Modular tensor categories via local modules

Harshit Yadav

University of Alberta

August 6, 2025

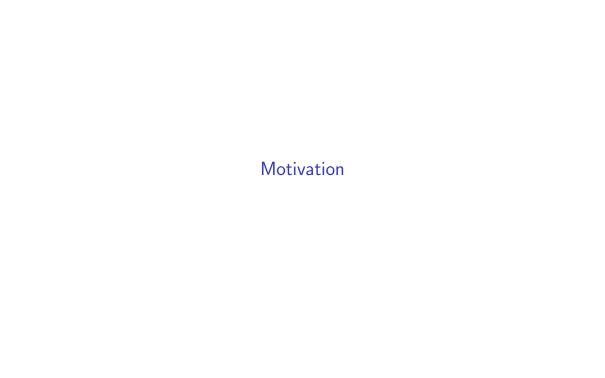
Talk based on arXiv:2408.06314 with Kenichi Shimizu

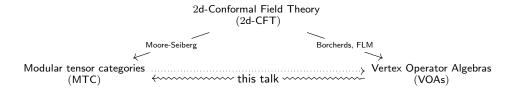
Plan of the talk

- Motivation
- @ General categorical results
- Applications to finite tensor categories
- Examples

Plan of the talk

- Motivation
- @ General categorical results
- Applications to finite tensor categories
- Examples





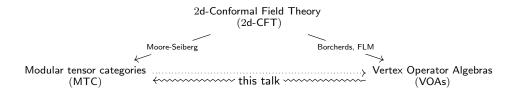
Here the category may be infinite and non-semisimple.

Here the category may be infinite and non-semisimple.

Expectation: V a 'nice enough' VOA $\implies \mathcal{C} = \mathsf{Rep}(V)$ is a MTC.

(Huang's theorem) The expectation is true when ${\it V}$ is a strongly rational (semisimple) VOA.

Huang-Lepowsky-Zhang tensor product theory, along with its recent advancements, provide clear criteria for associating a braided monoidal category Rep(V) to a VOA V.



Here the category may be infinite and non-semisimple.

Expectation:
$$V$$
 a 'nice enough' VOA $\implies C = \text{Rep}(V)$ is a MTC.

(Huang's theorem) The expectation is true when V is a strongly rational (semisimple) VOA.

Here the category may be infinite and non-semisimple.

Expectation: V a 'nice enough' VOA $\implies \mathcal{C} = \mathsf{Rep}(V)$ is a MTC.

(Huang's theorem) The expectation is true when ${\it V}$ is a strongly rational (semisimple) VOA.

Huang-Lepowsky-Zhang tensor product theory, along with its recent advancements, provide clear criteria for associating a braided monoidal category Rep(V) to a VOA V.

Here the category may be infinite and non-semisimple.

Expectation: V a 'nice enough' VOA $\implies \mathcal{C} = \mathsf{Rep}(V)$ is a MTC.

(Huang's theorem) The expectation is true when ${\it V}$ is a strongly rational (semisimple) VOA.

Huang-Lepowsky-Zhang tensor product theory, along with its recent advancements, provide clear criteria for associating a braided monoidal category Rep(V) to a VOA V.

Since this is a difficult question in general, we look at it using various constructions relating VOAs like:

Conformal extensions:

An (conformal) extension is an injective map of VOAs $V \subset W$ with the same conformal vector.

Conformal extensions:

An (conformal) extension is an injective map of VOAs $V \subset W$ with the same conformal vector.

Given an extension of VOAs $V \subset W$ we can relate $\mathcal{C} = \mathsf{Rep}(V)$, $\mathcal{D} = \mathsf{Rep}(W)$.

Conformal extensions:

An (conformal) extension is an injective map of VOAs $V\subset W$ with the same conformal vector.

Given an extension of VOAs $V \subset W$ we can relate $\mathcal{C} = \mathsf{Rep}(V)$, $\mathcal{D} = \mathsf{Rep}(W)$.

<u>Theorem</u>: (Kirillov-Ostrik, Huang-Kirillov-Lepowsky, Creutzig-Kanade-McRae) If $\mathcal C$ is a braided monoidal category and $W \in \mathcal C$, then

• A := W is a commutative algebra object in C.

Conformal extensions:

An (conformal) extension is an injective map of VOAs $V \subset W$ with the same conformal vector.

Given an extension of VOAs $V \subset W$ we can relate $\mathcal{C} = \mathsf{Rep}(V)$, $\mathcal{D} = \mathsf{Rep}(W)$.

<u>Theorem</u>: (Kirillov-Ostrik, Huang-Kirillov-Lepowsky, Creutzig-Kanade-McRae) If C is a braided monoidal category and $W \in C$, then

- A := W is a commutative algebra object in C.
- $\mathcal{D} \cong_{\mathsf{br} \, \otimes} \mathcal{C}_A^{\mathrm{loc}}$ is the category of local A-modules in \mathcal{C} .

Conformal extensions:

An (conformal) extension is an injective map of VOAs $V \subset W$ with the same conformal vector.

Given an extension of VOAs $V \subset W$ we can relate $\mathcal{C} = \mathsf{Rep}(V)$, $\mathcal{D} = \mathsf{Rep}(W)$.

Theorem: (Kirillov-Ostrik, Huang-Kirillov-Lepowsky, Creutzig-Kanade-McRae) If \mathcal{C} is a braided monoidal category and $W \in \mathcal{C}$, then

- A := W is a commutative algebra object in C.
 - $\mathcal{D} \cong_{\mathsf{br} \, \otimes} \mathcal{C}^{\mathrm{loc}}_{\scriptscriptstyle{A}}$ is the category of local A-modules in \mathcal{C} .

Upshot: Understanding the category $\mathcal{C}_{A}^{\mathrm{loc}}$ helps us understand $\mathrm{Rep}(W)$.

Conformal extensions:

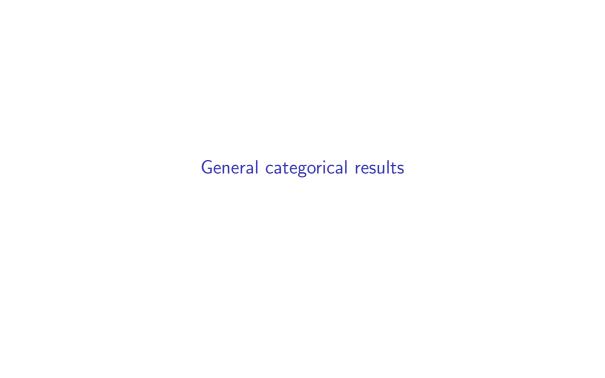
An (conformal) extension is an injective map of VOAs $V \subset W$ with the same conformal vector.

Given an extension of VOAs $V \subset W$ we can relate $\mathcal{C} = \mathsf{Rep}(V)$, $\mathcal{D} = \mathsf{Rep}(W)$.

Theorem: (Kirillov-Ostrik, Huang-Kirillov-Lepowsky, Creutzig-Kanade-McRae) If \mathcal{C} is a braided monoidal category and $W \in \mathcal{C}$, then

- A := W is a commutative algebra object in C.
 - $\mathcal{D} \cong_{\mathsf{br} \, \otimes} \mathcal{C}^{\mathrm{loc}}_{\scriptscriptstyle{A}}$ is the category of local A-modules in \mathcal{C} .

Upshot: Understanding the category $\mathcal{C}_{A}^{\mathrm{loc}}$ helps us understand $\mathrm{Rep}(W)$.



Let $(\mathcal{C}, \otimes, \mathbb{1})$ be a monoidal category and let (A, μ, η) be an algebra in \mathcal{C} .

Let $(\mathcal{C}, \otimes, \mathbb{1})$ be a monoidal category and let (A, μ, η) be an algebra in \mathcal{C} . Then, we can form that category ${}_A\mathcal{C}_A$ of A-bimodules (M, ρ_M^l, ρ_M^r) in \mathcal{C} .

Let $(\mathcal{C}, \otimes, \mathbb{1})$ be a monoidal category and let (A, μ, η) be an algebra in \mathcal{C} . Then, we can form that category ${}_A\mathcal{C}_A$ of A-bimodules (M, ρ_M^l, ρ_M^r) in \mathcal{C} .

Assumption: C admits equalizers and coequalizers and that the tensor product preserves coequalizers. This is true, for instance, if C is abelian with right exact tensor product.

Let $(\mathcal{C}, \otimes, \mathbb{1})$ be a monoidal category and let (A, μ, η) be an algebra in \mathcal{C} . Then, we can form that category ${}_A\mathcal{C}_A$ of A-bimodules (M, ρ_M^l, ρ_M^r) in \mathcal{C} .

Assumption: C admits equalizers and coequalizers and that the tensor product preserves coequalizers. This is true, for instance, if C is abelian with right exact tensor product.

• The category of A-bimodules, denoted as ${}_{A}\mathcal{C}_{A}$, is monoidal. For $M,N\in{}_{A}\mathcal{C}_{A}$, the tensor product $M\otimes_{A}N$ is defined as

$$M \otimes_A N = \text{coequalizer} \left(M \otimes A \otimes N \xrightarrow{\rho_M^r \otimes N} M \otimes N \right)$$

Let $(\mathcal{C}, \otimes, \mathbb{1})$ be a monoidal category and let (A, μ, η) be an algebra in \mathcal{C} . Then, we can form that category ${}_A\mathcal{C}_A$ of A-bimodules (M, ρ_M^l, ρ_M^r) in \mathcal{C} .

Assumption: \mathcal{C} admits equalizers and coequalizers and that the tensor product preserves coequalizers. This is true, for instance, if \mathcal{C} is abelian with right exact tensor product.

• The category of A-bimodules, denoted as ${}_{A}\mathcal{C}_{A}$, is monoidal. For $M,N\in{}_{A}\mathcal{C}_{A}$, the tensor product $M\otimes_{A}N$ is defined as

$$M\otimes_A N = \text{coequalizer}\big(\ M\otimes A\otimes N \xrightarrow[]{\rho^r_M\otimes N} M\otimes N\ \big)$$

The unit object is A considered as an A-bimodule using the multiplication μ .

Let $(\mathcal{C}, \otimes, \mathbb{1})$ be a monoidal category and let (A, μ, η) be an algebra in \mathcal{C} . Then, we can form that category ${}_A\mathcal{C}_A$ of A-bimodules (M, ρ_M^l, ρ_M^r) in \mathcal{C} .

Assumption: \mathcal{C} admits equalizers and coequalizers and that the tensor product preserves coequalizers. This is true, for instance, if \mathcal{C} is abelian with right exact tensor product.

• The category of A-bimodules, denoted as ${}_{A}\mathcal{C}_{A}$, is monoidal. For $M,N\in{}_{A}\mathcal{C}_{A}$, the tensor product $M\otimes_{A}N$ is defined as

$$M\otimes_A N = \text{coequalizer}\big(\ M\otimes A\otimes N \xrightarrow[]{\rho^r_M\otimes N} M\otimes N\ \big)$$

The unit object is A considered as an A-bimodule using the multiplication μ .

• Now suppose that $\mathcal C$ is a braided monoidal category with braiding $X\otimes Y\xrightarrow{c_{X,Y}}Y\otimes X.$

Let $(\mathcal{C}, \otimes, \mathbb{1})$ be a monoidal category and let (A, μ, η) be an algebra in \mathcal{C} . Then, we can form that category ${}_A\mathcal{C}_A$ of A-bimodules (M, ρ^l_M, ρ^r_M) in \mathcal{C} .

Assumption: \mathcal{C} admits equalizers and coequalizers and that the tensor product preserves coequalizers. This is true, for instance, if \mathcal{C} is abelian with right exact tensor product.

• The category of A-bimodules, denoted as ${}_{A}\mathcal{C}_{A}$, is monoidal. For $M,N\in{}_{A}\mathcal{C}_{A}$, the tensor product $M\otimes_{A}N$ is defined as

$$M\otimes_A N = \text{coequalizer}\big(\ M\otimes A\otimes N \xrightarrow[]{\rho^r_M\otimes N} M\otimes N\ \big)$$

The unit object is A considered as an A-bimodule using the multiplication μ .

• Now suppose that $\mathcal C$ is a braided monoidal category with braiding $X\otimes Y\xrightarrow{c_{X,Y}}Y\otimes X.$ Then a right A-module (M,ρ_M^r) also becomes a left A-module

$$\rho_M^l: A \otimes M \xrightarrow{c_{A,M}} M \otimes A \xrightarrow{\rho_M^r} M.$$

Morevoer, the category C_A of right A-modules is a monoidal full subcategory of ${}_AC_A$.

Let $(\mathcal{C}, \otimes, \mathbb{1})$ be a monoidal category and let (A, μ, η) be an algebra in \mathcal{C} . Then, we can form that category ${}_A\mathcal{C}_A$ of A-bimodules (M, ρ^l_M, ρ^r_M) in \mathcal{C} .

Assumption: \mathcal{C} admits equalizers and coequalizers and that the tensor product preserves coequalizers. This is true, for instance, if \mathcal{C} is abelian with right exact tensor product.

• The category of A-bimodules, denoted as ${}_{A}\mathcal{C}_{A}$, is monoidal. For $M,N\in{}_{A}\mathcal{C}_{A}$, the tensor product $M\otimes_{A}N$ is defined as

$$M\otimes_A N = \text{coequalizer}\big(\ M\otimes A\otimes N \xrightarrow[]{\rho^r_M\otimes N} M\otimes N\ \big)$$

The unit object is A considered as an A-bimodule using the multiplication μ .

• Now suppose that $\mathcal C$ is a braided monoidal category with braiding $X\otimes Y\xrightarrow{c_{X,Y}}Y\otimes X.$ Then a right A-module (M,ρ_M^r) also becomes a left A-module

$$\rho_M^l: A \otimes M \xrightarrow{c_{A,M}} M \otimes A \xrightarrow{\rho_M^r} M.$$

Morevoer, the category C_A of right A-modules is a monoidal full subcategory of ${}_AC_A$.

The category C_A is not a braided category in general.

The category C_A is not a braided category in general. To get a braided monoidal category, Pareigis introduced the following:

<u>Definition</u> $M \in \mathcal{C}_A$ is called local if $\rho_M^r \circ c_{A,M} = \rho_M^r \circ c_{M,A}^{-1}$.

The category C_A is not a braided category in general. To get a braided monoidal category, Pareigis introduced the following:

<u>Definition</u> $M \in \mathcal{C}_A$ is called local if $\rho_M^r \circ c_{A,M} = \rho_M^r \circ c_{M,A}^{-1}$.

Theorem: (Pareigis) The category \mathcal{C}_A^{loc} of local A-modules is braided monoidal.

The category C_A is not a braided category in general. To get a braided monoidal category, Pareigis introduced the following:

<u>Definition</u> $M \in \mathcal{C}_A$ is called local if $\rho_M^r \circ c_{A,M} = \rho_M^r \circ c_{M,A}^{-1}$.

Theorem: (Pareigis) The category $\mathcal{C}_A^{\mathrm{loc}}$ of local A-modules is braided monoidal.

The braiding on $\mathcal{C}_A^{\mathrm{loc}}$, denoted as c^A , is inherited from \mathcal{C} .

The category C_A is not a braided category in general. To get a braided monoidal category, Pareigis introduced the following:

<u>Definition</u> $M \in \mathcal{C}_A$ is called local if $\rho_M^r \circ c_{A,M} = \rho_M^r \circ c_{M,A}^{-1}$.

Theorem: (Pareigis) The category $\mathcal{C}_A^{\mathrm{loc}}$ of local A-modules is braided monoidal.

The braiding on $\mathcal{C}_A^{\mathrm{loc}}$, denoted as c^A , is inherited from \mathcal{C} . Namely, for $M,N\in\mathcal{C}_A^{\mathrm{loc}}$, the following diagram commutes

$$\begin{array}{ccc} M \otimes N & \xrightarrow{c_{M,N}} & N \otimes M \\ \pi_{M,N} \downarrow & & \downarrow \pi_{N,M} \\ M \otimes_A N & \xrightarrow{c_{M,N}^A} & N \otimes_A M \end{array}$$

The category C_A is not a braided category in general. To get a braided monoidal category, Pareigis introduced the following:

<u>Definition</u> $M \in \mathcal{C}_A$ is called local if $\rho_M^r \circ c_{A,M} = \rho_M^r \circ c_{M,A}^{-1}$.

Theorem: (Pareigis) The category $\mathcal{C}_A^{\mathrm{loc}}$ of local A-modules is braided monoidal.

The braiding on $\mathcal{C}_A^{\mathrm{loc}}$, denoted as c^A , is inherited from \mathcal{C} . Namely, for $M,N\in\mathcal{C}_A^{\mathrm{loc}}$, the following diagram commutes

$$\begin{array}{ccc} M \otimes N & \xrightarrow{c_{M,N}} & N \otimes M \\ \pi_{M,N} \downarrow & & \downarrow \pi_{N,M} \\ M \otimes_A N & \xrightarrow{c_{M,N}^A} & N \otimes_A M \end{array}$$

Here $\pi_{M,N}: M\otimes N\to M\otimes_A N$ denotes the canonical epimorphism associated to the coequalizer $M\otimes_A N$.

The category C_A is not a braided category in general. To get a braided monoidal category, Pareigis introduced the following:

<u>Definition</u> $M \in \mathcal{C}_A$ is called local if $\rho_M^r \circ c_{A,M} = \rho_M^r \circ c_{M,A}^{-1}$.

Theorem: (Pareigis) The category \mathcal{C}_A^{loc} of local A-modules is braided monoidal.

The braiding on $\mathcal{C}_A^{\mathrm{loc}}$, denoted as c^A , is inherited from \mathcal{C} . Namely, for $M,N\in\mathcal{C}_A^{\mathrm{loc}}$, the following diagram commutes

$$\begin{array}{c} M \otimes N \xrightarrow{c_{M,N}} N \otimes M \\ \pi_{M,N} \downarrow & \downarrow^{\pi_{N,M}} \\ M \otimes_A N \xrightarrow{c_{M,N}^A} N \otimes_A M \end{array}$$

Here $\pi_{M,N}: M \otimes N \to M \otimes_A N$ denotes the canonical epimorphism associated to the coequalizer $M \otimes_A N$.

First goal: provide sufficient conditions on C and A to ensure C_A^{loc} is rigid, ribbon, etc.

The category C_A is not a braided category in general. To get a braided monoidal category, Pareigis introduced the following:

<u>Definition</u> $M \in \mathcal{C}_A$ is called local if $\rho_M^r \circ c_{A,M} = \rho_M^r \circ c_{M,A}^{-1}$.

Theorem: (Pareigis) The category \mathcal{C}_A^{loc} of local A-modules is braided monoidal.

The braiding on $\mathcal{C}_A^{\mathrm{loc}}$, denoted as c^A , is inherited from \mathcal{C} . Namely, for $M,N\in\mathcal{C}_A^{\mathrm{loc}}$, the following diagram commutes

$$\begin{array}{c} M \otimes N \xrightarrow{c_{M,N}} N \otimes M \\ \pi_{M,N} \downarrow & \downarrow^{\pi_{N,M}} \\ M \otimes_A N \xrightarrow{c_{M,N}^A} N \otimes_A M \end{array}$$

Here $\pi_{M,N}: M\otimes N\to M\otimes_A N$ denotes the canonical epimorphism associated to the coequalizer $M\otimes_A N$.

First goal: provide sufficient conditions on C and A to ensure C_A^{loc} is rigid, ribbon, etc.

Let $\mathcal{Z}(\mathcal{C})$ denote the Drinfeld center of a monoidal category $\mathcal{C}.$

Let $\mathcal{Z}(\mathcal{C})$ denote the Drinfeld center of a monoidal category \mathcal{C} . Given a commutative algebra $(A, \sigma) \in \mathcal{Z}(\mathcal{C})$, define

$$\mathcal{C}_A^{\sigma} = \{ M \in {}_{A}\mathcal{C}_A \, | \, \rho_M^l = \rho_M^r \circ \sigma_M : A \otimes M \to M \}$$

where σ denotes the half-braiding of A.

Let $\mathcal{Z}(\mathcal{C})$ denote the Drinfeld center of a monoidal category \mathcal{C} . Given a commutative algebra $(A, \sigma) \in \mathcal{Z}(\mathcal{C})$, define

$$\mathcal{C}_A^{\sigma} = \{ M \in {}_A\mathcal{C}_A \mid \rho_M^l = \rho_M^r \circ \sigma_M : A \otimes M \to M \}$$

where σ denotes the half-braiding of A.

The category \mathcal{C}_A^{σ} is a monoidal subcategory of ${}_A\mathcal{C}_A$, that is, it is closed under \otimes_A .

Let $\mathcal{Z}(\mathcal{C})$ denote the Drinfeld center of a monoidal category \mathcal{C} . Given a commutative algebra $(A, \sigma) \in \mathcal{Z}(\mathcal{C})$, define

$$\mathcal{C}_A^{\sigma} = \{ M \in {}_A\mathcal{C}_A \mid \rho_M^l = \rho_M^r \circ \sigma_M : A \otimes M \to M \}$$

where σ denotes the half-braiding of A.

The category \mathcal{C}_A^{σ} is a monoidal subcategory of ${}_{A}\mathcal{C}_{A}$, that is, it is closed under \otimes_{A} .

When $\mathcal C$ is braided, any algebra $A\in\mathcal C$ can be equipped with two possible half-braiding:

Let $\mathcal{Z}(\mathcal{C})$ denote the Drinfeld center of a monoidal category \mathcal{C} . Given a commutative algebra $(A, \sigma) \in \mathcal{Z}(\mathcal{C})$, define

$$\mathcal{C}_A^{\sigma} = \{ M \in {}_A\mathcal{C}_A \mid \rho_M^l = \rho_M^r \circ \sigma_M : A \otimes M \to M \}$$

where σ denotes the half-braiding of A.

The category \mathcal{C}_A^{σ} is a monoidal subcategory of ${}_{A}\mathcal{C}_{A}$, that is, it is closed under \otimes_{A} .

When $\mathcal C$ is braided, any algebra $A\in\mathcal C$ can be equipped with two possible half-braiding:

$$\sigma^{+} = c_{A,-}, \text{ and } \sigma^{-} = c_{-,A}^{-1} : A \otimes (-) \to (-) \otimes A.$$

Let $\mathcal{Z}(\mathcal{C})$ denote the Drinfeld center of a monoidal category \mathcal{C} . Given a commutative algebra $(A, \sigma) \in \mathcal{Z}(\mathcal{C})$, define

$$\mathcal{C}_A^{\sigma} = \{ M \in {}_A\mathcal{C}_A \mid \rho_M^l = \rho_M^r \circ \sigma_M : A \otimes M \to M \}$$

where σ denotes the half-braiding of A.

The category \mathcal{C}_A^{σ} is a monoidal subcategory of ${}_{A}\mathcal{C}_{A}$, that is, it is closed under \otimes_{A} .

When $\mathcal C$ is braided, any algebra $A\in\mathcal C$ can be equipped with two possible half-braiding:

$$\sigma^+ = c_{A,-}, \text{ and } \sigma^- = c_{-,A}^{-1} : A \otimes (-) \to (-) \otimes A.$$

In fact, $\mathcal{C}_A^{\mathrm{loc}} = \mathcal{C}_A^{\sigma^+} \cap \mathcal{C}_A^{\sigma^-}$.

Let $\mathcal{Z}(\mathcal{C})$ denote the Drinfeld center of a monoidal category \mathcal{C} . Given a commutative algebra $(A, \sigma) \in \mathcal{Z}(\mathcal{C})$, define

$$\mathcal{C}_A^{\sigma} = \{ M \in {}_{A}\mathcal{C}_A \, | \, \rho_M^l = \rho_M^r \circ \sigma_M : A \otimes M \to M \}$$

where σ denotes the half-braiding of A.

The category \mathcal{C}_A^{σ} is a monoidal subcategory of ${}_{A}\mathcal{C}_{A}$, that is, it is closed under \otimes_{A} .

When $\mathcal C$ is braided, any algebra $A\in\mathcal C$ can be equipped with two possible half-braiding:

$$\sigma^+ = c_{A,-}, \text{ and } \sigma^- = c_{-,A}^{-1} : A \otimes (-) \to (-) \otimes A.$$

In fact,
$$\mathcal{C}_A^{\mathrm{loc}} = \mathcal{C}_A^{\sigma^+} \cap \mathcal{C}_A^{\sigma^-}$$
.

We will employ this description of $\mathcal{C}_A^{\mathrm{loc}}$ to prove its rigidity.

Let $\mathcal{Z}(\mathcal{C})$ denote the Drinfeld center of a monoidal category \mathcal{C} . Given a commutative algebra $(A, \sigma) \in \mathcal{Z}(\mathcal{C})$, define

$$\mathcal{C}_A^{\sigma} = \{ M \in {}_{A}\mathcal{C}_A \, | \, \rho_M^l = \rho_M^r \circ \sigma_M : A \otimes M \to M \}$$

where σ denotes the half-braiding of A.

The category \mathcal{C}_A^{σ} is a monoidal subcategory of ${}_{A}\mathcal{C}_{A}$, that is, it is closed under \otimes_{A} .

When $\mathcal C$ is braided, any algebra $A\in\mathcal C$ can be equipped with two possible half-braiding:

$$\sigma^+ = c_{A,-}, \text{ and } \sigma^- = c_{-,A}^{-1} : A \otimes (-) \to (-) \otimes A.$$

In fact,
$$\mathcal{C}_A^{\mathrm{loc}} = \mathcal{C}_A^{\sigma^+} \cap \mathcal{C}_A^{\sigma^-}$$
.

We will employ this description of $\mathcal{C}_A^{\mathrm{loc}}$ to prove its rigidity.

An object $X \in \mathcal{C}$ is called **left rigid** if $\exists X^* \in \mathcal{C}$ along with maps $\operatorname{ev}: X \otimes X^* \to \mathbb{1}$ and $\operatorname{coev}: \mathbb{1} \to X^* \otimes X$ satisfying snake relations.

A monoidal category $(\mathcal{C}, \otimes, \mathbb{1})$ is called **left closed** if the endofunctor $-\otimes X$ of \mathcal{C} admits a right adjoint $\forall X \in \mathcal{C}$. We denote the right adjoint as $\mathrm{Hom}^l(X, -)$.

An object $X \in \mathcal{C}$ is called **left rigid** if $\exists X^* \in \mathcal{C}$ along with maps $\operatorname{ev}: X \otimes X^* \to \mathbb{1}$ and $\operatorname{coev}: \mathbb{1} \to X^* \otimes X$ satisfying snake relations.

A monoidal category $(\mathcal{C}, \otimes, \mathbb{1})$ is called **left closed** if the endofunctor $-\otimes X$ of \mathcal{C} admits a right adjoint $\forall X \in \mathcal{C}$. We denote the right adjoint as $\underline{\mathrm{Hom}}^l(X, -)$. Then,

$$\operatorname{Hom}_{\mathcal{C}}(W \otimes X, Y) \cong \operatorname{Hom}_{\mathcal{C}}(W, \operatorname{\underline{Hom}}^{l}(X, Y)) \qquad (W, Y \in \mathcal{C}).$$

An object $X \in \mathcal{C}$ is called **left rigid** if $\exists X^* \in \mathcal{C}$ along with maps $\operatorname{ev}: X \otimes X^* \to \mathbb{1}$ and $\operatorname{coev}: \mathbb{1} \to X^* \otimes X$ satisfying snake relations.

A monoidal category $(\mathcal{C}, \otimes, \mathbb{1})$ is called **left closed** if the endofunctor $-\otimes X$ of \mathcal{C} admits a right adjoint $\forall X \in \mathcal{C}$. We denote the right adjoint as $\underline{\mathrm{Hom}}^l(X, -)$. Then,

$$\operatorname{Hom}_{\mathcal{C}}(W \otimes X, Y) \cong \operatorname{Hom}_{\mathcal{C}}(W, \operatorname{\underline{Hom}}^{l}(X, Y)) \qquad (W, Y \in \mathcal{C}).$$

Using the counit of the adjunction $-\otimes X\dashv \underline{\mathrm{Hom}}^l(X,-)$, we can define:

$$Y \otimes \underline{\operatorname{Hom}}^l(X, \mathbb{1}) \otimes X \longrightarrow Y.$$

An object $X \in \mathcal{C}$ is called **left rigid** if $\exists X^* \in \mathcal{C}$ along with maps $\operatorname{ev}: X \otimes X^* \to \mathbb{1}$ and $\operatorname{coev}: \mathbb{1} \to X^* \otimes X$ satisfying snake relations.

A monoidal category $(\mathcal{C}, \otimes, \mathbb{1})$ is called **left closed** if the endofunctor $-\otimes X$ of \mathcal{C} admits a right adjoint $\forall X \in \mathcal{C}$. We denote the right adjoint as $\underline{\mathrm{Hom}}^l(X, -)$. Then,

$$\operatorname{Hom}_{\mathcal{C}}(W \otimes X, Y) \cong \operatorname{Hom}_{\mathcal{C}}(W, \underline{\operatorname{Hom}}^{l}(X, Y)) \qquad (W, Y \in \mathcal{C}).$$

Using the counit of the adjunction $-\otimes X \dashv \underline{\mathrm{Hom}}^l(X,-)$, we can define:

$$Y \otimes \underline{\mathrm{Hom}}^l(X, \mathbb{1}) \otimes X \longrightarrow Y.$$

By taking the adjunct of this map, we obtain the following canonical map:

$$\phi_{X,Y}: Y \otimes \underline{\operatorname{Hom}}^l(X,\mathbb{1}) \longrightarrow \underline{\operatorname{Hom}}^l(X,Y).$$

An object $X \in \mathcal{C}$ is called **left rigid** if $\exists X^* \in \mathcal{C}$ along with maps $\operatorname{ev}: X \otimes X^* \to \mathbb{1}$ and $\operatorname{coev}: \mathbb{1} \to X^* \otimes X$ satisfying snake relations.

A monoidal category $(\mathcal{C}, \otimes, \mathbb{1})$ is called **left closed** if the endofunctor $-\otimes X$ of \mathcal{C} admits a right adjoint $\forall X \in \mathcal{C}$. We denote the right adjoint as $\underline{\mathrm{Hom}}^l(X, -)$. Then,

$$\operatorname{Hom}_{\mathcal{C}}(W \otimes X, Y) \cong \operatorname{Hom}_{\mathcal{C}}(W, \underline{\operatorname{Hom}}^{l}(X, Y)) \qquad (W, Y \in \mathcal{C}).$$

Using the counit of the adjunction $-\otimes X \dashv \underline{\mathrm{Hom}}^l(X,-)$, we can define:

$$Y \otimes \operatorname{Hom}^{l}(X, \mathbb{1}) \otimes X \longrightarrow Y.$$

By taking the adjunct of this map, we obtain the following canonical map:

$$\phi_{X,Y}: Y \otimes \underline{\operatorname{Hom}}^l(X, \mathbb{1}) \longrightarrow \underline{\operatorname{Hom}}^l(X, Y).$$

 (\diamondsuit) $\phi_{X,Y}$ is invertible for all $Y \in \mathcal{C}$ if and only if X is left rigid. In this case, $X^* := \underline{\operatorname{Hom}}^l(X, \mathbb{1})$ is the left dual object of X.

An object $X \in \mathcal{C}$ is called **left rigid** if $\exists X^* \in \mathcal{C}$ along with maps $\operatorname{ev}: X \otimes X^* \to \mathbb{1}$ and $\operatorname{coev}: \mathbb{1} \to X^* \otimes X$ satisfying snake relations.

A monoidal category $(\mathcal{C}, \otimes, \mathbb{1})$ is called **left closed** if the endofunctor $-\otimes X$ of \mathcal{C} admits a right adjoint $\forall X \in \mathcal{C}$. We denote the right adjoint as $\underline{\mathrm{Hom}}^l(X, -)$. Then,

$$\operatorname{Hom}_{\mathcal{C}}(W \otimes X, Y) \cong \operatorname{Hom}_{\mathcal{C}}(W, \underline{\operatorname{Hom}}^{l}(X, Y)) \qquad (W, Y \in \mathcal{C}).$$

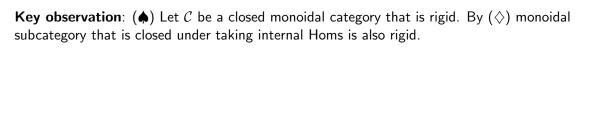
Using the counit of the adjunction $-\otimes X \dashv \underline{\mathrm{Hom}}^l(X,-)$, we can define:

$$Y \otimes \operatorname{Hom}^{l}(X, \mathbb{1}) \otimes X \longrightarrow Y.$$

By taking the adjunct of this map, we obtain the following canonical map:

$$\phi_{X,Y}: Y \otimes \underline{\operatorname{Hom}}^l(X, \mathbb{1}) \longrightarrow \underline{\operatorname{Hom}}^l(X, Y).$$

 (\diamondsuit) $\phi_{X,Y}$ is invertible for all $Y \in \mathcal{C}$ if and only if X is left rigid. In this case, $X^* := \underline{\operatorname{Hom}}^l(X, \mathbb{1})$ is the left dual object of X.



Key observation:	(\spadesuit) Let $\mathcal C$ b	e a closed	monoidal d	category t	hat is rigid.	Ву (♢)	monoidal
subcategory that is	closed unde	r taking in	ternal Hon	ns is also	rigid.		

– If X belongs to the subcategory, then $X^* = \underline{\operatorname{Hom}}^l(X, \mathbb{1})$ also belongs to the subcategory.

– If X belongs to the subcategory, then $X^* = \underline{\mathrm{Hom}}^l(X,\mathbb{1})$ also belongs to the subcategory.

Theorem

Let A be an algebra in a rigid monoidal category C such that ${}_A\mathcal{C}_A$ is rigid.

– If X belongs to the subcategory, then $X^* = \underline{\mathrm{Hom}}^l(X,\mathbb{1})$ also belongs to the subcategory.

Theorem

Let A be an algebra in a rigid monoidal category C such that ${}_A\mathcal{C}_A$ is rigid.

• If (A, σ) is a commutative algebra in $\mathcal{Z}(\mathcal{C})$, then \mathcal{C}_A^{σ} is rigid.

– If X belongs to the subcategory, then $X^* = \underline{\mathrm{Hom}}^l(X, \mathbb{1})$ also belongs to the subcategory.

Theorem

Let A be an algebra in a rigid monoidal category C such that ${}_AC_A$ is rigid.

- If (A, σ) is a commutative algebra in $\mathcal{Z}(\mathcal{C})$, then \mathcal{C}_A^{σ} is rigid.
- ② If $\mathcal C$ is braided and A is a commutative algebra in it, then $\mathcal C_A^{\mathrm{loc}}$ is rigid.

– If X belongs to the subcategory, then $X^* = \underline{\mathrm{Hom}}^l(X,\mathbb{1})$ also belongs to the subcategory.

Theorem

Let A be an algebra in a rigid monoidal category C such that ${}_{A}C_{A}$ is rigid.

- If (A, σ) is a commutative algebra in $\mathcal{Z}(\mathcal{C})$, then \mathcal{C}_A^{σ} is rigid.
- ② If $\mathcal C$ is braided and A is a commutative algebra in it, then $\mathcal C_A^{\mathrm{loc}}$ is rigid.

Proof. Since C is rigid, it is closed monoidal with $\underline{\operatorname{Hom}}^l(X,Y)=Y\otimes X^*$.

– If X belongs to the subcategory, then $X^* = \underline{\mathrm{Hom}}^l(X,\mathbb{1})$ also belongs to the subcategory.

Theorem

Let A be an algebra in a rigid monoidal category C such that ${}_{A}C_{A}$ is rigid.

- If (A, σ) is a commutative algebra in Z(C), then C_A^σ is rigid.
 If C is braided and A is a commutative algebra in it, then C_A^{loc} is rigid.
- *Proof.* Since \mathcal{C} is rigid, it is closed monoidal with $\operatorname{\underline{Hom}}^l(X,Y)=Y\otimes X^*$.
 - Let \mathcal{C} be closed monoidal category. Given an algebra $A \in \mathcal{C}$, the category ${}_{A}\mathcal{C}_{A}$ is closed monoidal with left internal Hom given by:

$$\underline{\operatorname{Hom}}_{A}^{l}(M,N) = \operatorname{equalizer} \left(\ \underline{\operatorname{Hom}}^{l}(M,N) \ \underline{\frac{\operatorname{Hom}^{l}(\rho_{M}^{r},\operatorname{Id}_{N})}{\underline{\operatorname{Hom}}^{l}(\operatorname{Id}_{M\otimes A},\rho_{N}^{r})\circ \underline{\otimes A}_{M,N}}} \ \underline{\operatorname{Hom}}^{l}(M\otimes A,N) \ \right)$$

- If X belongs to the subcategory, then $X^* = \underline{\operatorname{Hom}}^l(X, \mathbb{1})$ also belongs to the subcategory.

Theorem

Let A be an algebra in a rigid monoidal category C such that ${}_A\mathcal{C}_A$ is rigid.

- If (A, σ) is a commutative algebra in $\mathcal{Z}(\mathcal{C})$, then \mathcal{C}_A^{σ} is rigid.
- ② If $\mathcal C$ is braided and A is a commutative algebra in it, then $\mathcal C_A^{\mathrm{loc}}$ is rigid.

Proof. Since \mathcal{C} is rigid, it is closed monoidal with $\operatorname{Hom}^l(X,Y)=Y\otimes X^*$.

• Let \mathcal{C} be closed monoidal category. Given an algebra $A \in \mathcal{C}$, the category ${}_{A}\mathcal{C}_{A}$ is closed monoidal with left internal Hom given by:

$$\underline{\mathrm{Hom}}_{A}^{l}(M,N) = \mathrm{equalizer}\Big(\ \ \underline{\mathrm{Hom}}^{l}(M,N) \ \ \underline{\underline{\mathrm{Hom}}^{l}(\mathsf{ld}_{M\otimes A},\rho_{N}^{r})\circ \underline{\otimes A_{M,N}}} \ \ \underline{\mathrm{Hom}}^{l}(M\otimes A,N) \ \ \Big)$$

• If $M, N \in \mathcal{C}_A^{\sigma}$, then $\underline{\operatorname{Hom}}_A^l(M, N)$ belong to \mathcal{C}_A^{σ} . By (\spadesuit) , \mathcal{C}_A^{σ} is rigid.

- If X belongs to the subcategory, then $X^* = \underline{\mathrm{Hom}}^l(X,\mathbb{1})$ also belongs to the subcategory.

Theorem

Let A be an algebra in a rigid monoidal category C such that ${}_{A}C_{A}$ is rigid.

- If (A, σ) is a commutative algebra in $\mathcal{Z}(\mathcal{C})$, then \mathcal{C}_A^{σ} is rigid.
- ② If $\mathcal C$ is braided and A is a commutative algebra in it, then $\mathcal C_A^{\mathrm{loc}}$ is rigid. Proof. Since $\mathcal C$ is rigid, it is closed monoidal with $\operatorname{\underline{Hom}}^l(X,Y)=Y\otimes X^*$.
 - Let \mathcal{C} be closed monoidal category. Given an algebra $A \in \mathcal{C}$, the category ${}_{A}\mathcal{C}_{A}$ is closed monoidal with left internal Hom given by:

$$\underline{\mathrm{Hom}}_{A}^{l}(M,N) = \mathrm{equalizer}\Big(\ \ \underline{\mathrm{Hom}}^{l}(M,N) \ \ \underline{\underline{\mathrm{Hom}}^{l}(\mathrm{Id}_{M\otimes A},\rho_{N}^{r})\circ \underline{\otimes A_{M,N}}} \ \ \underline{\mathrm{Hom}}^{l}(M\otimes A,N) \ \ \Big)$$

- If $M, N \in \mathcal{C}_A^{\sigma}$, then $\underline{\operatorname{Hom}}_A^l(M, N)$ belong to \mathcal{C}_A^{σ} . By (\spadesuit) , \mathcal{C}_A^{σ} is rigid.
- Since, $C_A^{loc} = C_A^{\sigma^+} \cap C_A^{\sigma^+}$, it is also under taking internal Homs. By (\spadesuit) , it is rigid.

- If X belongs to the subcategory, then $X^* = \underline{\mathrm{Hom}}^l(X,\mathbb{1})$ also belongs to the subcategory.

Theorem

Let A be an algebra in a rigid monoidal category C such that ${}_{A}C_{A}$ is rigid.

- If (A, σ) is a commutative algebra in $\mathcal{Z}(\mathcal{C})$, then \mathcal{C}_A^{σ} is rigid.
- ② If $\mathcal C$ is braided and A is a commutative algebra in it, then $\mathcal C_A^{\mathrm{loc}}$ is rigid. Proof. Since $\mathcal C$ is rigid, it is closed monoidal with $\operatorname{\underline{Hom}}^l(X,Y)=Y\otimes X^*$.
 - Let \mathcal{C} be closed monoidal category. Given an algebra $A \in \mathcal{C}$, the category ${}_{A}\mathcal{C}_{A}$ is closed monoidal with left internal Hom given by:

$$\underline{\mathrm{Hom}}_{A}^{l}(M,N) = \mathrm{equalizer}\Big(\ \ \underline{\mathrm{Hom}}^{l}(M,N) \ \ \underline{\underline{\mathrm{Hom}}^{l}(\mathrm{Id}_{M\otimes A},\rho_{N}^{r})\circ \underline{\otimes A_{M,N}}} \ \ \underline{\mathrm{Hom}}^{l}(M\otimes A,N) \ \ \Big)$$

- If $M, N \in \mathcal{C}_A^{\sigma}$, then $\underline{\operatorname{Hom}}_A^l(M, N)$ belong to \mathcal{C}_A^{σ} . By (\spadesuit) , \mathcal{C}_A^{σ} is rigid.
- Since, $C_A^{loc} = C_A^{\sigma^+} \cap C_A^{\sigma^+}$, it is also under taking internal Homs. By (\spadesuit) , it is rigid.

Let $\mathcal C$ be a braided monoidal category. A *twist* on $\mathcal C$ is a natural isomorphism $\theta: \mathrm{Id}_{\mathcal C} \Rightarrow \mathrm{Id}_{\mathcal C}$ satisfying $\theta_{X\otimes Y} = (\theta_X\otimes\theta_Y)\circ c_{Y,X}\circ c_{X,Y}$. Suppose that A is a commutative algebra in $\mathcal C$.

Let $\mathcal C$ be a braided monoidal category. A *twist* on $\mathcal C$ is a natural isomorphism $\theta: \mathrm{Id}_{\mathcal C} \Rightarrow \mathrm{Id}_{\mathcal C}$ satisfying $\theta_{X\otimes Y} = (\theta_X\otimes \theta_Y)\circ c_{Y,X}\circ c_{X,Y}$. Suppose that A is a commutative algebra in $\mathcal C$.

Theorem (Kirillov-Ostrik) If $\theta_A = \operatorname{Id}_A$, then θ gives a twist on $\mathcal{C}_A^{\operatorname{loc}}$.

Let $\mathcal C$ be a braided monoidal category. A *twist* on $\mathcal C$ is a natural isomorphism $\theta: \mathrm{Id}_{\mathcal C} \Rightarrow \mathrm{Id}_{\mathcal C}$ satisfying $\theta_{X\otimes Y} = (\theta_X\otimes \theta_Y)\circ c_{Y,X}\circ c_{X,Y}$. Suppose that A is a commutative algebra in $\mathcal C$.

Theorem (Kirillov-Ostrik) If $\theta_A = \operatorname{Id}_A$, then θ gives a twist on $\mathcal{C}_A^{\operatorname{loc}}$.

If C is rigid, a *ribbon structure* on it is a twist θ satisfying $\theta_{X^*} = (\theta_X)^*$.

Let $\mathcal C$ be a braided monoidal category. A *twist* on $\mathcal C$ is a natural isomorphism $\theta: \mathrm{Id}_{\mathcal C} \Rightarrow \mathrm{Id}_{\mathcal C}$ satisfying $\theta_{X\otimes Y} = (\theta_X\otimes\theta_Y)\circ c_{Y,X}\circ c_{X,Y}$. Suppose that A is a commutative algebra in $\mathcal C$.

Theorem (Kirillov-Ostrik) If $\theta_A = \operatorname{Id}_A$, then θ gives a twist on $\mathcal{C}_A^{\operatorname{loc}}$.

If $\mathcal C$ is rigid, a *ribbon structure* on it is a twist θ satisfying $\theta_{X^*} = (\theta_X)^*$.

Let $\mathcal{C}' = \{ X \in \mathcal{C} \, | \, c_{Y,X} \circ c_{X,Y} = \mathsf{Id}_{X \otimes Y} \, \forall \, Y \in \mathcal{C} \}.$

Let $\mathcal C$ be a braided monoidal category. A *twist* on $\mathcal C$ is a natural isomorphism $\theta: \mathrm{Id}_{\mathcal C} \Rightarrow \mathrm{Id}_{\mathcal C}$ satisfying $\theta_{X\otimes Y} = (\theta_X\otimes \theta_Y)\circ c_{Y,X}\circ c_{X,Y}$. Suppose that A is a commutative algebra in $\mathcal C$.

Theorem (Kirillov-Ostrik) If $\theta_A = \operatorname{Id}_A$, then θ gives a twist on $\mathcal{C}_A^{\operatorname{loc}}$.

If \mathcal{C} is rigid, a *ribbon structure* on it is a twist θ satisfying $\theta_{X^*} = (\theta_X)^*$. Let $\mathcal{C}' = \{X \in \mathcal{C} \mid c_{Y,X} \circ c_{X,Y} = \operatorname{Id}_{X \otimes Y} \ \forall \ Y \in \mathcal{C}\}$.

Theorem

Let \mathcal{C} be a ribbon monoidal category. If A is a commutative algebra with $\theta_A = \operatorname{Id}_A$ and $A^* \in (\mathcal{C}_A^{\operatorname{loc}})'$, then $\mathcal{C}_A^{\operatorname{loc}}$ is ribbon with the same twist as \mathcal{C} .

Let $\mathcal C$ be a braided monoidal category. A *twist* on $\mathcal C$ is a natural isomorphism $\theta: \mathrm{Id}_{\mathcal C} \Rightarrow \mathrm{Id}_{\mathcal C}$ satisfying $\theta_{X\otimes Y} = (\theta_X\otimes\theta_Y)\circ c_{Y,X}\circ c_{X,Y}$. Suppose that A is a commutative algebra in $\mathcal C$.

Theorem (Kirillov-Ostrik) If $\theta_A = \operatorname{Id}_A$, then θ gives a twist on $\mathcal{C}_A^{\operatorname{loc}}$.

If \mathcal{C} is rigid, a *ribbon structure* on it is a twist θ satisfying $\theta_{X^*} = (\theta_X)^*$. Let $\mathcal{C}' = \{X \in \mathcal{C} \mid c_{YX} \circ c_{XY} = \operatorname{Id}_{X \otimes Y} \ \forall \ Y \in \mathcal{C}\}.$

Theorem

Let \mathcal{C} be a ribbon monoidal category. If A is a commutative algebra with $\theta_A = \operatorname{Id}_A$ and $A^* \in (\mathcal{C}_A^{\operatorname{loc}})'$, then $\mathcal{C}_A^{\operatorname{loc}}$ is ribbon with the same twist as \mathcal{C} .

Proof. As $\theta_A = \operatorname{Id}$, θ is a twist on $\mathcal{C}_A^{\operatorname{loc}}$.

Let $\mathcal C$ be a braided monoidal category. A *twist* on $\mathcal C$ is a natural isomorphism $\theta: \mathrm{Id}_{\mathcal C} \Rightarrow \mathrm{Id}_{\mathcal C}$ satisfying $\theta_{X\otimes Y} = (\theta_X\otimes\theta_Y)\circ c_{Y,X}\circ c_{X,Y}$. Suppose that A is a commutative algebra in $\mathcal C$.

Theorem (Kirillov-Ostrik) If $\theta_A = \operatorname{Id}_A$, then θ gives a twist on $\mathcal{C}_A^{\operatorname{loc}}$.

If \mathcal{C} is rigid, a *ribbon structure* on it is a twist θ satisfying $\theta_{X^*} = (\theta_X)^*$. Let $\mathcal{C}' = \{X \in \mathcal{C} \mid c_{YX} \circ c_{XY} = \operatorname{Id}_{X \otimes Y} \ \forall \ Y \in \mathcal{C}\}$.

Theorem

Let ${\mathcal C}$ be a ribbon monoidal category. If A is a commutative algebra with $heta_A=\operatorname{\sf Id}_A$ and

 $A^* \in (\mathcal{C}_A^{\mathrm{loc}})'$, then $\mathcal{C}_A^{\mathrm{loc}}$ is ribbon with the same twist as \mathcal{C} .

Proof. As $\theta_A = \operatorname{Id}$, θ is a twist on $\mathcal{C}_A^{\operatorname{loc}}$.

Let $i_{X,A}: X^\dagger = \underline{\mathrm{Hom}}_A(X,A) \to A \otimes X^*$ denote the canonical injection.

Let $\mathcal C$ be a braided monoidal category. A *twist* on $\mathcal C$ is a natural isomorphism $\theta: \mathrm{Id}_{\mathcal C} \Rightarrow \mathrm{Id}_{\mathcal C}$ satisfying $\theta_{X\otimes Y} = (\theta_X\otimes\theta_Y)\circ c_{Y,X}\circ c_{X,Y}$. Suppose that A is a commutative algebra in $\mathcal C$.

Theorem (Kirillov-Ostrik) If $\theta_A = \operatorname{Id}_A$, then θ gives a twist on $\mathcal{C}_A^{\operatorname{loc}}$.

If $\mathcal C$ is rigid, a *ribbon structure* on it is a twist θ satisfying $\theta_{X^*} = (\theta_X)^*$. Let $\mathcal C' = \{X \in \mathcal C \mid c_{YX} \circ c_{XY} = \operatorname{Id}_{X \otimes Y} \ \forall \ Y \in \mathcal C\}$.

Theorem

Let \mathcal{C} be a ribbon monoidal category. If A is a commutative algebra with $\theta_A = \operatorname{Id}_A$ and $A^* \in (\mathcal{C}_A^{\operatorname{loc}})'$, then $\mathcal{C}_A^{\operatorname{loc}}$ is ribbon with the same twist as \mathcal{C} .

Proof. As $\theta_A = \operatorname{Id}$, θ is a twist on $\mathcal{C}_A^{\operatorname{loc}}$.

Let $i_{X,A}:X^\dagger=\underline{\operatorname{Hom}}_A(X,A)\to A\otimes X^*$ denote the canonical injection.Then,

$$\begin{split} i_{X,A} \circ \theta_{X^{\dagger}} &= \theta_{A \otimes X^*} \circ i_{X,A} = c_{X^*,A}^A \circ c_{A,X^*}^A \circ (\theta_A \otimes \theta_X^*) \circ i_{X,A} \\ &= c_{X^*,A}^A \circ c_{A,X^*}^A \circ i_{X,A} \circ \underline{\operatorname{Hom}}_A(\theta_X,A) = c_{X^*,A}^A \circ c_{A,X^*}^A \circ i_{X,A} \circ (\theta_X)^{\dagger}. \end{split}$$

Let $\mathcal C$ be a braided monoidal category. A *twist* on $\mathcal C$ is a natural isomorphism $\theta: \mathrm{Id}_{\mathcal C} \Rightarrow \mathrm{Id}_{\mathcal C}$ satisfying $\theta_{X\otimes Y} = (\theta_X\otimes\theta_Y)\circ c_{Y,X}\circ c_{X,Y}$. Suppose that A is a commutative algebra in $\mathcal C$.

Theorem (Kirillov-Ostrik) If $\theta_A = \operatorname{Id}_A$, then θ gives a twist on $\mathcal{C}_A^{\operatorname{loc}}$.

If \mathcal{C} is rigid, a *ribbon structure* on it is a twist θ satisfying $\theta_{X^*} = (\theta_X)^*$. Let $\mathcal{C}' = \{X \in \mathcal{C} \mid c_{YX} \circ c_{XY} = \operatorname{Id}_{X \otimes Y} \ \forall \ Y \in \mathcal{C}\}.$

Theorem

Let \mathcal{C} be a ribbon monoidal category. If A is a commutative algebra with $\theta_A = \operatorname{Id}_A$ and $A^* \in (\mathcal{C}_A^{\operatorname{loc}})'$, then $\mathcal{C}_A^{\operatorname{loc}}$ is ribbon with the same twist as \mathcal{C} .

Proof. As $\theta_A = \operatorname{Id}$, θ is a twist on C_A^{loc} .

Let $i_{X,A}: X^{\dagger} = \underline{\operatorname{Hom}}_A(X,A) \to A \otimes X^*$ denote the canonical injection. Then,

$$i_{X,A} \circ \theta_{X^{\dagger}} = \theta_{A \otimes X^*} \circ i_{X,A} = c_{X^*,A}^A \circ c_{A,X^*}^A \circ (\theta_A \otimes \theta_X^*) \circ i_{X,A}$$
$$= c_{X^*,A}^A \circ c_{A,X^*}^A \circ i_{X,A} \circ \underline{\operatorname{Hom}}_A(\theta_X,A) = c_{X^*,A}^A \circ c_{A,X^*}^A \circ i_{X,A} \circ (\theta_X)^{\dagger}.$$

As $A^* \in (\mathcal{C}_A^{\mathrm{loc}})'$, we obtain $i_{X,A} \circ \theta_{X^{\dagger}} = i_{X,A} \circ (\theta_X)^{\dagger}$.

Let $\mathcal C$ be a braided monoidal category. A *twist* on $\mathcal C$ is a natural isomorphism $\theta: \mathrm{Id}_{\mathcal C} \Rightarrow \mathrm{Id}_{\mathcal C}$ satisfying $\theta_{X\otimes Y} = (\theta_X\otimes\theta_Y)\circ c_{Y,X}\circ c_{X,Y}$. Suppose that A is a commutative algebra in $\mathcal C$.

Theorem (Kirillov-Ostrik) If $\theta_A = \operatorname{Id}_A$, then θ gives a twist on $\mathcal{C}_A^{\operatorname{loc}}$.

If \mathcal{C} is rigid, a *ribbon structure* on it is a twist θ satisfying $\theta_{X^*} = (\theta_X)^*$. Let $\mathcal{C}' = \{X \in \mathcal{C} \mid c_{YX} \circ c_{XY} = \operatorname{Id}_{X \otimes Y} \ \forall \ Y \in \mathcal{C}\}.$

Theorem

Let \mathcal{C} be a ribbon monoidal category. If A is a commutative algebra with $\theta_A = \operatorname{Id}_A$ and $A^* \in (\mathcal{C}_A^{\operatorname{loc}})'$, then $\mathcal{C}_A^{\operatorname{loc}}$ is ribbon with the same twist as \mathcal{C} .

Proof. As $\theta_A = \operatorname{Id}$, θ is a twist on C_A^{loc} .

Let $i_{X,A}: X^{\dagger} = \underline{\operatorname{Hom}}_A(X,A) \to A \otimes X^*$ denote the canonical injection. Then,

$$\begin{split} i_{X,A} \circ \theta_{X^{\dagger}} &= \theta_{A \otimes X^*} \circ i_{X,A} = c_{X^*,A}^A \circ c_{A,X^*}^A \circ (\theta_A \otimes \theta_X^*) \circ i_{X,A} \\ &= c_{X^*,A}^A \circ c_{A,X^*}^A \circ i_{X,A} \circ \underline{\operatorname{Hom}}_A(\theta_X,A) = c_{X^*,A}^A \circ c_{A,X^*}^A \circ i_{X,A} \circ (\theta_X)^{\dagger}. \end{split}$$

As $A^* \in (\mathcal{C}_A^{\mathrm{loc}})'$, we obtain $i_{X,A} \circ \theta_{X^\dagger} = i_{X,A} \circ (\theta_X)^\dagger$. Since $i_{X,A}$ is a monomorphism, it follows that $\theta_{X^\dagger} = (\theta_X)^\dagger$.

Let $\mathcal C$ be a braided monoidal category. A *twist* on $\mathcal C$ is a natural isomorphism $\theta: \mathrm{Id}_{\mathcal C} \Rightarrow \mathrm{Id}_{\mathcal C}$ satisfying $\theta_{X\otimes Y} = (\theta_X\otimes\theta_Y)\circ c_{Y,X}\circ c_{X,Y}$. Suppose that A is a commutative algebra in $\mathcal C$.

Theorem (Kirillov-Ostrik) If $\theta_A = \operatorname{Id}_A$, then θ gives a twist on $\mathcal{C}_A^{\operatorname{loc}}$.

If $\mathcal C$ is rigid, a *ribbon structure* on it is a twist θ satisfying $\theta_{X^*} = (\theta_X)^*$. Let $\mathcal C' = \{X \in \mathcal C \mid c_{Y,X} \circ c_{X,Y} = \operatorname{Id}_{X \otimes Y} \ \forall \ Y \in \mathcal C\}$.

Theorem

Let \mathcal{C} be a ribbon monoidal category. If A is a commutative algebra with $\theta_A = \operatorname{Id}_A$ and $A^* \in (\mathcal{C}_A^{\operatorname{loc}})'$, then $\mathcal{C}_A^{\operatorname{loc}}$ is ribbon with the same twist as \mathcal{C} .

Proof. As $\theta_A = \operatorname{Id}$, θ is a twist on C_A^{loc} .

Let $i_{X,A}: X^{\dagger} = \underline{\operatorname{Hom}}_A(X,A) \to A \otimes X^*$ denote the canonical injection. Then,

$$\begin{split} i_{X,A} \circ \theta_{X^{\dagger}} &= \theta_{A \otimes X^*} \circ i_{X,A} = c_{X^*,A}^A \circ c_{A,X^*}^A \circ (\theta_A \otimes \theta_X^*) \circ i_{X,A} \\ &= c_{X^*,A}^A \circ c_{A,X^*}^A \circ i_{X,A} \circ \underline{\operatorname{Hom}}_A(\theta_X,A) = c_{X^*,A}^A \circ c_{A,X^*}^A \circ i_{X,A} \circ (\theta_X)^{\dagger}. \end{split}$$

As $A^* \in (\mathcal{C}_A^{\mathrm{loc}})'$, we obtain $i_{X,A} \circ \theta_{X^\dagger} = i_{X,A} \circ (\theta_X)^\dagger$. Since $i_{X,A}$ is a monomorphism, it follows that $\theta_{X^\dagger} = (\theta_X)^\dagger$.

Let $\mathcal C$ be a rigid monoidal category with equalizers and coequalizers. Let (A,σ) be a commutative algebra in $\mathcal Z(\mathcal C)$. Then

$${}_A\mathcal{C}_A$$
 rigid \implies \mathcal{C}_A^σ is rigid

Let $\mathcal C$ be a rigid braided monoidal category with equalizers and coequalizers. Let A be a commutative algebra in $\mathcal C$. Then,

$${}_{A}\mathcal{C}_{A} \text{ rigid} \qquad \Longrightarrow \qquad \mathcal{C}_{A} \cong \mathcal{C}_{A}^{c_{A,-}} \text{ and } \mathcal{C}_{A}^{\mathrm{loc}} \text{ are rigid,}$$

$$\mathcal{C} \text{ ribbon, } {}_{A}\mathcal{C}_{A} \text{ rigid, } \theta_{A} = \text{Id and } A^{*} \in (\mathcal{C}_{A}^{\mathrm{loc}})' \quad \Longrightarrow \qquad \qquad \mathcal{C}_{A}^{\mathrm{loc}} \text{ is ribbon.}$$

Let $\mathcal C$ be a rigid monoidal category with equalizers and coequalizers. Let (A,σ) be a commutative algebra in $\mathcal Z(\mathcal C)$. Then

$${}_A\mathcal{C}_A$$
 rigid \implies \mathcal{C}_A^{σ} is rigid

Let $\mathcal C$ be a rigid braided monoidal category with equalizers and coequalizers. Let A be a commutative algebra in $\mathcal C$. Then,

$${}_{A}\mathcal{C}_{A} \text{ rigid} \qquad \Longrightarrow \qquad \mathcal{C}_{A} \cong \mathcal{C}_{A}^{c_{A,-}} \text{ and } \mathcal{C}_{A}^{\mathrm{loc}} \text{ are rigid,}$$

$$\mathcal{C} \text{ ribbon, } {}_{A}\mathcal{C}_{A} \text{ rigid, } \theta_{A} = \text{Id and } A^{*} \in (\mathcal{C}_{A}^{\mathrm{loc}})' \quad \Longrightarrow \qquad \qquad \mathcal{C}_{A}^{\mathrm{loc}} \text{ is ribbon.}$$

Determining the rigidity of ${}_{A}\mathcal{C}_{A}$ is difficult question in general.

Let $\mathcal C$ be a rigid monoidal category with equalizers and coequalizers. Let (A,σ) be a commutative algebra in $\mathcal Z(\mathcal C)$. Then

$${}_A\mathcal{C}_A$$
 rigid \implies \mathcal{C}_A^σ is rigid

Let $\mathcal C$ be a rigid braided monoidal category with equalizers and coequalizers. Let A be a commutative algebra in $\mathcal C$. Then,

$${}_{A}\mathcal{C}_{A} \text{ rigid} \qquad \Longrightarrow \qquad \mathcal{C}_{A} \cong \mathcal{C}_{A}^{c_{A,-}} \text{ and } \mathcal{C}_{A}^{\mathrm{loc}} \text{ are rigid,}$$

$$\mathcal{C} \text{ ribbon, } {}_{A}\mathcal{C}_{A} \text{ rigid, } \theta_{A} = \text{Id and } A^{*} \in (\mathcal{C}_{A}^{\mathrm{loc}})' \quad \Longrightarrow \qquad \qquad \mathcal{C}_{A}^{\mathrm{loc}} \text{ is ribbon.}$$

Determining the rigidity of ${}_{A}\mathcal{C}_{A}$ is difficult question in general. However, in the finite abelian setting, an answer is known.

Let $\mathcal C$ be a rigid monoidal category with equalizers and coequalizers. Let (A,σ) be a commutative algebra in $\mathcal Z(\mathcal C)$. Then

$${}_A\mathcal{C}_A$$
 rigid \implies \mathcal{C}_A^σ is rigid

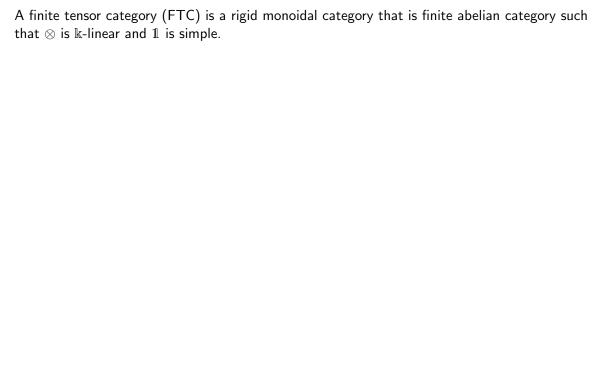
Let $\mathcal C$ be a rigid braided monoidal category with equalizers and coequalizers. Let A be a commutative algebra in $\mathcal C$. Then,

$${}_{A}\mathcal{C}_{A} \text{ rigid} \qquad \Longrightarrow \qquad \mathcal{C}_{A} \cong \mathcal{C}_{A}^{c_{A,-}} \text{ and } \mathcal{C}_{A}^{\mathrm{loc}} \text{ are rigid,}$$

$$\mathcal{C} \text{ ribbon, } {}_{A}\mathcal{C}_{A} \text{ rigid, } \theta_{A} = \text{Id and } A^{*} \in (\mathcal{C}_{A}^{\mathrm{loc}})' \quad \Longrightarrow \qquad \qquad \mathcal{C}_{A}^{\mathrm{loc}} \text{ is ribbon.}$$

Determining the rigidity of ${}_{A}\mathcal{C}_{A}$ is difficult question in general. However, in the finite abelian setting, an answer is known.

Applications to finite tensor categories



Example: The category of finite-dimensional representations of a finite-dimensional (quasi-) Hopf algebra H, namely Rep(H).

A finite tensor category (FTC) is a rigid monoidal category that is finite abelian category such that \otimes is k-linear and 1 is simple. **Example**: The category of finite-dimensional representations of a finite-dimensional (quasi-)

Hopf algebra H, namely $\operatorname{Rep}(H)$.

An algebra $A \in \mathcal{C}$ is called *simple* if it does not admit any non-trivial two-sided ideals.

Theorem: (Etingof-Ostrik, Coulembier-Stroinski-Zorman) An algebra A in C is simple if and only if ACA is a (rigid) finite tensor category.

A finite tensor category (FTC) is a rigid monoidal category that is finite abelian category such that \otimes is k-linear and 1 is simple. **Example**: The category of finite-dimensional representations of a finite-dimensional (quasi-)

Hopf algebra H, namely Rep(H).

An algebra $A \in \mathcal{C}$ is called simple if it does not admit any non-trivial two-sided ideals.

Theorem: (Etingof-Ostrik, Coulembier-Stroinski-Zorman) An algebra A in C is simple if and only if ACA is a (rigid) finite tensor category.

Theorem

Let C be a FTC and A a simple algebra in C.

 $\underline{\textbf{Example}} \colon \mathsf{The} \ \mathsf{category} \ \mathsf{of} \ \mathsf{finite-dimensional} \ \mathsf{(quasi-)} \\ \mathsf{Hopf} \ \mathsf{algebra} \ H, \ \mathsf{namely} \ \mathsf{Rep}(H).$

An algebra $A \in \mathcal{C}$ is called simple if it does not admit any non-trivial two-sided ideals.

<u>Theorem</u>: (Etingof-Ostrik, Coulembier-Stroinski-Zorman) An algebra A in C is simple if and only if ACA is a (rigid) finite tensor category.

Theorem

Let C be a FTC and A a simple algebra in C.

- If (A, σ) is a commutative algebra in $\mathcal{Z}(\mathcal{C})$, then \mathcal{C}^{σ}_{A} is a FTC.
- If (A, 0) is a commutative algebra in $\mathcal{D}(C)$, then C_A is a 1-10
- ② If $\mathcal C$ is braided and A is commutative, then $\mathcal C_A^{\mathrm{loc}}$ is a braided FTC.

An algebra $A \in \mathcal{C}$ is called simple if it does not admit any non-trivial two-sided ideals.

<u>Theorem</u>: (Etingof-Ostrik, Coulembier-Stroinski-Zorman) An algebra A in C is simple if and only if ${}_{A}C_{A}$ is a (rigid) finite tensor category.

Theorem

Let C be a FTC and A a simple algebra in C.

- If (A, σ) is a commutative algebra in $\mathcal{Z}(\mathcal{C})$, then \mathcal{C}_A^{σ} is a FTC.
- ② If C is braided and A is commutative, then C_A^{loc} is a braided FTC.

 $\underline{\textit{Remark}}$. In previous works, A is assumed to be at least separable and the coevaluation morphism was explicitly constructed by using the separability idempotent.

<u>Example</u>: The category of finite-dimensional representations of a finite-dimensional (quasi-) Hopf algebra H, namely Rep(H).

An algebra $A \in \mathcal{C}$ is called *simple* if it does not admit any non-trivial two-sided ideals.

<u>Theorem</u>: (Etingof-Ostrik, Coulembier-Stroinski-Zorman) An algebra A in C is simple if and only if ACA is a (rigid) finite tensor category.

Theorem

Let C be a FTC and A a simple algebra in C.

- If (A, σ) is a commutative algebra in $\mathcal{Z}(\mathcal{C})$, then \mathcal{C}_A^{σ} is a FTC.
- ② If C is braided and A is commutative, then C_A^{loc} is a braided FTC.

 $\underline{\textit{Remark}}$. In previous works, A is assumed to be at least separable and the coevaluation morphism was explicitly constructed by using the separability idempotent.

Proof. As A is simple, ${}_A\mathcal{C}_A$ is rigid. By our general result, \mathcal{C}_A^σ is rigid. In fact, \mathcal{C}_A^σ is a full subcategory of ${}_A\mathcal{C}_A$ closed under subquotients, \oplus , \otimes and duals. Thus, the first claim follows. The second claim is proved in a similar manner.

<u>Example</u>: The category of finite-dimensional representations of a finite-dimensional (quasi-) Hopf algebra H, namely Rep(H).

An algebra $A \in \mathcal{C}$ is called simple if it does not admit any non-trivial two-sided ideals.

<u>Theorem</u>: (Etingof-Ostrik, Coulembier-Stroinski-Zorman) An algebra A in C is simple if and only if ACA is a (rigid) finite tensor category.

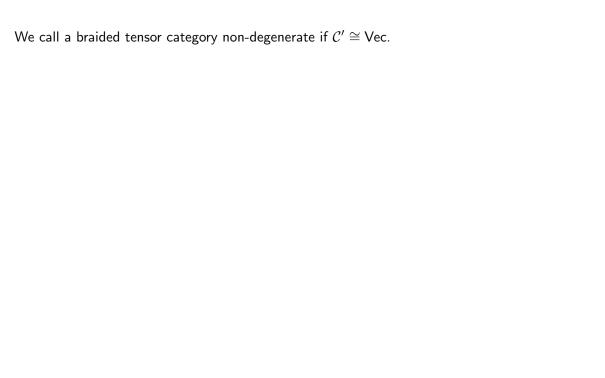
Theorem

Let C be a FTC and A a simple algebra in C.

- If (A, σ) is a commutative algebra in $\mathcal{Z}(\mathcal{C})$, then \mathcal{C}_A^{σ} is a FTC.
- ② If C is braided and A is commutative, then C_A^{loc} is a braided FTC.

 $\underline{\textit{Remark}}$. In previous works, A is assumed to be at least separable and the coevaluation morphism was explicitly constructed by using the separability idempotent.

Proof. As A is simple, ${}_{A}\mathcal{C}_{A}$ is rigid. By our general result, \mathcal{C}_{A}^{σ} is rigid. In fact, \mathcal{C}_{A}^{σ} is a full subcategory of ${}_{A}\mathcal{C}_{A}$ closed under subquotients, \oplus , \otimes and duals. Thus, the first claim follows. The second claim is proved in a similar manner.



We call a braided tensor category non-degenerate if $\mathcal{C}'\cong \mathsf{Vec}.$

Theorem

If A is simple commutative and $\mathcal C$ is non-degenerate, then so is $\mathcal C_A^{\mathrm{loc}}.$

Proof. As A is simple, $\mathcal{C}_A^{\mathrm{loc}}$ is a braided finite tensor category.

We call a braided tensor category non-degenerate if $\mathcal{C}' \cong Vec.$

Theorem

If A is simple commutative and $\mathcal C$ is non-degenerate, then so is $\mathcal C_A^{\mathrm{loc}}$.

Proof. As A is simple, $\mathcal{C}_A^{\mathrm{loc}}$ is a braided finite tensor category. As \mathcal{C} is braided, we have two braided monoidal functors.

$$i_+: \mathcal{C} \to \mathcal{Z}(\mathcal{C}), \ X \mapsto (X, c_{X,-}) \quad \text{and} \quad i_-: \overline{\mathcal{C}} \to \mathcal{Z}(\mathcal{C}), \ X \mapsto (X, c_{-,X}^{-1})$$

We call a braided tensor category non-degenerate if $\mathcal{C}'\cong \mathsf{Vec}.$

Theorem

If A is simple commutative and $\mathcal C$ is non-degenerate, then so is $\mathcal C_A^{\mathrm{loc}}$.

Proof. As A is simple, $\mathcal{C}_A^{\mathrm{loc}}$ is a braided finite tensor category. As \mathcal{C} is braided, we have two braided monoidal functors.

$$i_+: \mathcal{C} \to \mathcal{Z}(\mathcal{C}), \ X \mapsto (X, c_{X,-}) \quad \text{and} \quad i_-: \overline{\mathcal{C}} \to \mathcal{Z}(\mathcal{C}), \ X \mapsto (X, c_{-,X}^{-1})$$

There are braided equivalences

$$\mathcal{C}_A^{\mathrm{loc}} \boxtimes \overline{\mathcal{C}} \longrightarrow (\mathcal{C} \boxtimes \overline{\mathcal{C}})_{A \boxtimes \mathbb{1}}^{\mathrm{loc}} \longrightarrow \mathcal{Z}(\mathcal{C})_{i_+(A)}^{\mathrm{loc}} \longrightarrow \mathcal{Z}(\mathcal{C}_A)$$

The middle equivalence is induced by the equivalence $\mathcal{C} \boxtimes \overline{\mathcal{C}} \to \mathcal{Z}(\mathcal{C})$ which we have since \mathcal{C} is non-degenerate. The last equivalence is due to Schauenburg.

We call a braided tensor category non-degenerate if $\mathcal{C}'\cong \mathsf{Vec}.$

Theorem

If A is simple commutative and $\mathcal C$ is non-degenerate, then so is $\mathcal C_A^{\mathrm{loc}}$.

Proof. As A is simple, $\mathcal{C}_A^{\mathrm{loc}}$ is a braided finite tensor category. As \mathcal{C} is braided, we have two braided monoidal functors.

$$i_+: \mathcal{C} \to \mathcal{Z}(\mathcal{C}), \ X \mapsto (X, c_{X,-}) \quad \text{and} \quad i_-: \overline{\mathcal{C}} \to \mathcal{Z}(\mathcal{C}), \ X \mapsto (X, c_{-,X}^{-1})$$

There are braided equivalences

$$\mathcal{C}_A^{\mathrm{loc}} \boxtimes \overline{\mathcal{C}} \longrightarrow (\mathcal{C} \boxtimes \overline{\mathcal{C}})_{A \boxtimes \mathbb{1}}^{\mathrm{loc}} \longrightarrow \mathcal{Z}(\mathcal{C})_{i_+(A)}^{\mathrm{loc}} \longrightarrow \mathcal{Z}(\mathcal{C}_A)$$

The middle equivalence is induced by the equivalence $\mathcal{C} \boxtimes \overline{\mathcal{C}} \to \mathcal{Z}(\mathcal{C})$ which we have since \mathcal{C} is non-degenerate. The last equivalence is due to Schauenburg.

From the above equivalence, we can deduce that an object of $X \in (\mathcal{C}_A^{\mathrm{loc}})'$ yields an object of $X \boxtimes \mathbb{1}$ in the Müger center of $\mathcal{Z}(\mathcal{C}_A)'$. However, $\mathcal{Z}(\mathcal{C}_A)$ has trivial Müger center. Thus, $\mathcal{C}_A^{\mathrm{loc}}$ is non-degenerate.

A modular tensor category (MTC) is a non-degenerate ribbon finite tensor category.

A modular tensor category (MTC) is a non-degenerate ribbon finite tensor category.

Example: $C = \text{Rep}(u_q(\mathfrak{sl}_2))$ where $q = e^{2\pi i/n}$ with n odd is a MTC.

A modular tensor category (MTC) is a non-degenerate ribbon finite tensor category.

Example: $C = \text{Rep}(u_q(\mathfrak{sl}_2))$ where $q = e^{2\pi i/n}$ with n odd is a MTC.

Lyubashenko (1995) gave a construction of 3-manifold invariants and mapping class group representations using MTCs.

A modular tensor category (MTC) is a non-degenerate ribbon finite tensor category.

Example: $C = \text{Rep}(u_q(\mathfrak{sl}_2))$ where $q = e^{2\pi i/n}$ with n odd is a MTC.

Lyubashenko (1995) gave a construction of 3-manifold invariants and mapping class group representations using MTCs.

Recent works (by De Renzi–Gainutdinov–Geer–Patureau-Mirand–Runkel) have extended this construction to a TQFT.

Theorem

Let $\mathcal C$ be a MTC and A a simple commutative symmetric Frobenius algebra in $\mathcal C$. Then, $\mathcal C_A^{\mathrm{loc}}$ is a MTC.

A modular tensor category (MTC) is a non-degenerate ribbon finite tensor category.

Example: $C = \text{Rep}(u_q(\mathfrak{sl}_2))$ where $q = e^{2\pi i/n}$ with n odd is a MTC.

Lyubashenko (1995) gave a construction of 3-manifold invariants and mapping class group representations using MTCs.

Recent works (by De Renzi–Gainutdinov–Geer–Patureau-Mirand–Runkel) have extended this construction to a TQFT.

Theorem

Let $\mathcal C$ be a MTC and A a simple commutative symmetric Frobenius algebra in $\mathcal C$. Then, $\mathcal C_A^{\mathrm{loc}}$ is a MTC.

Proof.

ullet By previous results, $\mathcal{C}_A^{\mathrm{loc}}$ is a non-degenerate braided finite tensor category.

A modular tensor category (MTC) is a non-degenerate ribbon finite tensor category.

Example: $C = \text{Rep}(u_q(\mathfrak{sl}_2))$ where $q = e^{2\pi i/n}$ with n odd is a MTC.

Lyubashenko (1995) gave a construction of 3-manifold invariants and mapping class group representations using MTCs.

Recent works (by De Renzi–Gainutdinov–Geer–Patureau-Mirand–Runkel) have extended this construction to a TQFT.

Theorem

Let $\mathcal C$ be a MTC and A a simple commutative symmetric Frobenius algebra in $\mathcal C$. Then, $\mathcal C_A^{\mathrm{loc}}$ is a MTC.

- ullet By previous results, $\mathcal{C}_A^{\mathrm{loc}}$ is a non-degenerate braided finite tensor category.
- Moreover, A being symmetric Frobenius is equivalent to $\theta_A = \operatorname{Id}_A$.

A modular tensor category (MTC) is a non-degenerate ribbon finite tensor category.

Example: $C = \text{Rep}(u_q(\mathfrak{sl}_2))$ where $q = e^{2\pi i/n}$ with n odd is a MTC.

Lyubashenko (1995) gave a construction of 3-manifold invariants and mapping class group representations using MTCs.

Recent works (by De Renzi–Gainutdinov–Geer–Patureau-Mirand–Runkel) have extended this construction to a TQFT.

Theorem

Let $\mathcal C$ be a MTC and A a simple commutative symmetric Frobenius algebra in $\mathcal C$. Then, $\mathcal C_A^{\mathrm{loc}}$ is a MTC.

- ullet By previous results, $\mathcal{C}_A^{\mathrm{loc}}$ is a non-degenerate braided finite tensor category.
- Moreover, A being symmetric Frobenius is equivalent to $\theta_A = \operatorname{Id}_A$.
- Lastly, as $A^* \cong A = \mathbb{1}_{\mathcal{C}_A^{\mathrm{loc}}}$, we get that $A^* \in (\mathcal{C}_A^{\mathrm{loc}})'$. Consequently, $\mathcal{C}_A^{\mathrm{loc}}$ is a ribbon category.

A modular tensor category (MTC) is a non-degenerate ribbon finite tensor category.

Example: $C = \text{Rep}(u_q(\mathfrak{sl}_2))$ where $q = e^{2\pi i/n}$ with n odd is a MTC.

Lyubashenko (1995) gave a construction of 3-manifold invariants and mapping class group representations using MTCs.

Recent works (by De Renzi–Gainutdinov–Geer–Patureau-Mirand–Runkel) have extended this construction to a TQFT.

Theorem

Let $\mathcal C$ be a MTC and A a simple commutative symmetric Frobenius algebra in $\mathcal C$. Then, $\mathcal C_A^{\mathrm{loc}}$ is a MTC.

- ullet By previous results, $\mathcal{C}_A^{\mathrm{loc}}$ is a non-degenerate braided finite tensor category.
- Moreover, A being symmetric Frobenius is equivalent to $\theta_A = \operatorname{Id}_A$.
- Lastly, as $A^*\cong A=\mathbb{1}_{\mathcal{C}_A^{\mathrm{loc}}}$, we get that $A^*\in (\mathcal{C}_A^{\mathrm{loc}})'$. Consequently, $\mathcal{C}_A^{\mathrm{loc}}$ is a ribbon category.

A modular tensor category (MTC) is a non-degenerate ribbon finite tensor category.

Example: $C = \text{Rep}(u_q(\mathfrak{sl}_2))$ where $q = e^{2\pi i/n}$ with n odd is a MTC.

Lyubashenko (1995) gave a construction of 3-manifold invariants and mapping class group representations using MTCs.

Recent works (by De Renzi–Gainutdinov–Geer–Patureau-Mirand–Runkel) have extended this construction to a TQFT.

Theorem

Let $\mathcal C$ be a MTC and A a simple commutative symmetric Frobenius algebra in $\mathcal C$. Then, $\mathcal C_A^{\mathrm{loc}}$ is a MTC.

- ullet By previous results, $\mathcal{C}_A^{\mathrm{loc}}$ is a non-degenerate braided finite tensor category.
- Moreover, A being symmetric Frobenius is equivalent to $\theta_A = \operatorname{Id}_A$.
- Lastly, as $A^*\cong A=\mathbb{1}_{\mathcal{C}_A^{\mathrm{loc}}}$, we get that $A^*\in (\mathcal{C}_A^{\mathrm{loc}})'$. Consequently, $\mathcal{C}_A^{\mathrm{loc}}$ is a ribbon category.

Examples

If $F:\mathcal{C}\to\mathcal{D}$ is a fully faithful (braided) tensor functor and A is a (commutative) simple algebra in \mathcal{C} , then F(A) is a (commutative) simple algebra in \mathcal{D} .

If $F: \mathcal{C} \to \mathcal{D}$ is a fully faithful (braided) tensor functor and A is a (commutative) simple algebra in \mathcal{C} , then F(A) is a (commutative) simple algebra in \mathcal{D} .

Let $\mathcal C$ be a braided finite tensor category. Let $G=\{X_g\,|\,g\in G\}$ denote the group of simple invertible objects of $\mathcal C$.

• Then the semisimple subcategory of $\mathcal C$ spanned by G is isomorphic to the pointed braided fusion category $\mathcal C(G,q)$ where the quadratic form $q:G\to \Bbbk^\times$ given by $c_{X_g,X_g}=q(g)$ ld.

If $F: \mathcal{C} \to \mathcal{D}$ is a fully faithful (braided) tensor functor and A is a (commutative) simple algebra in \mathcal{C} , then F(A) is a (commutative) simple algebra in \mathcal{D} .

Let \mathcal{C} be a braided finite tensor category. Let $G = \{X_g \mid g \in G\}$ denote the group of simple invertible objects of \mathcal{C} .

- Then the semisimple subcategory of $\mathcal C$ spanned by G is isomorphic to the pointed braided fusion category $\mathcal C(G,q)$ where the quadratic form $q:G\to \Bbbk^\times$ given by $c_{X_g,X_g}=q(g)$ ld.
- Moreover, $\mathcal{C}(G,q) \to \mathcal{C}$ is a fully faithful braided tensor functor.

If $F: \mathcal{C} \to \mathcal{D}$ is a fully faithful (braided) tensor functor and A is a (commutative) simple algebra in \mathcal{C} , then F(A) is a (commutative) simple algebra in \mathcal{D} .

Let C be a braided finite tensor category. Let $G = \{X_g \mid g \in G\}$ denote the group of simple invertible objects of C.

- Then the semisimple subcategory of $\mathcal C$ spanned by G is isomorphic to the pointed braided fusion category $\mathcal C(G,q)$ where the quadratic form $q:G\to \Bbbk^\times$ given by $c_{X_g,X_g}=q(g)$ ld.
- Moreover, $\mathcal{C}(G,q) \to \mathcal{C}$ is a fully faithful braided tensor functor.
- As C(G,q) is semisimple, an algebra A is simple if and only if it is separable and $\operatorname{Hom}(\mathbb{1},A)\cong \mathbb{k}$.

If $F: \mathcal{C} \to \mathcal{D}$ is a fully faithful (braided) tensor functor and A is a (commutative) simple algebra in \mathcal{C} , then F(A) is a (commutative) simple algebra in \mathcal{D} .

Let C be a braided finite tensor category. Let $G = \{X_g \mid g \in G\}$ denote the group of simple invertible objects of C.

- Then the semisimple subcategory of $\mathcal C$ spanned by G is isomorphic to the pointed braided fusion category $\mathcal C(G,q)$ where the quadratic form $q:G\to \Bbbk^\times$ given by $c_{X_g,X_g}=q(g)$ ld.
- Moreover, $\mathcal{C}(G,q) \to \mathcal{C}$ is a fully faithful braided tensor functor.
- As $\mathcal{C}(G,q)$ is semisimple, an algebra A is simple if and only if it is separable and $\operatorname{Hom}(\mathbb{1},A)\cong \Bbbk.$
- Commutative separable algebras with $\operatorname{Hom}(\mathbbm{1},A)\cong \mathbbm{k}$ in $\mathcal{C}(G,q)$ are in bijection with subgroups $H\subset G$ such that $q|_H=1$.

If $F: \mathcal{C} \to \mathcal{D}$ is a fully faithful (braided) tensor functor and A is a (commutative) simple algebra in \mathcal{C} , then F(A) is a (commutative) simple algebra in \mathcal{D} .

Let \mathcal{C} be a braided finite tensor category. Let $G = \{X_g \mid g \in G\}$ denote the group of simple invertible objects of \mathcal{C} .

- Then the semisimple subcategory of $\mathcal C$ spanned by G is isomorphic to the pointed braided fusion category $\mathcal C(G,q)$ where the quadratic form $q:G\to \Bbbk^\times$ given by $c_{X_g,X_g}=q(g)$ ld.
- Moreover, $C(G,q) \to C$ is a fully faithful braided tensor functor.
- As $\mathcal{C}(G,q)$ is semisimple, an algebra A is simple if and only if it is separable and $\operatorname{Hom}(\mathbb{1},A)\cong \Bbbk$.
- Commutative separable algebras with $\operatorname{Hom}(\mathbb{1},A)\cong \mathbb{k}$ in $\mathcal{C}(G,q)$ are in bijection with subgroups $H\subset G$ such that $q|_{H}=1$.
- The corresponding algebra object in C is $A_H = \bigoplus_{h \in H} X_h$.

If $F: \mathcal{C} \to \mathcal{D}$ is a fully faithful (braided) tensor functor and A is a (commutative) simple algebra in \mathcal{C} , then F(A) is a (commutative) simple algebra in \mathcal{D} .

Let \mathcal{C} be a braided finite tensor category. Let $G = \{X_g \mid g \in G\}$ denote the group of simple invertible objects of \mathcal{C} .

- Then the semisimple subcategory of $\mathcal C$ spanned by G is isomorphic to the pointed braided fusion category $\mathcal C(G,q)$ where the quadratic form $q:G\to \Bbbk^\times$ given by $c_{X_g,X_g}=q(g)$ ld.
- Moreover, $C(G,q) \to C$ is a fully faithful braided tensor functor.
- As $\mathcal{C}(G,q)$ is semisimple, an algebra A is simple if and only if it is separable and $\operatorname{Hom}(\mathbbm{1},A)\cong \mathbbm{k}.$
- Commutative separable algebras with $\operatorname{Hom}(\mathbb{1},A)\cong \mathbb{k}$ in $\mathcal{C}(G,q)$ are in bijection with subgroups $H\subset G$ such that $q|_{H}=1$.
- The corresponding algebra object in C is $A_H = \bigoplus_{h \in H} X_h$.
- If moreover, C is ribbon and $\theta_{X_h} = \operatorname{Id}_{X_h}$ for all $h \in H$, then A_H is, in addition, a symmetric Frobenius algebra.

If $F: \mathcal{C} \to \mathcal{D}$ is a fully faithful (braided) tensor functor and A is a (commutative) simple algebra in \mathcal{C} , then F(A) is a (commutative) simple algebra in \mathcal{D} .

Let \mathcal{C} be a braided finite tensor category. Let $G = \{X_g \mid g \in G\}$ denote the group of simple invertible objects of \mathcal{C} .

- Then the semisimple subcategory of $\mathcal C$ spanned by G is isomorphic to the pointed braided fusion category $\mathcal C(G,q)$ where the quadratic form $q:G\to \Bbbk^\times$ given by $c_{X_g,X_g}=q(g)$ ld.
- Moreover, $C(G,q) \to C$ is a fully faithful braided tensor functor.
- As $\mathcal{C}(G,q)$ is semisimple, an algebra A is simple if and only if it is separable and $\operatorname{Hom}(\mathbbm{1},A)\cong \mathbbm{k}.$
- Commutative separable algebras with $\operatorname{Hom}(\mathbb{1},A) \cong \mathbb{k}$ in $\mathcal{C}(G,q)$ are in bijection with subgroups $H \subset G$ such that $q|_{H} = 1$.
- The corresponding algebra object in C is $A_H = \bigoplus_{h \in H} X_h$.
- If moreover, $\mathcal C$ is ribbon and $\theta_{X_h}=\operatorname{Id}_{X_h}$ for all $h\in H$, then A_H is, in addition, a symmetric Frobenius algebra.

We call the thus obtained commutative simple algebras as *simple current algebras*.

Simple current algebras

If $F: \mathcal{C} \to \mathcal{D}$ is a fully faithful (braided) tensor functor and A is a (commutative) simple algebra in \mathcal{C} , then F(A) is a (commutative) simple algebra in \mathcal{D} .

Let \mathcal{C} be a braided finite tensor category. Let $G = \{X_g \mid g \in G\}$ denote the group of simple invertible objects of \mathcal{C} .

- Then the semisimple subcategory of $\mathcal C$ spanned by G is isomorphic to the pointed braided fusion category $\mathcal C(G,q)$ where the quadratic form $q:G\to \Bbbk^\times$ given by $c_{X_g,X_g}=q(g)$ ld.
- Moreover, $\mathcal{C}(G,q) \to \mathcal{C}$ is a fully faithful braided tensor functor.
- As $\mathcal{C}(G,q)$ is semisimple, an algebra A is simple if and only if it is separable and $\operatorname{Hom}(\mathbb{1},A)\cong \Bbbk.$
- Commutative separable algebras with $\operatorname{Hom}(\mathbbm{1},A)\cong \mathbbm{k}$ in $\mathcal{C}(G,q)$ are in bijection with subgroups $H\subset G$ such that $q|_H=1$.
- The corresponding algebra object in C is $A_H = \bigoplus_{h \in H} X_h$.
- If moreover, $\mathcal C$ is ribbon and $\theta_{X_h}=\operatorname{Id}_{X_h}$ for all $h\in H$, then A_H is, in addition, a symmetric Frobenius algebra.

We call the thus obtained commutative simple algebras as *simple current algebras*. This generalizes a well-known construction from the semisimple setting (Fuchs-Runkel-Schweigert).

Simple current algebras

If $F: \mathcal{C} \to \mathcal{D}$ is a fully faithful (braided) tensor functor and A is a (commutative) simple algebra in \mathcal{C} , then F(A) is a (commutative) simple algebra in \mathcal{D} .

Let \mathcal{C} be a braided finite tensor category. Let $G = \{X_g \mid g \in G\}$ denote the group of simple invertible objects of \mathcal{C} .

- Then the semisimple subcategory of $\mathcal C$ spanned by G is isomorphic to the pointed braided fusion category $\mathcal C(G,q)$ where the quadratic form $q:G\to \Bbbk^\times$ given by $c_{X_g,X_g}=q(g)$ ld.
- Moreover, $\mathcal{C}(G,q) \to \mathcal{C}$ is a fully faithful braided tensor functor.
- As $\mathcal{C}(G,q)$ is semisimple, an algebra A is simple if and only if it is separable and $\operatorname{Hom}(\mathbb{1},A)\cong \Bbbk.$
- Commutative separable algebras with $\operatorname{Hom}(\mathbbm{1},A)\cong \mathbbm{k}$ in $\mathcal{C}(G,q)$ are in bijection with subgroups $H\subset G$ such that $q|_H=1$.
- The corresponding algebra object in C is $A_H = \bigoplus_{h \in H} X_h$.
- If moreover, $\mathcal C$ is ribbon and $\theta_{X_h}=\operatorname{Id}_{X_h}$ for all $h\in H$, then A_H is, in addition, a symmetric Frobenius algebra.

We call the thus obtained commutative simple algebras as *simple current algebras*. This generalizes a well-known construction from the semisimple setting (Fuchs-Runkel-Schweigert).

Fix an integer p>1 and let $q=e^{\pi i/p}$ be an <u>even</u> order root of unity. Then one can define the associated small quantum group $u_q(\mathfrak{sl}_2)$.

Fix an integer p>1 and let $q=e^{\pi i/p}$ be an <u>even</u> order root of unity. Then one can define the associated small quantum group $u_q(\mathfrak{sl}_2)$.

As an algebra it is generated by ${\cal E},{\cal F},{\cal K}$ subject to the relations:

Fix an integer p>1 and let $q=e^{\pi i/p}$ be an <u>even</u> order root of unity. Then one can define the associated small quantum group $u_q(\mathfrak{sl}_2)$.

As an algebra it is generated by E, F, K subject to the relations:

$$K^{2p} = 1$$
, $E^p = F^p = 0$, $KE = q^2 E K$, $KF = q^{-2} F K$, $EF - FE = \frac{K - K^{-1}}{q - q^{-1}}$.

Fix an integer p>1 and let $q=e^{\pi i/p}$ be an <u>even</u> order root of unity. Then one can define the associated small quantum group $u_q(\mathfrak{sl}_2)$.

As an algebra it is generated by E, F, K subject to the relations:

$$K^{2p} = 1$$
, $E^p = F^p = 0$, $KE = q^2 E K$, $KF = q^{-2} F K$, $EF - FE = \frac{K - K^{-1}}{q - q^{-1}}$.

• (Creutzig-Gainutdinov-Runkel) To ensure that $\operatorname{Rep}(u_q(\mathfrak{sl}_2))$ admits a braiding and is a MTC, we have to modify the comultiplication of the Hopf algebra $u_q(\mathfrak{sl}_2)$ to obtain a quasi-Hopf algebra $u_2(\mathfrak{sl}_2)^{\phi}$.

Fix an integer p>1 and let $q=e^{\pi i/p}$ be an <u>even</u> order root of unity. Then one can define the associated small quantum group $u_q(\mathfrak{sl}_2)$.

As an algebra it is generated by E, F, K subject to the relations:

$$K^{2p} = 1$$
, $E^p = F^p = 0$, $KE = q^2 E K$, $KF = q^{-2} F K$, $EF - FE = \frac{K - K^{-1}}{q - q^{-1}}$.

- (Creutzig-Gainutdinov-Runkel) To ensure that $\operatorname{Rep}(u_q(\mathfrak{sl}_2))$ admits a braiding and is a MTC, we have to modify the comultiplication of the Hopf algebra $u_q(\mathfrak{sl}_2)$ to obtain a quasi-Hopf algebra $u_2(\mathfrak{sl}_2)^{\phi}$.
- (Gannon-Negron) The category $\mathcal{C}=\mathsf{Rep}(u_q(\mathfrak{sl}_2)^\phi)$ is braided tensor equivalent to the category $\mathsf{Rep}(\mathcal{W}(p))$ of representations of the triplet VOA.

Fix an integer p>1 and let $q=e^{\pi i/p}$ be an <u>even</u> order root of unity. Then one can define the associated small quantum group $u_q(\mathfrak{sl}_2)$.

As an algebra it is generated by E, F, K subject to the relations:

$$K^{2p} = 1$$
, $E^p = F^p = 0$, $KE = q^2 E K$, $KF = q^{-2} F K$, $EF - FE = \frac{K - K^{-1}}{q - q^{-1}}$.

- (Creutzig-Gainutdinov-Runkel) To ensure that $\operatorname{Rep}(u_q(\mathfrak{sl}_2))$ admits a braiding and is a MTC, we have to modify the comultiplication of the Hopf algebra $u_q(\mathfrak{sl}_2)$ to obtain a quasi-Hopf algebra $u_2(\mathfrak{sl}_2)^{\phi}$.
- (Gannon-Negron) The category $\mathcal{C} = \operatorname{Rep}(u_q(\mathfrak{sl}_2)^{\phi})$ is braided tensor equivalent to the category $\operatorname{Rep}(\mathcal{W}(p))$ of representations of the triplet VOA.

Example: The group of invertibles of C is $G = \{1, \psi\}$ where $\psi \otimes \psi \cong 1$.

Fix an integer p>1 and let $q=e^{\pi i/p}$ be an <u>even</u> order root of unity. Then one can define the associated small quantum group $u_q(\mathfrak{sl}_2)$.

As an algebra it is generated by E, F, K subject to the relations:

$$K^{2p} = 1$$
, $E^p = F^p = 0$, $KE = q^2 E K$, $KF = q^{-2} F K$, $EF - FE = \frac{K - K^{-1}}{q - q^{-1}}$.

- (Creutzig-Gainutdinov-Runkel) To ensure that $\operatorname{Rep}(u_q(\mathfrak{sl}_2))$ admits a braiding and is a MTC, we have to modify the comultiplication of the Hopf algebra $u_q(\mathfrak{sl}_2)$ to obtain a quasi-Hopf algebra $u_2(\mathfrak{sl}_2)^{\phi}$.
- (Gannon-Negron) The category $\mathcal{C} = \operatorname{Rep}(u_q(\mathfrak{sl}_2)^{\phi})$ is braided tensor equivalent to the category $\operatorname{Rep}(\mathcal{W}(p))$ of representations of the triplet VOA.

Example: The group of invertibles of C is $G = \{1, \psi\}$ where $\psi \otimes \psi \cong 1$. Thus, $G \cong \mathbb{Z}_2$.

Fix an integer p>1 and let $q=e^{\pi i/p}$ be an <u>even</u> order root of unity. Then one can define the associated small quantum group $u_q(\mathfrak{sl}_2)$.

As an algebra it is generated by E, F, K subject to the relations:

$$K^{2p} = 1$$
, $E^p = F^p = 0$, $KE = q^2 E K$, $KF = q^{-2} F K$, $EF - FE = \frac{K - K^{-1}}{q - q^{-1}}$.

- (Creutzig-Gainutdinov-Runkel) To ensure that $\operatorname{Rep}(u_q(\mathfrak{sl}_2))$ admits a braiding and is a MTC, we have to modify the comultiplication of the Hopf algebra $u_q(\mathfrak{sl}_2)$ to obtain a quasi-Hopf algebra $u_2(\mathfrak{sl}_2)^{\phi}$.
- (Gannon-Negron) The category $\mathcal{C} = \operatorname{Rep}(u_q(\mathfrak{sl}_2)^{\phi})$ is braided tensor equivalent to the category $\operatorname{Rep}(\mathcal{W}(p))$ of representations of the triplet VOA.

Example: The group of invertibles of C is $G = \{1, \psi\}$ where $\psi \otimes \psi \cong 1$. Thus, $G \cong \mathbb{Z}_2$.

• Obviously, $c_{1,\psi} = c_{1,\psi} = c_{1,1} = \text{Id}$.

Fix an integer p>1 and let $q=e^{\pi i/p}$ be an <u>even</u> order root of unity. Then one can define the associated small quantum group $u_q(\mathfrak{sl}_2)$.

As an algebra it is generated by E, F, K subject to the relations:

$$K^{2p} = 1$$
, $E^p = F^p = 0$, $KE = q^2 E K$, $KF = q^{-2} F K$, $EF - FE = \frac{K - K^{-1}}{q - q^{-1}}$.

- (Creutzig-Gainutdinov-Runkel) To ensure that $\operatorname{Rep}(u_q(\mathfrak{sl}_2))$ admits a braiding and is a MTC, we have to modify the comultiplication of the Hopf algebra $u_q(\mathfrak{sl}_2)$ to obtain a quasi-Hopf algebra $u_2(\mathfrak{sl}_2)^{\phi}$.
- (Gannon-Negron) The category $\mathcal{C} = \operatorname{Rep}(u_q(\mathfrak{sl}_2)^{\phi})$ is braided tensor equivalent to the category $\operatorname{Rep}(\mathcal{W}(p))$ of representations of the triplet VOA.

Example: The group of invertibles of C is $G = \{1, \psi\}$ where $\psi \otimes \psi \cong 1$. Thus, $G \cong \mathbb{Z}_2$.

- Obviously, $c_{1,\psi} = c_{1,\psi} = c_{1,1} = \text{Id}$.
- Also, we proved that $c_{\psi,\psi}=i^p\operatorname{Id}_{1}=(-1)^{p/2}\operatorname{Id}_{1}$ and $\theta_{\psi}=-i^p\operatorname{Id}_{\psi}.$

Fix an integer p>1 and let $q=e^{\pi i/p}$ be an <u>even</u> order root of unity. Then one can define the associated small quantum group $u_q(\mathfrak{sl}_2)$.

As an algebra it is generated by E, F, K subject to the relations:

$$K^{2p} = 1$$
, $E^p = F^p = 0$, $KE = q^2 E K$, $KF = q^{-2} F K$, $EF - FE = \frac{K - K^{-1}}{q - q^{-1}}$.

- (Creutzig-Gainutdinov-Runkel) To ensure that $\operatorname{Rep}(u_q(\mathfrak{sl}_2))$ admits a braiding and is a MTC, we have to modify the comultiplication of the Hopf algebra $u_q(\mathfrak{sl}_2)$ to obtain a quasi-Hopf algebra $u_2(\mathfrak{sl}_2)^{\phi}$.
- (Gannon-Negron) The category $\mathcal{C}=\mathsf{Rep}(u_q(\mathfrak{sl}_2)^\phi)$ is braided tensor equivalent to the category $\mathsf{Rep}(\mathcal{W}(p))$ of representations of the triplet VOA.

Example: The group of invertibles of C is $G = \{1, \psi\}$ where $\psi \otimes \psi \cong 1$. Thus, $G \cong \mathbb{Z}_2$.

- Obviously, $c_{1,\psi} = c_{1,\psi} = c_{1,1} = \text{Id}$.
- Also, we proved that $c_{\psi,\psi}=i^p\operatorname{Id}_{\mathbb{1}}=(-1)^{p/2}\operatorname{Id}_{\mathbb{1}}$ and $\theta_\psi=-i^p\operatorname{Id}_\psi$. Thus, when p is a multiple of 4, $c_{\psi,\psi}=\operatorname{Id}$ and $\theta_A=-\operatorname{Id}$.

Fix an integer p>1 and let $q=e^{\pi i/p}$ be an <u>even</u> order root of unity. Then one can define the associated small quantum group $u_q(\mathfrak{sl}_2)$.

As an algebra it is generated by E, F, K subject to the relations:

$$K^{2p} = 1$$
, $E^p = F^p = 0$, $KE = q^2 E K$, $KF = q^{-2} F K$, $EF - FE = \frac{K - K^{-1}}{q - q^{-1}}$.

- (Creutzig-Gainutdinov-Runkel) To ensure that $\operatorname{Rep}(u_q(\mathfrak{sl}_2))$ admits a braiding and is a MTC, we have to modify the comultiplication of the Hopf algebra $u_q(\mathfrak{sl}_2)$ to obtain a quasi-Hopf algebra $u_2(\mathfrak{sl}_2)^{\phi}$.
- (Gannon-Negron) The category $\mathcal{C} = \operatorname{Rep}(u_q(\mathfrak{sl}_2)^{\phi})$ is braided tensor equivalent to the category $\operatorname{Rep}(\mathcal{W}(p))$ of representations of the triplet VOA.

Example: The group of invertibles of C is $G = \{1, \psi\}$ where $\psi \otimes \psi \cong 1$. Thus, $G \cong \mathbb{Z}_2$.

- Obviously, $c_{1,\psi} = c_{1,\psi} = c_{1,1} = \text{Id.}$
- Also, we proved that $c_{\psi,\psi}=i^p\operatorname{Id}_{1\!\!1}=(-1)^{p/2}\operatorname{Id}_{1\!\!1}$ and $\theta_\psi=-i^p\operatorname{Id}_\psi.$

Thus, when p is a multiple of 4, $c_{\psi,\psi}=\operatorname{Id}$ and $\theta_A=-\operatorname{Id}$. Thus, $A=\mathbbm{1}\oplus\psi$ is a commutative simple algebra in $\mathcal C$ which is not symmetric Frobenius.

Fix an integer p>1 and let $q=e^{\pi i/p}$ be an <u>even</u> order root of unity. Then one can define the associated small quantum group $u_q(\mathfrak{sl}_2)$.

As an algebra it is generated by E, F, K subject to the relations:

$$K^{2p} = 1$$
, $E^p = F^p = 0$, $KE = q^2 E K$, $KF = q^{-2} F K$, $EF - FE = \frac{K - K^{-1}}{q - q^{-1}}$.

- (Creutzig-Gainutdinov-Runkel) To ensure that $\operatorname{Rep}(u_q(\mathfrak{sl}_2))$ admits a braiding and is a MTC, we have to modify the comultiplication of the Hopf algebra $u_q(\mathfrak{sl}_2)$ to obtain a quasi-Hopf algebra $u_2(\mathfrak{sl}_2)^{\phi}$.
- (Gannon-Negron) The category $\mathcal{C} = \operatorname{Rep}(u_q(\mathfrak{sl}_2)^{\phi})$ is braided tensor equivalent to the category $\operatorname{Rep}(\mathcal{W}(p))$ of representations of the triplet VOA.

Example: The group of invertibles of C is $G = \{1, \psi\}$ where $\psi \otimes \psi \cong 1$. Thus, $G \cong \mathbb{Z}_2$.

- Obviously, $c_{1,\psi} = c_{1,\psi} = c_{1,1} = \text{Id}$.
- Also, we proved that $c_{\psi,\psi}=i^p\operatorname{Id}_{1\!\!1}=(-1)^{p/2}\operatorname{Id}_{1\!\!1}$ and $\theta_\psi=-i^p\operatorname{Id}_\psi.$

Thus, when p is a multiple of 4, $c_{\psi,\psi}=\operatorname{Id}$ and $\theta_A=-\operatorname{Id}$. Thus, $A=\mathbbm{1}\oplus\psi$ is a commutative simple algebra in $\mathcal C$ which is not symmetric Frobenius.

Let $\mathcal C$ and $\mathcal D$ be non-degenerate braided FTCs. We call $\mathcal C$ and $\mathcal D$ Witt equivalent if \exists FTCs $\mathcal A$ and $\mathcal B$ such that $\mathcal C\boxtimes\mathcal Z(\mathcal A)\simeq\mathcal D\boxtimes\mathcal Z(\mathcal B)$.

Let $\mathcal C$ and $\mathcal D$ be non-degenerate braided FTCs. We call $\mathcal C$ and $\mathcal D$ Witt equivalent if \exists FTCs $\mathcal A$ and $\mathcal B$ such that $\mathcal C\boxtimes\mathcal Z(\mathcal A)\simeq\mathcal D\boxtimes\mathcal Z(\mathcal B)$.

This notion was introduced for fusion categories by Davydov-Müger-Nikshych-Ostrik.

Let $\mathcal C$ and $\mathcal D$ be non-degenerate braided FTCs. We call $\mathcal C$ and $\mathcal D$ Witt equivalent if \exists FTCs $\mathcal A$ and $\mathcal B$ such that $\mathcal C\boxtimes\mathcal Z(\mathcal A)\simeq\mathcal D\boxtimes\mathcal Z(\mathcal B)$.

This notion was introduced for fusion categories by Davydov-Müger-Nikshych-Ostrik. Just like the semisimple case, we can characterize Witt equivalence in the following ways

Theorem

Let C and D be non-degenerate braided FTCs. The following are equivalent:

- $oldsymbol{0}$ $\mathcal C$ and $\mathcal D$ are Witt equivalent.
- ② There exists a non-degenerate braided finite tensor category $\mathcal E$ with commutative simple algebras A_1 and A_2 such that $\mathcal E_{A_1}^{\mathrm{loc}} \simeq \mathcal C$ and $\mathcal E_{A_2}^{\mathrm{loc}} \simeq \mathcal D$.
- **3** There exists a finite tensor category \mathcal{A}' such that $\mathcal{C} \boxtimes \overline{\mathcal{D}} \simeq \mathcal{Z}(\mathcal{A}')$.

Let $\mathcal C$ and $\mathcal D$ be non-degenerate braided FTCs. We call $\mathcal C$ and $\mathcal D$ Witt equivalent if \exists FTCs $\mathcal A$ and $\mathcal B$ such that $\mathcal C\boxtimes\mathcal Z(\mathcal A)\simeq\mathcal D\boxtimes\mathcal Z(\mathcal B)$.

This notion was introduced for fusion categories by Davydov-Müger-Nikshych-Ostrik. Just like the semisimple case, we can characterize Witt equivalence in the following ways

Theorem

Let C and D be non-degenerate braided FTCs. The following are equivalent:

- $oldsymbol{0}$ $\mathcal C$ and $\mathcal D$ are Witt equivalent.
- ② There exists a non-degenerate braided finite tensor category $\mathcal E$ with commutative simple algebras A_1 and A_2 such that $\mathcal E_{A_1}^{\mathrm{loc}} \simeq \mathcal C$ and $\mathcal E_{A_2}^{\mathrm{loc}} \simeq \mathcal D$.
- **3** There exists a finite tensor category \mathcal{A}' such that $\mathcal{C} \boxtimes \overline{\mathcal{D}} \simeq \mathcal{Z}(\mathcal{A}')$.

Using this, one obtains that Witt equivalence is an equivalence relation and the set of equivalence classes form an abelian group. We call this the *Witt group* over k.

Let $\mathcal C$ and $\mathcal D$ be non-degenerate braided FTCs. We call $\mathcal C$ and $\mathcal D$ Witt equivalent if \exists FTCs $\mathcal A$ and $\mathcal B$ such that $\mathcal C\boxtimes\mathcal Z(\mathcal A)\simeq\mathcal D\boxtimes\mathcal Z(\mathcal B)$.

This notion was introduced for fusion categories by Davydov-Müger-Nikshych-Ostrik. Just like the semisimple case, we can characterize Witt equivalence in the following ways

Theorem

Let C and D be non-degenerate braided FTCs. The following are equivalent:

- $oldsymbol{0}$ $\mathcal C$ and $\mathcal D$ are Witt equivalent.
- ② There exists a non-degenerate braided finite tensor category $\mathcal E$ with commutative simple algebras A_1 and A_2 such that $\mathcal E_{A_1}^{\mathrm{loc}} \simeq \mathcal C$ and $\mathcal E_{A_2}^{\mathrm{loc}} \simeq \mathcal D$.
- **3** There exists a finite tensor category \mathcal{A}' such that $\mathcal{C} \boxtimes \overline{\mathcal{D}} \simeq \mathcal{Z}(\mathcal{A}')$.

Using this, one obtains that Witt equivalence is an equivalence relation and the set of equivalence classes form an abelian group. We call this the *Witt group* over k.

Question: Is there a non-semisimple non-degenerate braided FTC that is not Witt equivalent to a semisimple one?

Let $\mathcal C$ and $\mathcal D$ be non-degenerate braided FTCs. We call $\mathcal C$ and $\mathcal D$ Witt equivalent if \exists FTCs $\mathcal A$ and $\mathcal B$ such that $\mathcal C \boxtimes \mathcal Z(\mathcal A) \simeq \mathcal D \boxtimes \mathcal Z(\mathcal B)$.

This notion was introduced for fusion categories by Davydov-Müger-Nikshych-Ostrik. Just like the semisimple case, we can characterize Witt equivalence in the following ways

Theorem

Let C and D be non-degenerate braided FTCs. The following are equivalent:

- $oldsymbol{0}$ $\mathcal C$ and $\mathcal D$ are Witt equivalent.
- ② There exists a non-degenerate braided finite tensor category $\mathcal E$ with commutative simple algebras A_1 and A_2 such that $\mathcal E_{A_1}^{\mathrm{loc}} \simeq \mathcal C$ and $\mathcal E_{A_2}^{\mathrm{loc}} \simeq \mathcal D$.
- **3** There exists a finite tensor category \mathcal{A}' such that $\mathcal{C} \boxtimes \overline{\mathcal{D}} \simeq \mathcal{Z}(\mathcal{A}')$.

Using this, one obtains that Witt equivalence is an equivalence relation and the set of equivalence classes form an abelian group. We call this the *Witt group* over k.

Question: Is there a non-semisimple non-degenerate braided FTC that is not Witt equivalent to a semisimple one?

Thank you!