st

$$\mathbf{P}\{T > t\} = \int_{[0,\infty)} e^{-ut} \mu(du), \quad t \ge 0.$$

$$T \sim \exp(\lambda)$$
 is CM with $\mu = \delta_{\lambda}$

For a finite simple connected graph

$$G = (V, E)$$

$$(\xi_t^1)$$

$$(\xi_t^2)$$

For (ξ_t^1, ξ_t^2) independent Δ -MChains:

- $T_{\{1,2\}} = \min \{ t \ge 0 : \xi_t^1 = \xi_t^2 \}$
- $\theta(G) = \mathbf{E}_{m \otimes m} [T_{\{1,2\}}]$

<u>Thm</u> (Aldous and Fill)

$$\sup_{t \geq 0} \left| \mathbf{P}_{\boldsymbol{m} \otimes \boldsymbol{m}} \left\{ \frac{T_{\{\mathbf{1}, \mathbf{2}\}}}{\boldsymbol{\theta}} > t \right\} - e^{-t} \right| \; \leq \; \frac{\mathbf{t}_{\mathrm{rel}}(G)}{\boldsymbol{\theta}(G)}$$

Reversib. \Rightarrow $T_{\{1,2\}}$ is CM (complet monot)

<u>**Def**</u> Random $T \ge 0$ is <u>CM</u> if $\exists \mu$ on $[0, \infty)$ st

$$\mathbf{P}\{T > t\} = \int_{[0,\infty)} e^{-ut} \mu(du), \quad t \ge 0.$$

 $T \sim \exp(\lambda)$ is CM with $\mu = \delta_{\lambda}$

<u>Thm</u> (Mark Brown, Ann. Prob. 1983)

If $T \geq 0$ is CM and $\boldsymbol{E}[T] = 1$, then

$$\sup_{t>0} \left| \mathbf{P} \left\{ T > t \right\} - e^{-t} \right| \le$$

For a finite simple connected graph

$$G = (V, E)$$

$$(\xi_t^1)$$

$$(\xi_t^2)$$

For (ξ_t^1, ξ_t^2) independent Δ -MChains:

- $T_{\{1,2\}} = \min \{ t \ge 0 : \xi_t^1 = \xi_t^2 \}$
- $\theta(G) = \mathbf{E}_{m \otimes m} [T_{\{1,2\}}]$

<u>Thm</u> (Aldous and Fill)

$$\sup_{t \geq 0} \left| \mathbf{P}_{\boldsymbol{m} \otimes \boldsymbol{m}} \left\{ \frac{T_{\{\mathbf{1}, \mathbf{2}\}}}{\boldsymbol{\theta}} > t \right\} - e^{-t} \right| \; \leq \; \frac{\mathbf{t}_{\mathrm{rel}}(G)}{\boldsymbol{\theta}(G)}$$

Reversib. \Rightarrow $T_{\{1,2\}}$ is CM (complet monot)

<u>**Def**</u> Random $T \ge 0$ is <u>CM</u> if $\exists \mu$ on $[0, \infty)$ st

$$\mathbf{P}\{T > t\} = \int_{[0,\infty)} e^{-ut} \mu(du), \quad t \ge 0.$$

 $T \sim \exp(\lambda)$ is CM with $\mu = \delta_{\lambda}$

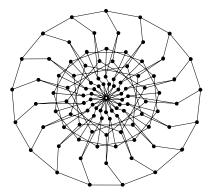
<u>Thm</u> (Mark Brown, Ann. Prob. 1983)

If
$$T \geq 0$$
 is CM and $\boldsymbol{E}[T] = 1$, then

$$\sup_{t>0} \left| \mathbf{P} \left\{ T > t \right\} - e^{-t} \right| \le \frac{E[T^2]}{2} - 1$$

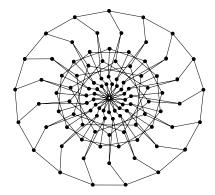
Sequence of finite connect simp graphs

$$G_n = (V_n, E_n), \quad |V_n| \uparrow \infty$$



Sequence of finite connect simp graphs

$$G_n = (V_n, E_n), \quad |V_n| \uparrow \infty$$

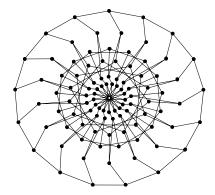


Aldous Conditions

• Each G_n is vertex-transitive

Sequence of finite connect simp graphs

$$G_n = (V_n, E_n), \quad |V_n| \uparrow \infty$$

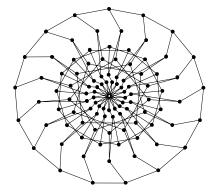


Aldous Conditions

- Each G_n is vertex-transitive
- $oldsymbol{ ext{t}} rac{ ext{t}_{rel}}{oldsymbol{ heta}}
 ightarrow 0$

Sequence of finite connect simp graphs

$$G_n = (V_n, E_n), \quad |V_n| \uparrow \infty$$



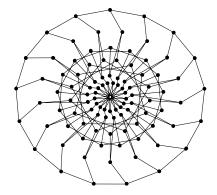
Aldous Conditions

- Each G_n is vertex-transitive
- $oldsymbol{ iny trel}{oldsymbol{ heta}} o 0$

Exmp Torus: $G_n = (\mathbb{Z}/n\mathbb{Z})^d, \ d \geq 2$

 ${\bf Sequence} \ {\bf of} \ {\bf finite} \ {\bf connect} \ {\bf simp} \ {\bf graphs}$

$$G_n = (V_n, E_n), \quad |V_n| \uparrow \infty$$



Aldous Conditions

• Each G_n is vertex-transitive

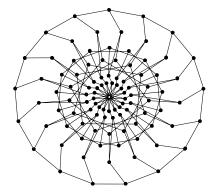
$$oldsymbol{ ext{t}} rac{ ext{t}_{rel}}{oldsymbol{ heta}}
ightarrow 0$$

Exmp Torus: $G_n = (\mathbb{Z}/n\mathbb{Z})^d, \ d \geq 2$

 $\mathbf{t}_{\mathrm{rel}} \asymp n^2$

 ${\bf Sequence} \ {\bf of} \ {\bf finite} \ {\bf connect} \ {\bf simp} \ {\bf graphs}$

$$G_n = (V_n, E_n), \quad |V_n| \uparrow \infty$$



Aldous Conditions

• Each G_n is vertex-transitive

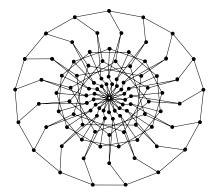
$$ullet rac{\mathbf{t}_{rel}}{oldsymbol{ heta}}
ightarrow 0$$

Exmp Torus: $G_n = (\mathbb{Z}/n\mathbb{Z})^d, \ d \geq 2$

$$\mathbf{t}_{\mathrm{rel}} symp n^2 \quad \mathrm{and} \quad oldsymbol{ heta} symp \left\{
ight.$$

Sequence of finite connect simp graphs

$$G_n = (V_n, E_n), \quad |V_n| \uparrow \infty$$



Aldous Conditions

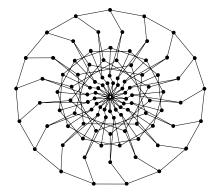
- Each G_n is vertex-transitive
- $ullet rac{\mathbf{t}_{rel}}{oldsymbol{ heta}}
 ightarrow 0$

Exmp Torus: $G_n = (\mathbb{Z}/n\mathbb{Z})^d, \ d \ge 2$

 $\mathbf{t}_{\mathrm{rel}} symp n^2 \quad \mathrm{and} \quad oldsymbol{ heta} top lpha top n^d, \qquad \mathrm{for} \ d \geq 3,$

Sequence of finite connect simp graphs

$$G_n = (V_n, E_n), \quad |V_n| \uparrow \infty$$



Aldous Conditions

• Each G_n is vertex-transitive

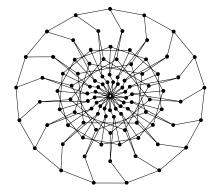
$$ullet rac{\mathbf{t}_{rel}}{oldsymbol{ heta}}
ightarrow 0$$

Exmp Torus: $G_n = (\mathbb{Z}/n\mathbb{Z})^d, \ d \geq 2$

$$\mathbf{t}_{\mathrm{rel}} \asymp n^2 \quad \mathrm{and} \quad \boldsymbol{\theta} \asymp \left\{ egin{array}{ll} n^d, & \mathrm{for} \ d \geq 3, \\ n^2 \log n, & \mathrm{for} \ d = 2. \end{array} \right.$$

Sequence of finite connect simp graphs

$$G_n = (V_n, E_n), \quad |V_n| \uparrow \infty$$



Aldous Conditions

• Each G_n is vertex-transitive

•
$$\frac{\mathbf{t}_{rel}}{\boldsymbol{\theta}} \to 0$$

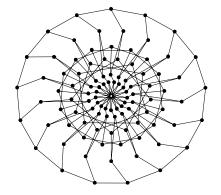
Exmp Torus: $G_n = (\mathbb{Z}/n\mathbb{Z})^d, \ d \geq 2$

$$\mathbf{t}_{\mathrm{rel}} \asymp n^2 \quad \mathrm{and} \quad \boldsymbol{\theta} \asymp \left\{ egin{array}{ll} n^d, & \mathrm{for} \ d \geq 3, \\ n^2 \log n, & \mathrm{for} \ d = 2. \end{array} \right.$$

Exmp Complete graph: G_n , $u \sim v$, $\forall u, v$.

Sequence of finite connect simp graphs

$$G_n = (V_n, E_n), \quad |V_n| \uparrow \infty$$



Aldous Conditions

- Each G_n is vertex-transitive
- $\frac{\mathbf{t}_{rel}}{\boldsymbol{\theta}} \to 0$

Exmp Torus: $G_n = (\mathbb{Z}/n\mathbb{Z})^d, \ d \ge 2$

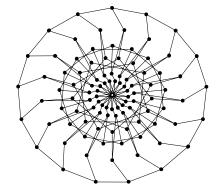
$$\mathbf{t}_{\mathrm{rel}} \asymp n^2 \quad \mathrm{and} \quad \boldsymbol{\theta} \asymp \left\{ egin{array}{ll} n^d, & \mathrm{for} \ d \geq 3, \\ n^2 \log n, & \mathrm{for} \ d = 2. \end{array} \right.$$

Exmp Complete graph: G_n , $u \sim v$, $\forall u, v$.

$$\mathbf{t}_{\rm rel} = 1/|V_n|$$

Sequence of finite connect simp graphs

$$G_n = (V_n, E_n), \quad |V_n| \uparrow \infty$$



Aldous Conditions

- Each G_n is vertex-transitive
- $\frac{\mathbf{t}_{rel}}{\boldsymbol{\theta}} \to 0$

Exmp Torus: $G_n = (\mathbb{Z}/n\mathbb{Z})^d, \ d \geq 2$

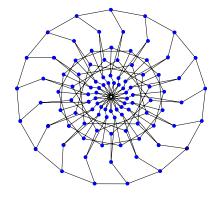
$$\mathbf{t}_{\mathrm{rel}} \asymp n^2 \quad \mathrm{and} \quad \boldsymbol{\theta} \asymp \left\{ egin{array}{ll} n^d, & \mathrm{for} \ d \geq 3, \\ n^2 \log n, & \mathrm{for} \ d = 2. \end{array} \right.$$

Exmp Complete graph: G_n , $u \sim v$, $\forall u, v$.

$$\mathbf{t}_{\text{rel}} = 1/|V_n|$$
 and $\boldsymbol{\theta} = 1/2$.

Sequence of finite connect simp graphs

$$G_n = (V_n, E_n), \quad |V_n| \uparrow \infty$$



Aldous Conditions

- Each G_n is vertex-transitive
- $\frac{\mathbf{t}_{rel}}{\boldsymbol{\theta}} \to 0$

Exmp Torus: $G_n = (\mathbb{Z}/n\mathbb{Z})^d, \ d \ge 2$

$$\mathbf{t}_{\mathrm{rel}} \asymp n^2 \quad \mathrm{and} \quad \boldsymbol{\theta} \asymp \left\{ egin{array}{ll} n^d, & \mathrm{for} \ d \geq 3, \\ n^2 \log n, & \mathrm{for} \ d = 2. \end{array} \right.$$

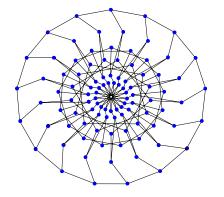
Exmp Complete graph: G_n , $u \sim v$, $\forall u, v$.

$$\mathbf{t}_{\text{rel}} = 1/|V_n|$$
 and $\boldsymbol{\theta} = 1/2$.

Consider a system of Coalescing RWs:

Sequence of finite connect simp graphs

$$G_n = (V_n, E_n), \quad |V_n| \uparrow \infty$$



Aldous Conditions

- Each G_n is vertex-transitive
- $\frac{\mathbf{t}_{rel}}{\boldsymbol{\theta}} \to 0$

Exmp Torus: $G_n = (\mathbb{Z}/n\mathbb{Z})^d, \ d \geq 2$

$$\mathbf{t}_{\mathrm{rel}} \asymp n^2 \quad \mathrm{and} \quad \boldsymbol{\theta} \asymp \left\{ egin{array}{ll} n^d, & \mathrm{for} \ d \geq 3, \\ n^2 \log n, & \mathrm{for} \ d = 2. \end{array} \right.$$

Exmp Complete graph: G_n , $u \sim v$, $\forall u, v$.

$$\mathbf{t}_{\text{rel}} = 1/|V_n|$$
 and $\boldsymbol{\theta} = 1/2$.

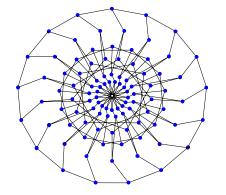
Consider a system of Coalescing RWs:

$$(\eta_t^1, \eta_t^2, \eta_t^3, \dots, \eta_t^{|V_n|}), \quad t \ge 0,$$

starting at:
$$\{\eta_0^1, \eta_0^2, \dots, \eta_0^{|V_n|}\} = V_n$$
.

Sequence of finite connect simp graphs

$$G_n = (V_n, E_n), \quad |V_n| \uparrow \infty$$



Aldous Conditions

- Each G_n is vertex-transitive
- $\frac{\mathbf{t}_{rel}}{\boldsymbol{\theta}} \to 0$

Exmp Torus: $G_n = (\mathbb{Z}/n\mathbb{Z})^d, \ d \geq 2$

$$\mathbf{t}_{\mathrm{rel}} \asymp n^2 \quad \mathrm{and} \quad \boldsymbol{\theta} \asymp \left\{ egin{array}{ll} n^d, & \mathrm{for} \ d \geq 3, \\ n^2 \log n, & \mathrm{for} \ d = 2. \end{array} \right.$$

Exmp Complete graph: G_n , $u \sim v$, $\forall u, v$.

$$\mathbf{t}_{\text{rel}} = 1/|V_n|$$
 and $\boldsymbol{\theta} = 1/2$.

Consider a system of Coalescing RWs:

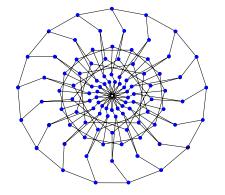
$$(\eta_t^1, \eta_t^2, \eta_t^3, \dots, \eta_t^{|V_n|}), \quad t \ge 0,$$

starting at:
$$\{\eta_0^1, \eta_0^2, \dots, \eta_0^{|V_n|}\} = V_n$$
.

$$T_{\text{full}} = \min\left\{t \ge 0 : \eta_t^i = \eta_t^j, \ \forall i, j\right\}$$

Sequence of finite connect simp graphs

$$G_n = (V_n, E_n), \quad |V_n| \uparrow \infty$$



Aldous Conditions

- Each G_n is vertex-transitive
- $\frac{\mathbf{t}_{rel}}{\boldsymbol{\theta}} \to 0$

Exmp Torus: $G_n = (\mathbb{Z}/n\mathbb{Z})^d, \ d \geq 2$

$$\mathbf{t}_{\mathrm{rel}} \asymp n^2 \quad \mathrm{and} \quad \boldsymbol{\theta} \asymp \left\{ egin{array}{ll} n^d, & \mathrm{for} \ d \geq 3, \\ n^2 \log n, & \mathrm{for} \ d = 2. \end{array}
ight.$$

Exmp Complete graph: G_n , $u \sim v$, $\forall u, v$.

$$\mathbf{t}_{\text{rel}} = 1/|V_n|$$
 and $\boldsymbol{\theta} = 1/2$.

Consider a system of Coalescing RWs:

$$(\eta_t^1, \eta_t^2, \eta_t^3, \dots, \eta_t^{|V_n|}), \quad t \ge 0,$$

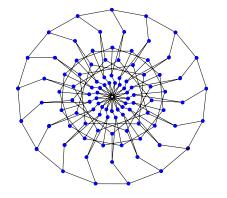
starting at:
$$\{\eta_0^1, \eta_0^2, \dots, \eta_0^{|V_n|}\} = V_n$$
.

$$T_{\text{full}} = \min\left\{t \geq 0 : \eta_t^i = \eta_t^j, \ \forall i, j\right\}$$

For the **complete graph:** $\frac{T_{\text{full}}}{\theta} \sim$

Sequence of finite connect simp graphs

$$G_n = (V_n, E_n), \quad |V_n| \uparrow \infty$$



Aldous Conditions

- Each G_n is vertex-transitive
- \bullet $\frac{\mathbf{t}_{rel}}{\mathbf{\rho}} \to 0$

Exmp Torus: $G_n = (\mathbb{Z}/n\mathbb{Z})^d, \ d \geq 2$

$$\mathbf{t}_{\mathrm{rel}} \asymp n^2 \quad \mathrm{and} \quad \boldsymbol{\theta} \asymp \left\{ egin{array}{ll} n^d, & \mathrm{for} \ d \geq 3, \\ n^2 \log n, & \mathrm{for} \ d = 2. \end{array}
ight.$$

Exmp Complete graph: G_n , $u \sim v$, $\forall u, v$.

$$\mathbf{t}_{\text{rel}} = 1/|V_n|$$
 and $\boldsymbol{\theta} = 1/2$.

Consider a system of Coalescing RWs:

$$(\eta_t^1, \eta_t^2, \eta_t^3, \dots, \eta_t^{|V_n|}), \quad t \ge 0,$$

starting at:
$$\{\eta_0^1, \eta_0^2, \dots, \eta_0^{|V_n|}\} = V_n$$
.

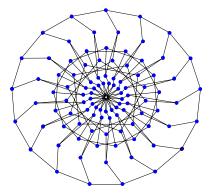
$$T_{\text{full}} = \min\left\{t \ge 0 : \eta_t^i = \eta_t^j, \ \forall i, j\right\}$$

For the **complete graph:**
$$\left| \frac{T_{\mathrm{full}}}{\theta} \sim \sum_{k=2}^{|V_n|} Z_k \right|$$

where $Z_k \sim \exp(\frac{k}{2})$, $k \geq 1$, are independent.

 ${\bf Sequence} \ {\bf of} \ {\bf finite} \ {\bf connect} \ {\bf simp} \ {\bf graphs}$

$$G_n = (V_n, E_n), \quad |V_n| \uparrow \infty$$



Aldous Conditions

• Each G_n is vertex-transitive

$$\bullet \ \frac{\mathbf{t}_{rel}}{\boldsymbol{\theta}} \to 0$$

$$T_{\mathrm{full}} = \min\left\{t \geq 0 : \eta_t^i = \eta_t^j, \ \forall i, j\right\}$$

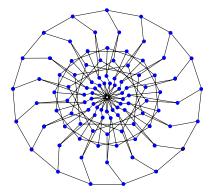
Aldous conjecture

Under Aldous Conditions, as $n \uparrow \infty$,

$$\frac{T_{\mathrm{full}}}{oldsymbol{ heta}} \stackrel{(\mathrm{law})}{\longrightarrow}$$

Sequence of finite connect simp graphs

$$G_n = (V_n, E_n), \quad |V_n| \uparrow \infty$$



Aldous Conditions

- Each G_n is vertex-transitive
- $\frac{\mathbf{t}_{rel}}{\boldsymbol{\theta}} \to 0$

$$T_{\text{full}} = \min\left\{t \geq 0 : \eta_t^i = \eta_t^j, \ \forall i, j\right\}$$

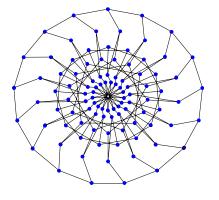
Aldous conjecture

Under Aldous Conditions, as $n \uparrow \infty$,

$$\frac{T_{\text{full}}}{\theta} \xrightarrow{\text{(law)}} \underbrace{Z_2 + Z_3 + Z_4 + \dots}_{\text{indep.}} Z_k \sim \exp\binom{k}{2}$$

Sequence of finite connect simp graphs

$$G_n = (V_n, E_n), \quad |V_n| \uparrow \infty$$



Aldous Conditions

- Each G_n is vertex-transitive
- $\frac{\mathbf{t}_{rel}}{\boldsymbol{\theta}} \to 0$

$$T_{\mathrm{full}} = \min\left\{t \geq 0 : \eta_t^i = \eta_t^j, \ \forall i, j\right\}$$

Aldous conjecture

Under Aldous Conditions, as $n \uparrow \infty$,

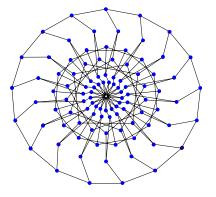
$$\frac{T_{\mathrm{full}}}{oldsymbol{ heta}} \stackrel{\mathrm{(law)}}{\longrightarrow} \underbrace{Z_2 + Z_3 + Z_4 + \dots}_{\mathbf{indep.}} \underbrace{Z_k \sim \exp{k \choose 2}}$$

Some results

<u>Thm</u> (Cox J.T., Ann. Prob. 1989)

Sequence of finite connect simp graphs

$$G_n = (V_n, E_n), \quad |V_n| \uparrow \infty$$



Aldous Conditions

- Each G_n is vertex-transitive
- $\frac{\mathbf{t}_{rel}}{\boldsymbol{\theta}} \to 0$

$$T_{\text{full}} = \min\left\{t \ge 0 : \eta_t^i = \eta_t^j, \ \forall i, j\right\}$$

Aldous conjecture

Under Aldous Conditions, as $n \uparrow \infty$,

$$\frac{T_{\text{full}}}{\theta} \xrightarrow{\text{(law)}} \underbrace{Z_2 + Z_3 + Z_4 + \dots}_{\text{indep.}} Z_k \sim \exp(\frac{k}{2})$$

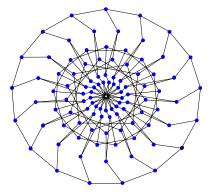
Some results

<u>Thm</u> (Cox J.T., Ann. Prob. 1989)

For
$$G_n = (\mathbb{Z}/n\mathbb{Z})^d$$
, $d \ge 2$.

Sequence of finite connect simp graphs

$$G_n = (V_n, E_n), \quad |V_n| \uparrow \infty$$



Aldous Conditions

- Each G_n is vertex-transitive
- $\frac{\mathbf{t}_{rel}}{\boldsymbol{\theta}} \to 0$

$$T_{\text{full}} = \min\left\{t \ge 0 : \eta_t^i = \eta_t^j, \ \forall i, j\right\}$$

Aldous conjecture

Under Aldous Conditions, as $n \uparrow \infty$,

$$\frac{T_{\text{full}}}{\theta} \xrightarrow{\text{(law)}} \underbrace{Z_2 + Z_3 + Z_4 + \dots}_{\text{indep.}} Z_k \sim \exp\binom{k}{2}$$

Some results

<u>Thm</u> (Cox J.T., Ann. Prob. 1989)

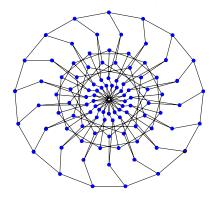
For
$$G_n = (\mathbb{Z}/n\mathbb{Z})^d$$
, $d \geq 2$.

<u>Thm</u> (Oliveira R.I., Ann. Prob. 2013)

Assuming vertex-transitivity and $\frac{t_{mix}}{\theta} \to 0$

Sequence of finite connect simp graphs

$$G_n = (V_n, E_n), \quad |V_n| \uparrow \infty$$

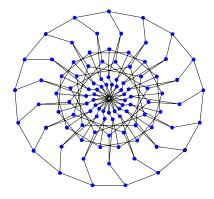


Model reduction

$$V_n^k \stackrel{\mathrm{reduc}}{\longrightarrow} \mathbf{Part}_{[k]} \stackrel{\mathrm{reduc}}{\longrightarrow} \mathbb{N} \cup \{\infty\}$$

 ${\bf Sequence} \ {\bf of} \ {\bf finite} \ {\bf connect} \ {\bf simp} \ {\bf graphs}$

$$G_n = (V_n, E_n), \quad |V_n| \uparrow \infty$$



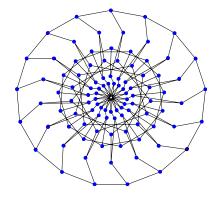
Model reduction

$$V_n^k \stackrel{\mathrm{reduc}}{\longrightarrow} \mathbf{Part}_{[k]} \stackrel{\mathrm{reduc}}{\longrightarrow} \mathbb{N} \cup \{\infty\}$$

• $\mathbf{Part}_{[k]} := \{ \text{partitions of } \{1, 2, \dots, k \} \}$

Sequence of finite connect simp graphs

$$G_n = (V_n, E_n), \quad |V_n| \uparrow \infty$$



Model reduction

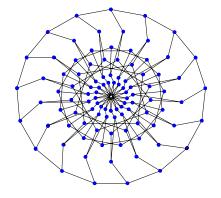
$$V_n^k \stackrel{\text{reduc}}{\longrightarrow} \mathbf{Part}_{[k]} \stackrel{\text{reduc}}{\longrightarrow} \mathbb{N} \cup \{\infty\}$$

• $\mathbf{Part}_{[k]} := \{ \text{partitions of } \{1, 2, \dots, k \} \}$

$$V_n^k \ni (\eta_t^1, \eta_t^2, \dots, \eta_t^k) \mapsto \Pi_t \in \mathbf{Part}_{[k]}$$
 determined by: $i \sim j \iff \eta_t^i = \eta_t^j$

Sequence of finite connect simp graphs

$$G_n = (V_n, E_n), \quad |V_n| \uparrow \infty$$



Model reduction

$$V_n^k \stackrel{\mathrm{reduc}}{\longrightarrow} \mathbf{Part}_{[k]} \stackrel{\mathrm{reduc}}{\longrightarrow} \mathbb{N} \cup \{\infty\}$$

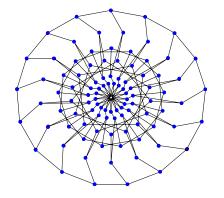
• $\mathbf{Part}_{[k]} := \{ \text{partitions of } \{1, 2, \dots, k \} \}$

$$\begin{split} V_n^k \ni (\eta_t^1, \eta_t^2, \dots, \eta_t^k) \; \mapsto \; \Pi_t \in \mathbf{Part}_{[k]} \\ \text{determined by:} \quad i \sim j \iff \eta_t^i = \eta_t^j \end{split}$$

$$\big\{\{1,3\},\{2,7,8\},\{5,10\},\{6\},\{9\}\big\}\in\mathbf{Part}_{[10]}$$

Sequence of finite connect simp graphs

$$G_n = (V_n, E_n), \quad |V_n| \uparrow \infty$$



Model reduction

$$V_n^k \stackrel{\text{reduc}}{\longrightarrow} \mathbf{Part}_{[k]} \stackrel{\text{reduc}}{\longrightarrow} \mathbb{N} \cup \{\infty\}$$

• $\mathbf{Part}_{[k]} := \{ \text{partitions of } \{1, 2, \dots, k \} \}$

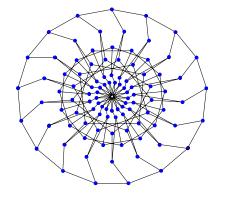
$$\begin{split} V_n^k \ni (\eta_t^1, \eta_t^2, \dots, \eta_t^k) & \mapsto & \Pi_t \in \mathbf{Part}_{[k]} \\ \text{determined by:} & i \sim j & \Longleftrightarrow & \eta_t^i = \eta_t^j \end{split}$$

$$\{\{1,3\},\{2,7,8\},\{5,10\},\{6\},\{9\}\}\in\mathbf{Part}_{[10]}$$

• $\mathbf{Part}_{[k]} \ni \Pi_t \mapsto \#\Pi_t \in \mathbb{N} \cup \{\infty\}$

Sequence of finite connect simp graphs

$$G_n = (V_n, E_n), \quad |V_n| \uparrow \infty$$



Model reduction

$$V_n^k \stackrel{\mathrm{reduc}}{\longrightarrow} \mathbf{Part}_{[k]} \stackrel{\mathrm{reduc}}{\longrightarrow} \mathbb{N} \cup \{\infty\}$$

• $\mathbf{Part}_{[k]} := \{ \text{partitions of } \{1, 2, \dots, k \} \}$

$$\begin{split} V_n^k \ni (\eta_t^1, \eta_t^2, \dots, \eta_t^k) \; \mapsto \; \Pi_t \in \mathbf{Part}_{[k]} \\ \text{determined by:} \quad i \sim j \iff \eta_t^i = \eta_t^j \end{split}$$

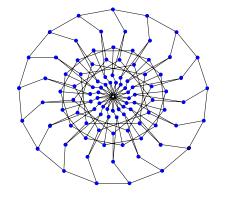
$$\{\{1,3\},\{2,7,8\},\{5,10\},\{6\},\{9\}\}\in\mathbf{Part}_{[10]}$$

• $\mathbf{Part}_{[k]} \ni \Pi_t \mapsto \#\Pi_t \in \mathbb{N} \cup \{\infty\}$

$$\mathbb{N} \cup \{\infty\} \leftrightarrow$$

Sequence of finite connect simp graphs

$$G_n = (V_n, E_n), \quad |V_n| \uparrow \infty$$



Model reduction

$$V_n^k \stackrel{\mathrm{reduc}}{\longrightarrow} \mathbf{Part}_{[k]} \stackrel{\mathrm{reduc}}{\longrightarrow} \mathbb{N} \cup \{\infty\}$$

• $\mathbf{Part}_{[k]} := \{ \text{partitions of } \{1, 2, \dots, k \} \}$

$$\begin{split} V_n^k \ni (\eta_t^1, \eta_t^2, \dots, \eta_t^k) \; \mapsto \; \Pi_t \in \mathbf{Part}_{[k]} \\ \text{determined by:} \quad i \sim j \iff \eta_t^i = \eta_t^j \end{split}$$

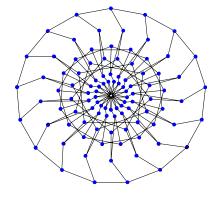
$$\big\{\{1,3\},\{2,7,8\},\{5,10\},\{6\},\{9\}\big\}\in\mathbf{Part}_{[10]}$$

• $\mathbf{Part}_{[k]} \ni \Pi_t \mapsto \#\Pi_t \in \mathbb{N} \cup \{\infty\}$

$$\mathbb{N} \cup \{\infty\} \leftrightarrow \{0,\ldots, 1/3, 1/2, 1\} := \mathcal{E}$$

Sequence of finite connect simp graphs

$$G_n = (V_n, E_n), \quad |V_n| \uparrow \infty$$



Model reduction

$$V_n^k \stackrel{\mathrm{reduc}}{\longrightarrow} \mathbf{Part}_{[k]} \stackrel{\mathrm{reduc}}{\longrightarrow} \mathbb{N} \cup \{\infty\}$$

• $\mathbf{Part}_{[k]} := \{ \text{partitions of } \{1, 2, \dots, k \} \}$

$$V_n^k \ni (\eta_t^1, \eta_t^2, \dots, \eta_t^k) \mapsto \Pi_t \in \mathbf{Part}_{[k]}$$
 determined by: $i \sim j \iff \eta_t^i = \eta_t^j$

$$\left\{\{1,3\},\{2,7,8\},\{5,10\},\{6\},\{9\}\right\}\in\mathbf{Part}_{[10]}$$

• $\mathbf{Part}_{[k]} \ni \Pi_t \mapsto \#\Pi_t \in \mathbb{N} \cup \{\infty\}$

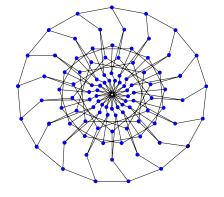
$$\mathbb{N} \cup \{\infty\} \quad \leftrightarrow \quad \{0, \dots, 1/3, 1/2, 1\} := \mathcal{E}$$

<u>Thm</u> (B.E., Chavez E., Landim C., JSP 2019) For $G_n = (\mathbb{Z}/n\mathbb{Z})^d$, with $d \ge 2$,

$$(\#\Pi_{\theta t}^{-1}) \stackrel{\text{(law)}}{\longrightarrow}$$

Sequence of finite connect simp graphs

$$G_n = (V_n, E_n), \quad |V_n| \uparrow \infty$$



Model reduction

$$V_n^k \stackrel{\mathrm{reduc}}{\longrightarrow} \mathbf{Part}_{[k]} \stackrel{\mathrm{reduc}}{\longrightarrow} \mathbb{N} \cup \{\infty\}$$

• $\mathbf{Part}_{[k]} := \{ \text{partitions of } \{1, 2, \dots, k \} \}$

$$\begin{split} V_n^k \ni (\eta_t^1, \eta_t^2, \dots, \eta_t^k) \; \mapsto \; \Pi_t \in \mathbf{Part}_{[k]} \\ \text{determined by:} \quad i \sim j \iff \eta_t^i = \eta_t^j \end{split}$$

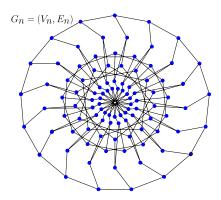
$$\big\{\{1,3\},\{2,7,8\},\{5,10\},\{6\},\{9\}\big\}\in\mathbf{Part}_{[10]}$$

• $\mathbf{Part}_{[k]} \ni \Pi_t \mapsto \#\Pi_t \in \mathbb{N} \cup \{\infty\}$

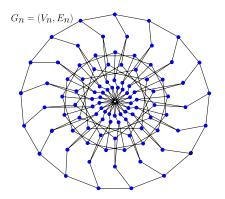
$$\mathbb{N} \cup \{\infty\} \quad \leftrightarrow \quad \{0, \dots, 1/3, 1/2, 1\} := \mathcal{E}$$

<u>Thm</u> (B.E., Chavez E., Landim C., JSP 2019) For $G_n = (\mathbb{Z}/n\mathbb{Z})^d$, with $d \ge 2$,

$$(\#\Pi_{\theta t}^{-1}) \stackrel{\text{(law)}}{\longrightarrow} \text{Markov Chain on } \mathcal{E}$$
starting at **0**



(I) The Big Bang Regime (BBR)
A term coined by Rick Durrett

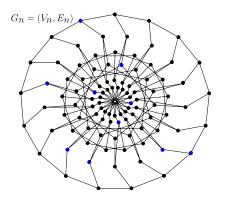


(I) The Big Bang Regime (BBR)

A term coined by Rick Durrett

Hermon, Li, Yao, Zhang AOP (2022)

"Mean field behavior during the BBR"



(I) The Big Bang Regime (BBR)

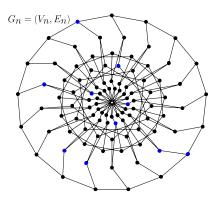
A term coined by Rick Durrett

Hermon, Li, Yao, Zhang AOP (2022)

"Mean field behavior during the BBR"

(II) The Coalescing Regime

There are typically O(1) clusters



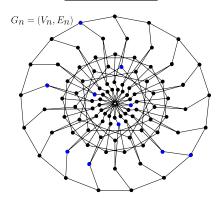
(I) The Big Bang Regime (BBR)
A term coined by Rick Durrett

Hermon, Li, Yao, Zhang AOP (2022)

"Mean field behavior during the BBR"

(II) The Coalescing Regime
There are typically O(1) clusters

(II) Let $(\eta^1, \eta^2, \dots, \eta^k)$ be CRW, with k fixed.



(I) The Big Bang Regime (BBR)
A term coined by Rick Durrett

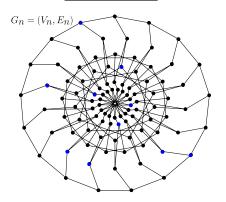
Hermon, Li, Yao, Zhang AOP (2022)

"Mean field behavior during the BBR"

(II) The Coalescing Regime
There are typically O(1) clusters

(II) Let $(\eta^1, \eta^2, \dots, \eta^k)$ be CRW, with k fixed.

 $V_n^k \stackrel{\mathrm{reduc}}{\longrightarrow} \mathbf{Part}_{[k]}$



(I) The Big Bang Regime (BBR)
A term coined by Rick Durrett

Hermon, Li, Yao, Zhang AOP (2022)

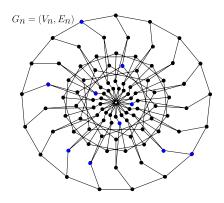
"Mean field behavior during the BBR"

(II) The Coalescing Regime
There are typically O(1) clusters

(II) Let $(\eta^1, \eta^2, \dots, \eta^k)$ be CRW, with k fixed.

 $V_n^k \stackrel{\mathrm{reduc}}{\longrightarrow} \mathbf{Part}_{[k]}$

If G_n is the complete graph then



(I) The Big Bang Regime (BBR)
A term coined by Rick Durrett

Hermon, Li, Yao, Zhang AOP (2022)

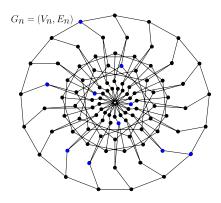
"Mean field behavior during the BBR"

(II) The Coalescing Regime
There are typically O(1) clusters

(II) Let $(\eta^1, \eta^2, \dots, \eta^k)$ be CRW, with k fixed.

 $V_n^k \stackrel{\mathrm{reduc}}{\longrightarrow} \mathbf{Part}_{[k]}$

If G_n is the complete graph then $(\Pi_{\theta t})$ is the Kingman k-coalescent



(I) The Big Bang Regime (BBR)

A term coined by Rick Durrett

Hermon, Li, Yao, Zhang AOP (2022)

"Mean field behavior during the BBR"

(II) The Coalescing Regime

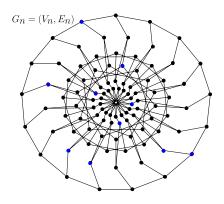
There are typically O(1) clusters

(II) Let $(\eta^1, \eta^2, \dots, \eta^k)$ be CRW, with k fixed.

$$V_n^k \stackrel{\mathrm{reduc}}{\longrightarrow} \mathbf{Part}_{[k]}$$

If G_n is the complete graph then $(\Pi_{\theta t})$ is the Kingman k-coalescent

$$\big\{\{1,3\},\{2,7,8\},\{5,10\},\{6\},\{9\}\big\}\in\mathbf{Part}_{[10]}$$



(I) The Big Bang Regime (BBR)
A term coined by Rick Durrett

Hermon, Li, Yao, Zhang AOP (2022)

"Mean field behavior during the BBR"

(II) The Coalescing Regime

There are typically O(1) clusters

(II) Let $(\eta^1, \eta^2, \dots, \eta^k)$ be CRW, with k fixed.

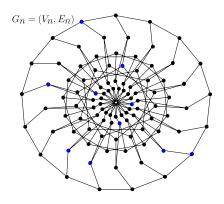
$$V_n^k \stackrel{\mathrm{reduc}}{\longrightarrow} \mathbf{Part}_{[k]}$$

If G_n is the complete graph then $(\Pi_{\theta t})$ is the Kingman k-coalescent

$$\{\{1,3\},\{2,7,8\},\{5,10\},\{6\},\{9\}\}\in \mathbf{Part}_{[10]}$$

 $\underline{\mathbf{Thm}}$ (B.J., Chavez E., '25+)

Under Aldous Cond: v-trans and $\frac{\mathbf{t}_{rel}}{\theta} \to 0$



(I) The Big Bang Regime (BBR)
A term coined by Rick Durrett

Hermon, Li, Yao, Zhang AOP (2022)

"Mean field behavior during the BBR"

(II) The Coalescing Regime

There are typically O(1) clusters

(II) Let $(\eta^1, \eta^2, \dots, \eta^k)$ be CRW, with k fixed.

$$V_n^k \stackrel{\mathrm{reduc}}{\longrightarrow} \mathbf{Part}_{[k]}$$

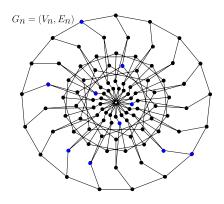
If G_n is the complete graph then $(\Pi_{\theta t})$ is the Kingman k-coalescent

$$\{\{1,3\},\{2,7,8\},\{5,10\},\{6\},\{9\}\}\in\mathbf{Part}_{[10]}$$

 $\underline{\mathbf{Thm}}$ (B.J., Chavez E., '25+)

Under Aldous Cond: v-trans and $\frac{\mathbf{t}_{rel}}{\boldsymbol{\theta}} \to 0$

if
$$(\eta^1, \eta^2, \dots, \eta^k)$$
 starts at $\boldsymbol{m}^{\otimes k}$ then
$$(\Pi_{\boldsymbol{\theta}t}) \stackrel{\text{(law)}}{\longrightarrow}$$



(I) The Big Bang Regime (BBR)
A term coined by Rick Durrett

Hermon, Li, Yao, Zhang AOP (2022)

"Mean field behavior during the BBR"

(II) The Coalescing Regime
There are typically O(1) clusters

(II) Let $(\eta^1, \eta^2, \dots, \eta^k)$ be CRW, with k fixed.

$$V_n^k \stackrel{\mathrm{reduc}}{\longrightarrow} \mathbf{Part}_{[k]}$$

If G_n is the complete graph then $(\Pi_{\theta t})$ is the Kingman k-coalescent

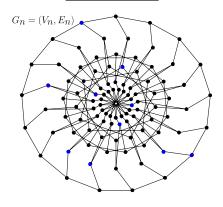
$$\{\{1,3\},\{2,7,8\},\{5,10\},\{6\},\{9\}\}\in \mathbf{Part}_{[10]}$$

 $\underline{\mathbf{Thm}}$ (B.J., Chavez E., '25+)

Under Aldous Cond: v-trans and $\frac{\mathbf{t}_{rel}}{\boldsymbol{\theta}} \to 0$

if
$$(\eta^1, \eta^2, \dots, \eta^k)$$
 starts at $\mathbf{m}^{\otimes k}$ then

$$(\Pi_{\boldsymbol{\theta}t}) \ \stackrel{\text{(law)}}{\longrightarrow} \ \stackrel{\text{Kingman }k\text{-coalescent}}{\text{starting at }\{\{1\},\{2\},\ldots,\{k\}\}}$$



(I) The Big Bang Regime (BBR)
A term coined by Rick Durrett

Hermon, Li, Yao, Zhang AOP (2022)

"Mean field behavior during the BBR"

(II) The Coalescing Regime

There are typically O(1) clusters

(II) Let $(\eta^1, \eta^2, \dots, \eta^k)$ be CRW, with k fixed.

$$V_n^k \stackrel{\mathrm{reduc}}{\longrightarrow} \mathbf{Part}_{[k]}$$

If G_n is the complete graph then $(\Pi_{\theta t})$ is the Kingman k-coalescent

$$\{\{1,3\},\{2,7,8\},\{5,10\},\{6\},\{9\}\}\in \mathbf{Part}_{[10]}$$

<u>Thm</u> (B.J., Chavez E., '25+)

Under Aldous Cond: v-trans and $\frac{\mathbf{t}_{rel}}{\boldsymbol{\theta}} \to 0$

if
$$(\eta^1, \eta^2, \dots, \eta^k)$$
 starts at $\boldsymbol{m}^{\otimes k}$ then

$$(\Pi_{\theta t}) \stackrel{\text{(law)}}{\longrightarrow} \stackrel{\text{Kingman } k\text{-coalescent}}{\text{starting at } \{\{1\},\{2\},\ldots,\{k\}\}}$$

In particular,
$$\frac{T_{full}^{(k)}}{\theta} \stackrel{\text{(law)}}{\longrightarrow} Z_2 + Z_3 + \dots + Z_k$$