The Number of Periodic Points of Surface Symplectomorphisms

Marta Batoréo (Univ. Federal do Espírito Santo) joint with Marcelo Atallah (Univ. Sheffield) and Brayan Ferreira (UFES)

> Geometria em Lisboa Instituto Superior Técnico (online)

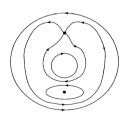
> > September 2025

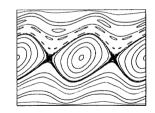
Symplectic Dynamics

Theorem (Poincaré's last geometric theorem - Poincaré-Birkhoff, 1920)

An area preserving twist map of the annulus must have at least two different fixed points.

• typical twist map on the annulus





• this result can be viewed as the first theorem in global symplectic geometry

Symplectic Manifolds and Symplectic Diffeomorphisms

• symplectic manifold: (M^{2n}, ω) , ω is a 2-form

• nondegenerate:
$$\omega^n = \underbrace{\omega \wedge \ldots \wedge \omega}_{n \text{ times}} \neq 0$$
 (or, equiv., $\omega(u, v) = 0$ for all $v \in T_p M \Rightarrow u = 0$)
• closed: $d\omega = 0$

- examples:
 - standard: $\mathbb{R}^{2n} = \underbrace{\mathbb{R}^n}_{x=(x_1,\ldots,x_n)} \times \underbrace{\mathbb{R}^n}_{y=(y_1,\ldots,y_n)}, \quad \omega_0 = dy \wedge dx \, (= \sum_{i=1}^n dy_i \wedge dx_i)$
 - 2-sphere: $(S^2, \text{ area form})$
 - complex projective space: $(\mathbb{C}P^n, \omega_{FS})$

• 2*n*-torus:
$$\mathbb{T}^{2n} = \underbrace{S^1 \times \ldots \times S^1}_{2n \text{ times}} = \underbrace{\mathbb{R}/\mathbb{Z} \times \ldots \times \mathbb{R}/\mathbb{Z}}_{2n \text{ times}} = \mathbb{R}^{2n}/\mathbb{Z}^{2n}$$

• surface with genus $g \ge 2$: $(\Sigma_{g \ge 2}, \text{ area form})$

 $\dim M = 2$

 ϕ is a symplectomorphism $(\phi^*\omega = \omega) \Leftrightarrow \phi$ is an area preserving diffeomorphism

$\dim M > 2$

 ϕ is a symplectomorphism $(\phi^*\omega = \omega) \Rightarrow \phi$ is a volume preserving diffeomorphism # (Gromov's non-squeezing theorem '85)

Example

- $H_t: M \to \mathbb{R}, t \in \mathbb{R}/\mathbb{Z}$; $\omega(X_{H_t},\cdot)=-dH_t$
 - $\frac{d}{dt}\varphi_H^t = X_H \circ \varphi_H^t$ Hamiltonian flow
- $\varphi_H := \varphi_H^1$ Hamiltonian diffeomorphism (time-1 map of φ_H^t)

 φ_H preserves the symplectic structure

Example (not all symplectomorphisms are Hamiltonian diffeomorphisms)

horizontal translation by θ area preserving

 $\varphi_{\mathbf{H}}^*\omega=\omega$

• not a Hamiltonian diffeomorphism

• (M^{2n},ω) closed (compact without boundary) symplectic manifold

- (M^{2n}, ω) closed (compact without boundary) symplectic manifold
- Fix(φ_H) = { $x \in M \mid \varphi_H(x) = x$ } \leftrightarrow {1-periodic orbits of X_H } Per(φ_H) = $\bigcup_{k \in \mathbb{Z}} \text{Fix}(\varphi_H^k) \leftrightarrow$ {periodic orbits of X_H } (with integer period)

- (M^{2n}, ω) closed (compact without boundary) symplectic manifold
- $\operatorname{Fix}(\varphi_H) = \{x \in M \mid \varphi_H(x) = x\} \leftrightarrow \{1\text{-periodic orbits of } X_H\}$ $\operatorname{Per}(\varphi_H) = \bigcup_{k \in \mathbb{Z}} \operatorname{Fix}(\varphi_H^k) \leftrightarrow \{\text{periodic orbits of } X_H\} \text{ (with integer period)}$

$$\# \operatorname{Fix}(\varphi_H) \ge \dim(H_*(M))$$

- (M^{2n}, ω) closed (compact without boundary) symplectic manifold
- Fix(φ_H) = { $x \in M \mid \varphi_H(x) = x$ } \leftrightarrow {1-periodic orbits of X_H } Per(φ_H) = $\bigcup_{k \in \mathbb{Z}} \text{Fix}(\varphi_H^k) \leftrightarrow$ {periodic orbits of X_H } (with integer period)

$$\# \operatorname{Fix}(\varphi_H) \geq \dim(H_*(M))$$

Example

$$M = \mathbb{C}P^n$$
, $\#\operatorname{Fix}(\varphi_H) \ge n+1$

- recall the horizontal translation on the 2-torus: there are no fixed points
- contributions: Eliashberg ('79), Conley-Zehnder ('83),..., Floer ('89),...

$$\# \operatorname{Fix}(\varphi_H) \ge \dim(H_*(M))$$

Conley Conjecture ('84)

For a "large class" of symplectic manifolds (e.g. surfaces $w/g \neq 0$), $\#Per(\varphi_H) = \infty$.

• contributions: Franks-Handle ('03), Le Calvez ('05,'06), Hingston ('09), Ginzburg ('10), Ginzburg-Gürel ('12, '19)

$$\# \operatorname{Fix}(\varphi_H) \ge \dim(H_*(M))$$

Conley Conjecture ('84)

For a "large class" of symplectic manifolds (e.g. surfaces $w/g \neq 0$), $\#Per(\varphi_H) = \infty$.

- contributions: Franks-Handle ('03), Le Calvez ('05,'06), Hingston ('09), Ginzburg ('10), Ginzburg-Gürel ('12, '19)
- S^2 , horizontal irrational rotation

$$\# \operatorname{Fix}(\varphi_H) \ge \dim(H_*(M))$$

Conley Conjecture ('84)

For a "large class" of symplectic manifolds (e.g. surfaces $w/g \neq 0$), $\#Per(\varphi_H) = \infty$.

- contributions: Franks-Handle ('03), Le Calvez ('05,'06), Hingston ('09), Ginzburg ('10), Ginzburg-Gürel ('12, '19)
- S², horizontal irrational rotation
 Hamiltonian diffeomorphism
 with exactly two fixed points

(and no other periodic points)

$$\# \operatorname{Fix}(\varphi_H) \ge \dim(H_*(M))$$

Conley Conjecture ('84)

For a "large class" of symplectic manifolds (e.g. surfaces $w/g \neq 0$), $\#Per(\varphi_H) = \infty$.

- contributions: Franks-Handle ('03), Le Calvez ('05,'06), Hingston ('09), Ginzburg ('10), Ginzburg-Gürel ('12, '19)
- S², horizontal irrational rotation
 Hamiltonian diffeomorphism
 with exactly two fixed points
 (and no other periodic points)

Theorem (Franks '92)

An area preserving diffeomorphism on S^2 with more (strictly) than two fixed points has infinitely many periodic points.

An area preserving diffeomorphism on S^2 with more (strictly) than two fixed points has infinitely many periodic points.

Theorem (Collier, Kerman, Reiniger, Turmunkh, Zimmer, '12)

If
$$\varphi \in \mathit{Ham}(S^2)$$
, then $\#\mathit{Per}(\varphi) = 2$ or ∞ . If $\mathit{Per}(\varphi) = \{x,y\}$ then x,y are non-degenerate and

$$\Delta(x) + \Delta(y) \equiv 0 \mod 4$$

An area preserving diffeomorphism on S^2 with more (strictly) than two fixed points has infinitely many periodic points.

An area preserving diffeomorphism on S^2 with more (strictly) than two fixed points has infinitely many periodic points.

Hofer-Zehnder Conjecture ('94)

$$\#\mathsf{Fix}(\varphi_H) > \text{``A.C.''} \Rightarrow \#\mathsf{Per}(\varphi_H) = \infty$$

- e.g. $M = \mathbb{C}P^n$, A.C. = n + 1;
- contributions: Shelukhin ('22), Atallah-Lou ('23), Bai-Xu ('23)

An area preserving diffeomorphism on S^2 with more (strictly) than two fixed points has infinitely many periodic points.

Hofer-Zehnder Conjecture ('94)

$$\#\mathsf{Fix}(\varphi_H) > \text{``A.C.''} \Rightarrow \#\mathsf{Per}(\varphi_H) = \infty$$

- e.g. $M = \mathbb{C}P^n$, A.C. = n + 1;
- contributions: Shelukhin ('22), Atallah-Lou ('23), Bai-Xu ('23)

Variant of HZ:

Ginzburg-Gürel Conjecture

If φ_H has an extraneous fixed point, from the point of Floer theory, then it has infinitely many periodic points.

An area preserving diffeomorphism on S^2 with more (strictly) than two fixed points has infinitely many periodic points.

Hofer-Zehnder Conjecture ('94)

 $\#\mathsf{Fix}(\varphi_H) > \text{``A.C.''} \Rightarrow \#\mathsf{Per}(\varphi_H) = \infty$

- e.g. $M = \mathbb{C}P^n$, A.C. = n + 1;
- contributions: Shelukhin ('22), Atallah-Lou ('23), Bai-Xu ('23)

Variant of HZ:

Ginzburg-Gürel Conjecture

If φ_H has an extraneous fixed point, from the point of Floer theory, then it has infinitely many periodic points.

Theorem (Ginzburg-Gürel, '14)

For a class of symplectic manifolds (which includes $\mathbb{C}P^n$), φ_H has a (contractible) hyperbolic fixed point $\Rightarrow \#Per(\varphi_H) = \infty$

• $\phi: M \to M$ symplectomorphism; ϕ^t isotopy s.t. $\phi^0 = \mathrm{id}, \phi^1 = \phi; \quad \frac{d}{dt}\phi^t = X_t \circ \phi^t$

• $\phi \colon M \to M$ symplectomorphism; ϕ^t isotopy s.t. $\phi^0 = \mathrm{id}, \phi^1 = \phi; \quad \frac{d}{dt}\phi^t = X_t \circ \phi^t$

Flux:
$$\widetilde{\mathsf{Symp}_0}(M,\omega) \to H^1(M;\mathbb{R}); \quad [\phi^t] \mapsto \left[\int_0^1 \omega(X_t,\cdot) dt \right]$$

• $\phi \colon M \to M$ symplectomorphism; ϕ^t isotopy s.t. $\phi^0 = \mathrm{id}, \phi^1 = \phi;$ $\frac{d}{dt}\phi^t = X_t \circ \phi^t$

Flux:
$$\widetilde{\mathsf{Symp}_0}(M,\omega) \to H^1(M;\mathbb{R}); \quad [\phi^t] \mapsto \left[\int_0^1 \omega(X_t,\cdot) dt\right]$$

• $\ker(\mathsf{Flux}) = \mathsf{Ham}(M, \omega);$ $\phi \in \mathsf{Symp}_0(M, \omega) \& \pi_1(M) = 0 \Rightarrow \phi \in \mathsf{Ham}(M, \omega)$

• $\phi \colon M \to M$ symplectomorphism; ϕ^t isotopy s.t. $\phi^0 = \mathrm{id}, \phi^1 = \phi; \quad \frac{d}{dt}\phi^t = X_t \circ \phi^t$

Flux:
$$\widetilde{\mathsf{Symp}_0}(M,\omega) \to H^1(M;\mathbb{R}); \quad [\phi^t] \mapsto \left[\int_0^1 \omega(X_t,\cdot) dt\right]$$

- $\ker(\mathsf{Flux}) = \widehat{\mathsf{Ham}}(M, \omega);$ $\phi \in \mathsf{Symp}_0(M, \omega) \& \pi_1(M) = 0 \Rightarrow \phi \in \mathsf{Ham}(M, \omega)$
- $M=\mathbb{T}^2$; $\mathsf{Flux}(\psi^t)=(heta,0)\in H^1(\mathbb{T}^2;\mathbb{R})\simeq \mathbb{R}^2$

• $\phi \colon M \to M$ symplectomorphism; ϕ^t isotopy s.t. $\phi^0 = \mathrm{id}, \phi^1 = \phi; \quad \frac{d}{dt}\phi^t = X_t \circ \phi^t$

Flux:
$$\widetilde{\mathsf{Symp}_0}(M,\omega) \to H^1(M;\mathbb{R}); \quad [\phi^t] \mapsto \left[\int_0^1 \omega(X_t,\cdot) dt\right]$$

- $\ker(\mathsf{Flux}) = \mathsf{Ham}(M, \omega);$ $\phi \in \mathsf{Symp}_0(M, \omega) \& \pi_1(M) = 0 \Rightarrow \phi \in \mathsf{Ham}(M, \omega)$
- $M=\mathbb{T}^2$; $\mathsf{Flux}(\psi^t)=(heta,0)\in H^1(\mathbb{T}^2;\mathbb{R})\simeq \mathbb{R}^2$
- $M = \Sigma_{g \geq 2}$; Flux: $\mathsf{Symp}_0(\Sigma_{g \geq 2}, \omega) o H^1(\Sigma_{g \geq 2}; \mathbb{R}) \simeq \mathbb{R}^{2g}$

• $\phi \colon M \to M$ symplectomorphism; ϕ^t isotopy s.t. $\phi^0 = \mathrm{id}, \phi^1 = \phi; \quad \frac{d}{dt}\phi^t = X_t \circ \phi^t$

Flux:
$$\widetilde{\mathsf{Symp}_0}(M,\omega) \to H^1(M;\mathbb{R}); \quad [\phi^t] \mapsto \left[\int_0^1 \omega(X_t,\cdot) dt \right]$$

- $\ker(\mathsf{Flux}) = \widetilde{\mathsf{Ham}}(M, \omega);$ $\phi \in \mathsf{Symp}_0(M, \omega) \& \pi_1(M) = 0 \Rightarrow \phi \in \mathsf{Ham}(M, \omega)$
- $M=\mathbb{T}^2$; $\mathsf{Flux}(\psi^t)=(heta,0)\in H^1(\mathbb{T}^2;\mathbb{R})\simeq \mathbb{R}^2$
- $M=\Sigma_{g\geq 2}$; Flux: $\mathsf{Symp}_0(\Sigma_{g\geq 2},\omega) o H^1(\Sigma_{g\geq 2};\mathbb{R})\simeq \mathbb{R}^{2g}$

Theorem (variant of the Arnold Conjecture; Lê-Ono '95)

 $\#Fix(\phi) \ge \dim HN_*(M, Flux(\phi^t))$

• $\phi: M \to M$ symplectomorphism; ϕ^t isotopy s.t. $\phi^0 = \mathrm{id}, \phi^1 = \phi; \quad \frac{d}{dt}\phi^t = X_t \circ \phi^t$

Flux:
$$\widetilde{\mathsf{Symp}_0}(M,\omega) o H^1(M;\mathbb{R}); \quad [\phi^t] \mapsto \left[\int_0^1 \omega(X_t,\cdot) dt \right]$$

- $\ker(\mathsf{Flux}) = \mathsf{Ham}(M, \omega);$ $\phi \in \mathsf{Symp}_0(M, \omega) \& \pi_1(M) = 0 \Rightarrow \phi \in \mathsf{Ham}(M, \omega)$
- $M=\mathbb{T}^2$; $\mathsf{Flux}(\psi^t)=(\theta,0)\in H^1(\mathbb{T}^2;\mathbb{R})\simeq \mathbb{R}^2$
- $M = \Sigma_{g \geq 2}$; Flux: Symp₀ $(\Sigma_{g \geq 2}, \omega) \to H^1(\Sigma_{g \geq 2}; \mathbb{R}) \simeq \mathbb{R}^{2g}$

Theorem (variant of the Arnold Conjecture; Lê-Ono '95)

 $\#Fix(\phi) \geq \dim HN_*(M, Flux(\phi^t))$

Theorem (variants of Ginzburg-Gürel results; B.'13, B.'15)

For a class of symplectic manifolds (+ conditions on $Flux(\phi)$), $\phi \in Symp(M,\omega)$ with a hyperbolic fixed point $\Rightarrow \#Per(\phi) = \infty$

On $\Sigma_{g\geq 2}$, \exists hyperbolic fixed point $\Rightarrow \# \mathsf{Per}(\phi) = \infty$?

On $\Sigma_{g\geq 2}$, \exists hyperbolic fixed point $\Rightarrow \# \operatorname{Per}(\phi) = \infty$?

Answer:

No

On $\Sigma_{g>2}$, \exists hyperbolic fixed point $\Rightarrow \# \text{Per}(\phi) = \infty$?

Answer:

No

Example (B.'18)

Construction of a symplectic flow on a surface $\Sigma_{g\geq 2}$ with exactly 2g-2 hyperbolic fixed points and no other periodic orbits.

$$\phi_i^t(x,y) = (x + u_i t, y + v_i t)$$
, where $u_i/v_i \in \mathbb{R} \setminus \mathbb{Q}$

On $\Sigma_{g\geq 2}$, \exists hyperbolic fixed point $\Rightarrow \# \operatorname{Per}(\phi) = \infty$?

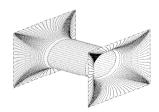
Answer:

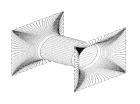
No

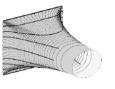
Example (B.'18)

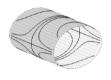
Construction of a symplectic flow on a surface $\Sigma_{g\geq 2}$ with exactly 2g-2 hyperbolic fixed points and no other periodic orbits.

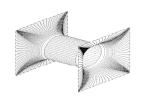
$$\phi_i^t(x,y) = (x + u_i t, y + v_i t)$$
, where $u_i/v_i \in \mathbb{R} \setminus \mathbb{Q}$

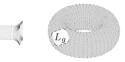












 \mathbb{T}_1

 U_1

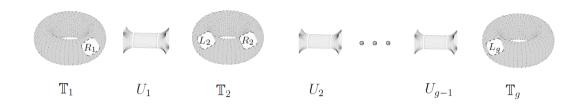
 \mathbb{T}_2

 U_2

 U_2

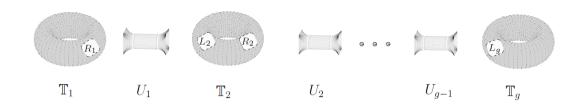
 U_{g-1}

 \mathbb{T}



Example (B.'18)

When g=2, $\mathsf{Flux}(\psi)=(u_1,v_1,u_2,v_2)\in H^1(\Sigma_2;\mathbb{R})\simeq \mathbb{R}^4$ where $u_i/v_i\in \mathbb{R}\setminus \mathbb{Q}, i=1,2$

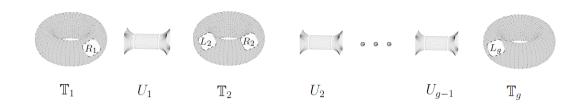


Example (B.'18)

When g=2, Flux $(\psi)=(u_1,v_1,u_2,v_2)\in H^1(\Sigma_2;\mathbb{R})\simeq \mathbb{R}^4$ where $u_i/v_i\in \mathbb{R}\setminus \mathbb{Q}, i=1,2$

Theorem (B.'18)

 $\# Fix(\phi) > 2g - 2 \Rightarrow \# Per(\phi) = \infty$ (with "irrationality" assumption on the Flux)



Example (B.'18)

When
$$g=2$$
, Flux $(\psi)=(u_1,v_1,u_2,v_2)\in H^1(\Sigma_2;\mathbb{R})\simeq \mathbb{R}^4$ where $u_i/v_i\in \mathbb{R}\setminus \mathbb{Q}, i=1,2$

Theorem (B.'18)

$$\#Fix(\phi) > 2g - 2 \Rightarrow \#Per(\phi) = \infty$$
 (with "irrationality" assumption on the Flux)

Theorem (Prasad '25, Guiheneuf - Le Calvez - Passeggi '23)

$$\# Per(\phi) = \infty \text{ if } Flux(\phi) \in H^1(\Sigma; \mathbb{Q})$$

Surfaces

2-sphere

ullet exactly two fixed points (e.g.irrational rotation) or $\# \mathsf{Per}(\phi) = \infty$ (Franks Theorem)

Surfaces

2-sphere

ullet exactly two fixed points (e.g.irrational rotation) or $\# \operatorname{Per}(\phi) = \infty$ (Franks Theorem)

2-torus

ullet no periodic points (e.g.horizontal irrational rotation) or $\# \mathsf{Per}(\phi) = \infty$ (Ginzburg-Gürel, '09)

Surfaces

2-sphere

• exactly two fixed points (e.g.irrational rotation) or $\#\text{Per}(\phi) = \infty$ (Franks Theorem)

2-torus

ullet no periodic points (e.g.horizontal irrational rotation) or $\# \mathsf{Per}(\phi) = \infty$ (Ginzburg-Gürel, '09)

g-surface, $g \ge 2$

- Lefschetz fixed point Theorem: $\#\mathsf{Fix}(\phi) \geq 1$
- ϕ non-degenerate: $\#\text{Fix}(\phi) \ge 2g 2$

Surfaces

2-sphere

ullet exactly two fixed points (e.g.irrational rotation) or $\# \operatorname{Per}(\phi) = \infty$ (Franks Theorem)

2-torus

ullet no periodic points (e.g.horizontal irrational rotation) or $\# \mathsf{Per}(\phi) = \infty$ (Ginzburg-Gürel, '09)

g-surface, $g \ge 2$

- Lefschetz fixed point Theorem: $\#\mathsf{Fix}(\phi) \geq 1$
- ϕ non-degenerate: $\#\mathsf{Fix}(\phi) \geq 2g-2$

Question 1

 $\exists \phi \in \mathsf{Symp}_0(\Sigma, \omega) \text{ with } \#\mathsf{Per}(\phi) < 2g - 2?$

Surfaces

2-sphere

• exactly two fixed points (e.g. irrational rotation) or $\#Per(\phi) = \infty$ (Franks Theorem)

2-torus • no periodic points (e.g. horizontal irrational rotation) or $\#Per(\phi) = \infty$ (Ginzburg-Gürel, '09)

g-surface, g > 2

- Lefschetz fixed point Theorem: $\#Fix(\phi) \ge 1$
- ϕ non-degenerate: $\#\text{Fix}(\phi) > 2g 2$

Question 1

 $\exists \phi \in \mathsf{Symp}_0(\Sigma, \omega) \text{ with } \#\mathsf{Per}(\phi) < 2g - 2?$

Question 2

Is there a quantitative threshold for $\#Fix(\phi)$ which forces $\#Per(\phi) = \infty$?

 $\exists \phi \in \mathsf{Symp}_0(\Sigma, \omega) \text{ with } \#\mathsf{Per}(\phi) < 2g - 2?$

$$\exists \phi \in \mathsf{Symp}_0(\Sigma, \omega) \text{ with } \#\mathsf{Per}(\phi) < 2g - 2?$$

Example (Atallah - B. - Ferreira, '24)

Construction of a symplectic flow on a surface $\Sigma_{g\geq 2}$ with exactly one fixed point and no other periodic orbits.

 $\exists \phi \in \mathsf{Symp}_0(\Sigma, \omega) \text{ with } \#\mathsf{Per}(\phi) < 2g - 2?$

Example (Atallah - B. - Ferreira, '24)

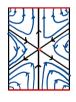
Construction of a symplectic flow on a surface $\Sigma_{g\geq 2}$ with exactly one fixed point and no other periodic orbits.

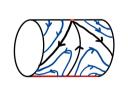
$$H \sim x(x+y)(x-y)$$

 $\exists \phi \in \mathsf{Symp}_0(\Sigma, \omega) \text{ with } \#\mathsf{Per}(\phi) < 2g - 2?$

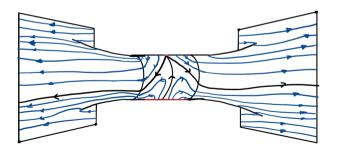
Example (Atallah - B. - Ferreira, '24)

Construction of a symplectic flow on a surface $\Sigma_{g\geq 2}$ with exactly one fixed point and no other periodic orbits.





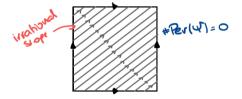
$$H \sim x(x+y)(x-y)$$

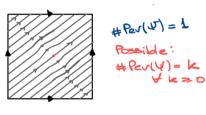


 \exists a symplectic flow with exactly $k \ge 1$ fixed points and no other periodic orbits

 \exists a symplectic flow with exactly $k \ge 1$ fixed points and no other periodic orbits

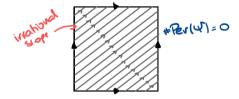
• 2-torus



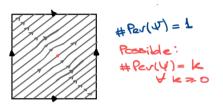


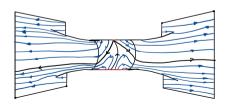
\exists a symplectic flow with exactly $k \ge 1$ fixed points and no other periodic orbits

• 2-torus



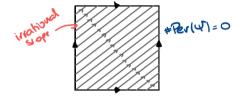
• g-surface, $g \ge 2$



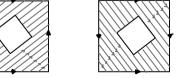


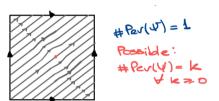
 \exists a symplectic flow with exactly $k \ge 1$ fixed points and no other periodic orbits

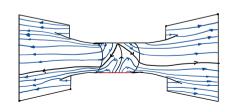
• 2-torus



• g-surface, $g \ge 2$





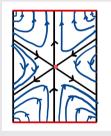


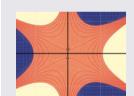
• Remark: $L(\phi, x) = 0$

 \exists a symplectic flow with exactly $k \ge 1$ fixed points and no other periodic orbits

Remark

• by changing H by $H + \varepsilon x$, we obtain a symplectic flow with exactly 2g - 2 fixed points (each with index -1).





• for every partition

$$\sum_{i=1}^{K} a_{i} = 2g - 2, \quad 1 \leq a_{1} \leq \ldots \leq a_{k}$$

there is a symplectic flow with k fixed points x_1, \ldots, x_k with $L(\phi, x_k) = -a_i$. (Done for g = 2, 3)

Is there a quantitative threshold for $\#Fix(\phi)$ which forces $\#Per(\phi) = \infty$?

Is there a quantitative threshold for $\#Fix(\phi)$ which forces $\#Per(\phi) = \infty$?

Theorem (Atallah - B. - Ferreira '24)

 $\sum_{x \in Fix(\phi^t)} \dim HF^{loc}(\phi,x) > 2g-2 \Rightarrow \phi \text{ has simple (contractible) p-p.o. for each suff. large prime p.}$

19 / 85

Is there a quantitative threshold for $\#\text{Fix}(\phi)$ which forces $\#\text{Per}(\phi) = \infty$?

Theorem (Atallah - B. - Ferreira '24)

 $\sum_{x \in Fix(\phi^t)} \dim HF^{loc}(\phi,x) > 2g-2 \Rightarrow \phi \text{ has simple (contractible) p-p.o. for each suff. large prime p.}$

• Remark: For surfaces, dim $HF^{loc}(\phi, x) = |L(\phi, x)|$. If ϕ is non-degenerate then L.H.S. $= \#Fix(\phi)$.

Recall:

Hofer-Zehnder Conjecture ('94)

 $\#\mathsf{Fix}(\varphi_H) > \text{``A.C.''} \Rightarrow \#\mathsf{Per}(\varphi_H) = \infty.$

• Recall:

Hofer-Zehnder Conjecture ('94)

$$\#\mathsf{Fix}(\varphi_H) > \text{``A.C.''} \Rightarrow \#\mathsf{Per}(\varphi_H) = \infty.$$

• Shelukhin's interpretation, '22

Hofer-Zehnder Conjecture

$$\sum_{x \in \mathsf{Fix}(\varphi_H^t)} \dim HF^{\mathsf{loc}}(\varphi_H, x) > \dim H_*(M) \Rightarrow \varphi_H \text{ has simple } p\text{-p.o. for each suff. large prime } p.$$

Remark: If φ_H is non-degenerate then L.H.S. $= \# Fix(\varphi_H)$

Recall:

Hofer-Zehnder Conjecture ('94)

$$\#\mathsf{Fix}(\varphi_H) > \text{``A.C.''} \Rightarrow \#\mathsf{Per}(\varphi_H) = \infty.$$

• Shelukhin's interpretation, '22

Hofer-Zehnder Conjecture

$$\sum_{x \in \mathsf{Fix}(\varphi_{\mathsf{t}}^t)} \dim HF^{\mathsf{loc}}(\varphi_H, x) > \dim H_*(M) \Rightarrow \varphi_H \text{ has simple } p\text{-p.o. for each suff. large prime } p.$$

Remark: If φ_H is non-degenerate then L.H.S. = $\#\text{Fix}(\varphi_H)$

• Recall: (non-Hamiltonian case)

Theorem (variant of the Arnold Conjecture (generic case); Lê-Ono '95)

$$\#Fix(\phi) \ge \dim HN_*(M, Flux(\phi))$$

Recall:

Hofer-Zehnder Conjecture ('94)

 $\#\mathsf{Fix}(\varphi_H) > \text{``A.C.''} \Rightarrow \#\mathsf{Per}(\varphi_H) = \infty.$

Shelukhin's interpretation, '22

Hofer-Zehnder Conjecture

 $x \in \mathsf{Fix}(arphi_H^t)$

Remark: If φ_H is non-degenerate then L.H.S. $= \# Fix(\varphi_H)$

• Recall: (non-Hamiltonian case)

Theorem (variant of the Arnold Conjecture (generic case); Lê-Ono '95)

 \sum dim $HF^{loc}(\varphi_H, x) > \dim H_*(M) \Rightarrow \varphi_H$ has simple p-p.o. for each suff. large prime p.

55 / 85

 $\#Fix(\phi) \ge \dim HN_*(M, Flux(\phi))$

• For surfaces, dim $HN_*(M, Flux(\phi)) = 2g - 2$ (if $Flux(\phi) \neq 0$)

Theorem (Atallah - B. - Ferreira '24)

$$\sum_{x \in Fix(\phi^t)} \dim HF^{loc}(\phi, x) > 2g - 2 \Rightarrow \phi \text{ has simple (contractible) p-p.o. for each suff. large prime p.}$$

can be interpreted as a 2-d version of a non-Hamiltonian Hofer-Zhender type conjecture

Theorem (Atallah - B. - Ferreira '24)

$$\sum_{x \in \mathit{Fix}(\phi^t)} \dim \mathit{HF}^{loc}(\phi, x) > 2g - 2 \Rightarrow \phi \ \textit{has simple (contractible) p-p.o. for each suff. large prime p.}$$

can be interpreted as a 2-d version of a non-Hamiltonian Hofer-Zhender type conjecture

General Statement (Conjecture)

$$\sum_{x \in \mathsf{Fix}(\phi^t)} \mathsf{dim} \ HF^{\mathsf{loc}}(\phi, x) > \mathsf{dim} \ HN_*(M, \mathit{Flux}(\phi^t)) \Rightarrow \phi \ \mathsf{has} \ \mathsf{simple} \ \mathit{p}\text{-p.o.} \ \mathsf{for} \ \mathsf{each} \ \mathsf{suff.} \ \mathsf{large} \ \mathsf{prime} \ \mathit{p}.$$

Theorem (Atallah - B. - Ferreira '24)

 $\sum_{x \in Fix(\phi^t)} \dim HF^{loc}(\phi,x) > 2g-2 \Rightarrow \phi \text{ has simple (contractible) p-p.o. for each suff. large prime p.}$

Theorem (Atallah - B. - Ferreira '24)

 $\sum_{x \in \mathit{Fix}(\phi^t)} \dim \mathit{HF}^{loc}(\phi, x) > 2g - 2 \Rightarrow \phi \ \textit{has simple (contractible) p-p.o. for each suff. large prime p.}$

Theorem A

Assume $\#\text{Fix}(\phi) < \infty$. If there is $x \in \text{Fix}(\phi)$ such that $\Delta(x) \neq 0$ and $HF^{\text{loc}}(\phi, x) \neq 0$ then there is a simple p-periodic point for suff. large prime p.

Theorem (Atallah - B. - Ferreira '24)

 $\sum_{x \in \mathit{Fix}(\phi^t)} \dim \mathit{HF}^{loc}(\phi, x) > 2g - 2 \Rightarrow \phi \ \textit{has simple (contractible) p-p.o. for each suff. large prime p.}$

Theorem A

Assume $\#\text{Fix}(\phi) < \infty$. If there is $x \in \text{Fix}(\phi)$ such that $\Delta(x) \neq 0$ and $HF^{\text{loc}}(\phi, x) \neq 0$ then there is a simple p-periodic point for suff. large prime p.

Theorem B

If $\sum_{x \in \mathsf{Fix}(\phi^t)} \dim HF^\mathsf{loc}(\phi, x) > 2g - 2$ then

- either there is $x \in Fix(\phi)$ such that $\Delta(x) \neq 0$ and $HF^{loc}(\phi, x) \neq 0$
- or there is a symplectic degenerate extremum (i.e. $x \in \text{Fix}(\phi)$ with $HF_1^{\text{loc}}(\phi, x) \neq 0$ or $HF_{-1}^{\text{loc}}(\phi, x) \neq 0$)

Theorem A

Assume $\#\text{Fix}(\phi) < \infty$. If there is $x \in \text{Fix}(\phi)$ such that $\Delta(x) \neq 0$ and $HF^{\text{loc}}(\phi, x) \neq 0$ then there is a simple p-periodic point for suff. large prime p.

Theorem A

Assume $\#\text{Fix}(\phi) < \infty$. If there is $x \in \text{Fix}(\phi)$ such that $\Delta(x) \neq 0$ and $HF^{\text{loc}}(\phi, x) \neq 0$ then there is a simple p-periodic point for suff. large prime p.

• supp $HFN_* = \{0\}$ (if $Flux(\{\phi\}) \neq 0$)

Theorem A

Assume $\#\text{Fix}(\phi) < \infty$. If there is $x \in \text{Fix}(\phi)$ such that $\Delta(x) \neq 0$ and $HF^{\text{loc}}(\phi, x) \neq 0$ then there is a simple p-periodic point for suff. large prime p.

• supp $HFN_* = \{0\}$ (if $Flux(\{\phi\}) \neq 0$)

Theorem A

Assume $\#\text{Fix}(\phi) < \infty$. If there is $x \in \text{Fix}(\phi)$ such that $\Delta(x) \neq 0$ and $HF^{\text{loc}}(\phi, x) \neq 0$ then there is a simple p-periodic point for suff. large prime p.

• supp $HFN_* = \{0\}$ (if $Flux(\{\phi\}) \neq 0$)

x is non-degenerate

p large

Theorem A

Assume $\#\text{Fix}(\phi) < \infty$. If there is $x \in \text{Fix}(\phi)$ such that $\Delta(x) \neq 0$ and $HF^{\text{loc}}(\phi, x) \neq 0$ then there is a simple p-periodic point for suff. large prime p.

• supp $HFN_* = \{0\}$ (if $Flux(\{\phi\}) \neq 0$)

- p large
- assume each p-p.o. is the p-th iteration of a 1-p.o.

Theorem A

Assume $\#\text{Fix}(\phi) < \infty$. If there is $x \in \text{Fix}(\phi)$ such that $\Delta(x) \neq 0$ and $HF^{\text{loc}}(\phi, x) \neq 0$ then there is a simple p-periodic point for suff. large prime p.

• supp $HFN_* = \{0\}$ (if $Flux(\{\phi\}) \neq 0$)

- p large
- assume each p-p.o. is the p-th iteration of a 1-p.o.
- there is no F.T. to/from x^p

Theorem A

Assume $\#\text{Fix}(\phi) < \infty$. If there is $x \in \text{Fix}(\phi)$ such that $\Delta(x) \neq 0$ and $HF^{\text{loc}}(\phi, x) \neq 0$ then there is a simple p-periodic point for suff. large prime p.

• supp $HFN_* = \{0\}$ (if $Flux(\{\phi\}) \neq 0$)

- p large
- assume each p-p.o. is the p-th iteration of a 1-p.o.
- there is no F.T. to/from x^p
 - $|CZ(x^p) CZ(y^p)| = 1$

Theorem A

Assume $\#\text{Fix}(\phi) < \infty$. If there is $x \in \text{Fix}(\phi)$ such that $\Delta(x) \neq 0$ and $HF^{\text{loc}}(\phi, x) \neq 0$ then there is a simple p-periodic point for suff. large prime p.

• supp $HFN_* = \{0\}$ (if $Flux(\{\phi\}) \neq 0$)

- p large
- assume each p-p.o. is the p-th iteration of a 1-p.o.
- there is no F.T. to/from x^p
 - $|CZ(x^p) CZ(y^p)| = 1$
 - $|\Delta(x^p) CZ(x^p)| < n = 1$ and $|\Delta(y^p) CZ(y^p)| < n = 1$

Theorem A

Assume $\#\text{Fix}(\phi) < \infty$. If there is $x \in \text{Fix}(\phi)$ such that $\Delta(x) \neq 0$ and $HF^{\text{loc}}(\phi, x) \neq 0$ then there is a simple p-periodic point for suff. large prime p.

• supp $HFN_* = \{0\}$ (if $Flux(\{\phi\}) \neq 0$)

- p large
- assume each p-p.o. is the p-th iteration of a 1-p.o.
- there is no F.T. to/from x^p
 - $|CZ(x^p) CZ(y^p)| = 1$
 - $|\Delta(x^p) \mathsf{CZ}(x^p)| < n = 1$ and $|\Delta(y^p) \mathsf{CZ}(y^p)| < n = 1$
 - $p|\Delta(x) \Delta(y)| = |\Delta(x^p) \Delta(y^p)| < 3$ (contradiction: p large)

Theorem A

Assume $\#\text{Fix}(\phi) < \infty$. If there is $x \in \text{Fix}(\phi)$ such that $\Delta(x) \neq 0$ and $HF^{\text{loc}}(\phi, x) \neq 0$ then there is a simple p-periodic point for suff. large prime p.

• supp $HFN_* = \{0\}$ (if $Flux(\{\phi\}) \neq 0$)

- p large
- assume each p-p.o. is the p-th iteration of a 1-p.o.
- there is no F.T. to/from x^p
 - $|CZ(x^p) CZ(y^p)| = 1$
 - $|\Delta(x^p) \mathsf{CZ}(x^p)| < n = 1$ and $|\Delta(y^p) \mathsf{CZ}(y^p)| < n = 1$
 - $p|\Delta(x) \Delta(y)| = |\Delta(x^p) \Delta(y^p)| < 3$ (contradiction: p large)
- x^p contributes non-trivially to HFN_μ with $\mu \notin \text{supp } HFN_*$. \square

x is degenerate

• $\Delta(x) \in 2\mathbb{Z}$

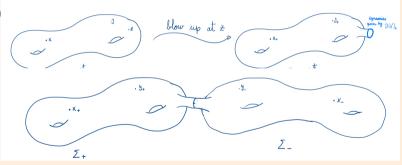
- $\Delta(x) \in 2\mathbb{Z}$
- take p a large prime so that $|\Delta(x^p) \pm \Delta(y^p)| > 4$ for all y s.t. $|\Delta(y)| \neq \Delta(x)$

- $\Delta(x) \in 2\mathbb{Z}$
- take p a large prime so that $|\Delta(x^p) \pm \Delta(y^p)| > 4$ for all y s.t. $|\Delta(y)| \neq \Delta(x)$
- assume each p-p.o. is the p-th iteration of a 1-p.o.

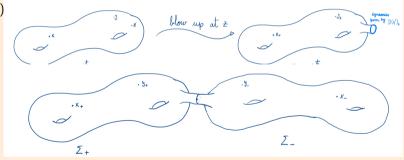
- $\Delta(x) \in 2\mathbb{Z}$
- take p a large prime so that $|\Delta(x^p) \pm \Delta(y^p)| > 4$ for all y s.t. $|\Delta(y)| \neq \Delta(x)$
- assume each p-p.o. is the p-th iteration of a 1-p.o.
- $z \neq x$ with $|\Delta(z)| = \Delta(x)$

- $\Delta(x) \in 2\mathbb{Z}$
- take p a large prime so that $|\Delta(x^p) \pm \Delta(y^p)| > 4$ for all y s.t. $|\Delta(y)| \neq \Delta(x)$
- assume each p-p.o. is the p-th iteration of a 1-p.o.
- $z \neq x$ with $|\Delta(z)| = \Delta(x)$

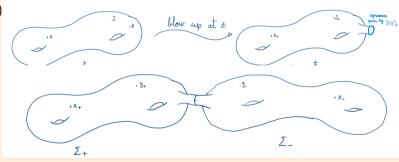
- $\Delta(x) \in 2\mathbb{Z}$
- take p a large prime so that $|\Delta(x^p) \pm \Delta(y^p)| > 4$ for all y s.t. $|\Delta(y)| \neq \Delta(x)$
- assume each p-p.o. is the p-th iteration of a 1-p.o.
- $z \neq x$ with $|\Delta(z)| = \Delta(x)$



- $\Delta(x) \in 2\mathbb{Z}$
- take p a large prime so that $|\Delta(x^p) \pm \Delta(y^p)| > 4$ for all y s.t. $|\Delta(y)| \neq \Delta(x)$
- assume each p-p.o. is the p-th iteration of a 1-p.o.
- $z \neq x$ with $|\Delta(z)| \equiv \Delta(x)$, • $\forall y \text{ with } |\Delta(y)| = \Delta(x)$, $\Delta(y_{\pm}) = \pm \Delta(y)$

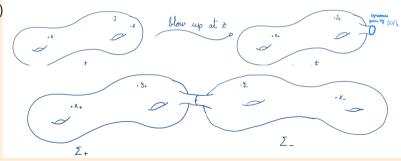


- $\Delta(x) \in 2\mathbb{Z}$
- take p a large prime so that $|\Delta(x^p) \pm \Delta(y^p)| > 4$ for all y s.t. $|\Delta(y)| \neq \Delta(x)$
- assume each p-p.o. is the p-th iteration of a 1-p.o.



• Remark: $\Delta(z) \in 2\mathbb{Z} \Rightarrow$ there are only possibly new non-contractible p.o.

- $\Delta(x) \in 2\mathbb{Z}$
- take p a large prime so that $|\Delta(x^p) \pm \Delta(y^p)| > 4$ for all y s.t. $|\Delta(y)| \neq \Delta(x)$
- assume each p-p.o. is the p-th iteration of a 1-p.o.
- $z \neq x$ with $|\Delta(z)| \equiv \Delta(x)$, • $\forall y$ with $|\Delta(y)| \equiv \Delta(x)$, $\Delta(y_{\pm}) = \pm \Delta(y)$



- Remark: $\Delta(z) \in 2\mathbb{Z} \Rightarrow$ there are only possibly new non-contractible p.o.
- cycles representing a non-trivial class of $HF^{loc}(x_{\pm})$ remain non-trivial in HFN.

Theorem B

If $(\star) \sum_{x \in \mathsf{Fix}(\phi^t)} \dim HF^{\mathsf{loc}}(\phi, x) > 2g - 2$ then

- ullet either there is $x\in \mathsf{Fix}(\phi)$ such that $\Delta(x)
 eq 0$ and $HF^\mathsf{loc}(\phi,x)
 eq 0$
- or there is a symplectic degenerate extremum (i.e. $x \in \text{Fix}(\phi)$ with $HF_1^{\text{loc}}(\phi, x) \neq 0$ or $HF_{-1}^{\text{loc}}(\phi, x) \neq 0$)

Theorem B

If $(\star) \sum_{x \in \mathsf{Fix}(\phi^t)} \dim HF^{\mathsf{loc}}(\phi, x) > 2g-2$ then

- either there is $x \in Fix(\phi)$ such that $\Delta(x) \neq 0$ and $HF^{loc}(\phi, x) \neq 0$
- or there is a symplectic degenerate extremum (i.e. $x \in \text{Fix}(\phi)$ with $HF_1^{\text{loc}}(\phi, x) \neq 0$ or $HF_{-1}^{\text{loc}}(\phi, x) \neq 0$)
- Suppose that $\Delta(x) = 0$, for all $x \in Fix(\phi)$ with $HF^{loc}(x) \neq 0$

Theorem B

If
$$(\star) \sum_{x \in \mathsf{Fix}(\phi^t)} \dim HF^{\mathsf{loc}}(\phi, x) > 2g - 2$$
 then

- either there is $x \in Fix(\phi)$ such that $\Delta(x) \neq 0$ and $HF^{loc}(\phi, x) \neq 0$
- or there is a symplectic degenerate extremum (i.e. $x \in \text{Fix}(\phi)$ with $HF_1^{\text{loc}}(\phi, x) \neq 0$ or $HF_{-1}^{\text{loc}}(\phi, x) \neq 0$)
- Suppose that $\Delta(x) = 0$, for all $x \in Fix(\phi)$ with $HF^{loc}(x) \neq 0$
- Hence supp $HF^{\text{loc}}(x) = \{-1, 0, 1\}$ for all $x \in \text{Fix}(\phi)$

Theorem B

If
$$(\star) \sum_{x \in \mathsf{Fix}(\phi^t)} \dim HF^{\mathsf{loc}}(\phi, x) > 2g-2$$
 then

- either there is $x \in Fix(\phi)$ such that $\Delta(x) \neq 0$ and $HF^{loc}(\phi, x) \neq 0$
- or there is a symplectic degenerate extremum (i.e. $x \in \text{Fix}(\phi)$ with $HF_1^{\text{loc}}(\phi, x) \neq 0$ or $HF_{-1}^{\text{loc}}(\phi, x) \neq 0$)
- Suppose that $\Delta(x) = 0$, for all $x \in Fix(\phi)$ with $HF^{loc}(x) \neq 0$
- Hence supp $HF^{\text{loc}}(x) = \{-1, 0, 1\}$ for all $x \in \text{Fix}(\phi)$
- $CFN = \bigoplus_{x \in Fix(\phi)} HF^{loc}(x) \xrightarrow{(\star)}$ non-trivial differential
 - \implies there is a k s.t. CFN_k and CFN_{k+1} are non-trivial
 - \Longrightarrow there is an SDE $\ \square$

Thank you!