The symplectic geometry of the restricted three-body problem

Agustin Moreno
University of Heidelberg

Lisbon

Practical aspects and applications

• The CR3BP is one of the basic models in **astrodynamics** and **space mission design**.

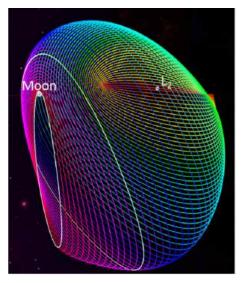
- The CR3BP is one of the basic models in astrodynamics and space mission design.
- Periodic orbits are useful for:
 - Parking spacecraft (if "quasi"-stable, e.g. halo orbits), or
 - 2 Transferring between regions (if unstable, e.g. Lyapunov orbits).

- The CR3BP is one of the basic models in astrodynamics and space mission design.
- Periodic orbits are useful for:
 - 1 Parking spacecraft (if "quasi"-stable, e.g. halo orbits), or
 - 2 Transferring between regions (if unstable, e.g. Lyapunov orbits).
- They come in families (varying the energy) connected through each other through bifurcations, codified in a graph of "options" for a putative mission.

- The CR3BP is one of the basic models in astrodynamics and space mission design.
- Periodic orbits are useful for:
 - Parking spacecraft (if "quasi"-stable, e.g. halo orbits), or
 - 2 Transferring between regions (if unstable, e.g. Lyapunov orbits).
- They come in families (varying the energy) connected through each other through bifurcations, codified in a graph of "options" for a putative mission.
- There is an infinitude of periodic orbits, many of which are used for real missions.

- The CR3BP is one of the basic models in astrodynamics and space mission design.
- Periodic orbits are useful for:
 - Parking spacecraft (if "quasi"-stable, e.g. halo orbits), or
 - 2 Transferring between regions (if unstable, e.g. Lyapunov orbits).
- They come in families (varying the energy) connected through each other through bifurcations, codified in a graph of "options" for a putative mission.
- There is an infinitude of periodic orbits, many of which are used for real missions.
- The basic families in the CR3BP can be used to construct nominal orbits which are much more complex, using high-fidelity (ephemeris) models deforming the CR3BP.

Halo orbits



Halo orbits for Earth-Moon.

In the context of the exploration of asteroids (e.g. the JUICE mission):

Jupiter–Ganymede

In the context of the exploration of asteroids (e.g. the JUICE mission):

• Jupiter-Ganymede

In the context of searching for Life outside of Earth, there are two systems of interest (CR3BP with specific μ):

- Jupiter-Europa; and
- Saturn-Enceladus.

In the context of the exploration of asteroids (e.g. the JUICE mission):

Jupiter–Ganymede

In the context of searching for Life outside of Earth, there are two systems of interest (CR3BP with specific μ):

- Jupiter-Europa; and
- Saturn-Enceladus.

Europa Clipper (NASA) was sent out last year.

In the context of the exploration of asteroids (e.g. the JUICE mission):

Jupiter–Ganymede

In the context of searching for Life outside of Earth, there are two systems of interest (CR3BP with specific μ):

- Jupiter-Europa; and
- Saturn-Enceladus.

Europa Clipper (NASA) was sent out last year.

In the context of deep space exploration, NASA's ARTEMIS program (e.g. Gateway, halo orbits) is interested in:

Earth–Moon.

Systems of interest

Values of μ for different systems of interest.

Symplectic Data Analysis

Philosophy

Philosophy. Extract simple invariants from abstract theories (e.g. Floer theory) to develop practical tools that help organize periodic orbit families.

Philosophy

Philosophy. Extract simple invariants from abstract theories (e.g. Floer theory) to develop practical tools that help organize periodic orbit families.

This gives rise to a symplectic way to organize plenty of numerical information.

Symplectic Data Analysis (SDA).

Philosophy

Philosophy. Extract simple invariants from abstract theories (e.g. Floer theory) to develop practical tools that help organize periodic orbit families.

This gives rise to a symplectic way to organize plenty of numerical information.

Symplectic Data Analysis (SDA).

What follows is based on work with:

- Urs Frauenfelder (Augbsurg)
- Dan Scheeres (aerospace engineer, CO Boulder)
- Otto van Koert (Seoul)
- Cengiz Aydin (Heidelberg)
- Bhanu Kumar (Michigan)
- Dayung Koh (JPL-NASA: Gateway, Europa Clipper, Psyche)

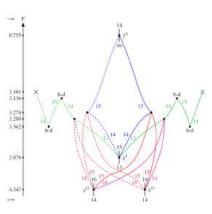
The symplectic toolkit

With Urs Frauenfelder and Cengiz Aydin, we developed a "**symplectic toolkit**" for engineers (that made it to *Quanta Magazine*):

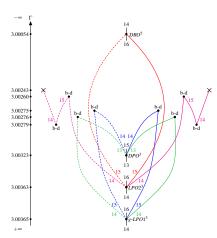
- (1) The B-signs: A \pm sign, helps predict/obstruct orbits and bifurcations.
- (2) Global topological methods: for bifurcations and stability.
- (3) Conley-Zehnder index: organizes families.
- (4) **Floer numbers**: A test to detect potentially overlooked families.

Bifurcation graphs

The symplectic toolkit helps organize and find orbits in a systematic way.



Hill lunar problem.

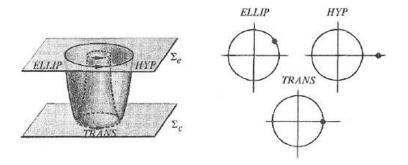


Jupiter-Europa.

Bifurcations

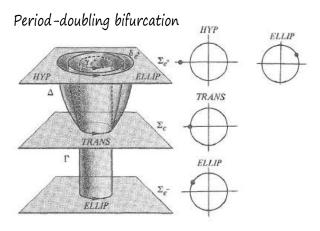
Monodromy matrix: symplectic matrix (linearization of the flow along an orbit).

Bifurcation: e-value 1 is crossed in a family.



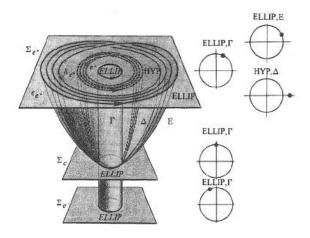
Creation or birth/death.

Bifurcations



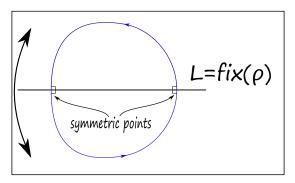
"Foundations of Mechanics", Abraham-Marsden.
Period-doubling bifurcation or subtle division.

Bifurcations



Emission, or k-fold bifurcation (k = 4).

Symmetries



Symmetric periodic orbits.

Wonenburger matrices

The monodromy matrix of a symmetric orbit at a **symmetric point** is a **Wonenburger** matrix:

$$M = M_{A,B,C} = \begin{pmatrix} A & B \\ C & A^T \end{pmatrix} \in Sp(2n),$$
 (1)

where

$$B = B^{T}, \quad C = C^{T}, \quad AB = BA^{T}, \quad A^{T}C = CA, \quad A^{2} - BC = 1.$$
 (2)

Wonenburger matrices

The monodromy matrix of a symmetric orbit at a **symmetric point** is a **Wonenburger** matrix:

$$M = M_{A,B,C} = \begin{pmatrix} A & B \\ C & A^T \end{pmatrix} \in Sp(2n),$$
 (1)

where

$$B = B^{T}, \quad C = C^{T}, \quad AB = BA^{T}, \quad A^{T}C = CA, \quad A^{2} - BC = 1.$$
 (2)

The eigenvalues of M are determined by those of the first block A.

Lemma

- λ e-val of $M \leadsto its$ stability index $a(\lambda) = \frac{1}{2}(\lambda + 1/\lambda)$ e-val of A.
- a e-val of $A \rightsquigarrow \lambda(a) = a + \sqrt{a^2 1}$ e-val of M.

Toolkit

Global topological methods

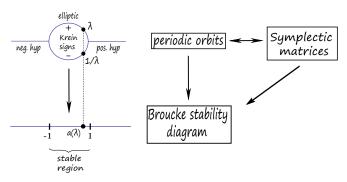
These methods encode:

- Bifurcations;
- stability;
- eigenvalue configurations;
- obstructions to existence of regular families;
- B-signs,

in a visual and resource-efficient way.

Broucke's stability diagram: 2D

Let $\boxed{n=2}$, λ eigenvalue of monodromy, with **stability index** $a(\lambda)=\frac{1}{2}(\lambda+1/\lambda)$.



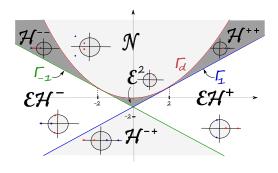
If we know that two points lie in different components, then one should expect bifurcations in any path between them.

Broucke's stability diagrams: 3D

Let n = 3. Given $M_{A,B,C}$, its **stability point** is $p = (\operatorname{tr}(A), \operatorname{det}(A)) \in \mathbb{R}^2$.

Broucke's stability diagrams: 3D

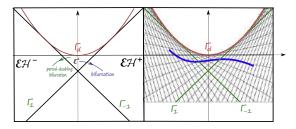
Let n=3. Given $M_{A,B,C}$, its **stability point** is $p=(\operatorname{tr}(A), \det(A)) \in \mathbb{R}^2$. The plane splits into regions corresponding to the eigenvalue configuration:



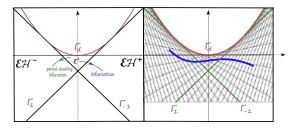
- $\Gamma_{+1} = e\text{-val } \pm 1$.
- Γ_d = double e-val.
- \mathcal{E}^2 = doubly elliptic (stable region).
- etc.

An orbit family $t \mapsto x_t$ induces a path $t \mapsto p_t \in \mathbb{R}^2$ of stability points.

An orbit family $t \mapsto x_t$ induces a path $t \mapsto p_t \in \mathbb{R}^2$ of stability points. The family bifurcates if p_t crosses Γ_1 .

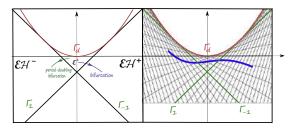


An orbit family $t \mapsto x_t$ induces a path $t \mapsto p_t \in \mathbb{R}^2$ of stability points. The family bifurcates if p_t crosses Γ_1 .



More generally, k-fold bifurcation happens when crossing a line with slope $\cos(2\pi\theta)$ with $\theta = I/k$, for some I.

An orbit family $t\mapsto x_t$ induces a path $t\mapsto p_t\in\mathbb{R}^2$ of stability points. The family bifurcates if p_t crosses Γ_1 .



More generally, k-fold bifurcation happens when crossing a line with slope $\cos(2\pi\theta)$ with $\theta = I/k$, for some I.

If we know that two points lie in different components, then one should expect bifurcations in any path between them.

B-signs

Let x be a symmetric orbit with monodromy

$$M = \left(\begin{array}{cc} A & B \\ C & A^T \end{array}\right).$$

Assume λ simple, elliptic or hyperbolic e-value. Let v satisfy $A^Tv = a(\lambda) \cdot v$. The **B-sign** of λ is

$$\epsilon(\lambda) = \operatorname{sign}(\mathbf{v}^T \mathbf{B} \mathbf{v}) = \pm.$$

- n = 2 two *B*-signs, one for each symmetric point.
- n=3 two **pairs** of *B*-signs, one for each symmetric point and each eigenvalue.

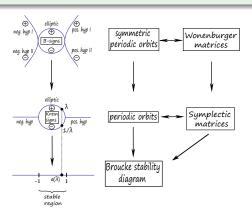
- n = 2 two *B*-signs, one for each symmetric point.
- n=3 two **pairs** of *B*-signs, one for each symmetric point and each eigenvalue.

Theorem (Frauenfelder-M. '23)

A planar symmetric orbit is negative hyperbolic iff the B-signs of its two symmetric points differ.

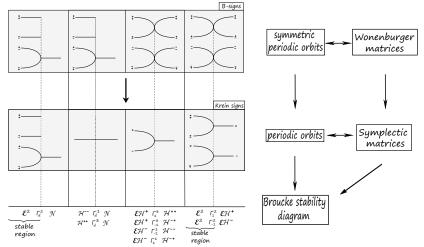
Global topological methods: GIT sequence, 2D

GIT sequence = refinement of Broucke diagram for **symmetric** orbits.



- B-signs "separate" hyperbolic branches, for symmetric orbits.
- If two points lie in the same component, but *B*-signs differ, one should *also* expect bifurcation in any path joining them.

Global topological methods: GIT sequence, 3D



The branches are two-dimensional, and come together where we cross from one region to another. If the *B*-signs are not mixed, then a stable orbit cannot cross from \mathcal{E}^2 to \mathcal{N} (Krein–Moser theorem).

Conley–Zehnder index

The CZ-index assigns an integer to non-degenerate orbits.

Conley–Zehnder index

The CZ-index assigns an integer to non-degenerate orbits.

CZ-index stays constant if no bifurcation occurs;

Conley-Zehnder index

The CZ-index assigns an integer to non-degenerate orbits.

- CZ-index stays constant if no bifurcation occurs;
- Then helps understand which families of orbits connect to which.

Conley-Zehnder index

The CZ-index assigns an integer to non-degenerate orbits.

- CZ-index stays constant if no bifurcation occurs;
- Then helps understand which families of orbits connect to which.
- It can be thought of as an intersection number with the Maslov cycle, consisting of symplectic matrices with 1 as an eigenvalue.

Conley-Zehnder index

n=2 x planar orbit with (reduced) monodromy M_x , x^k k-fold cover.

• Elliptic case:

$$M_{x} \sim \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix},$$

Then

$$\mu_{CZ}(x^k) = 1 + 2 \cdot \lfloor k \cdot \theta / 2\pi \rfloor$$

In particular, it is odd, and jumps by \pm 2 if the e-val 1 is crossed.

• Hyperbolic case:

$$M_X \sim \left(\begin{array}{cc} \lambda & 0 \\ 0 & 1/\lambda \end{array}\right),$$

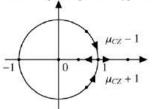
Then

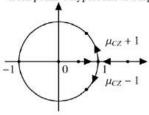
$$\mu_{CZ}(x^k) = k \cdot n,$$

where linearized flow rotates eigenspaces by angle $\frac{\pi nt}{T}$, with n even/odd if x pos./neg. hyp.

CZ-jumps







 $\mu_{\it CZ}$ jumps by ± 1 when crossing 1, according to direction of bifurcation. If it stays elliptic, the jump is by ± 2 .

Conley–Zehnder index

n=3, $x\subset\mathbb{R}^2$ planar orbit in 3BP, then

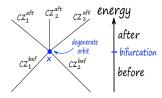
$$\mu_{\mathit{CZ}}(\mathit{X}) = \mu_{\mathit{CZ}}^{\mathit{p}}(\mathit{X}) + \mu_{\mathit{CZ}}^{\mathit{s}}(\mathit{X}),$$

a spatial and a planar index.

- Planar to planar bifurcations correspond to jumps in μ_{CZ}^p .
- Planar to spatial bifurcations correspond to jumps of μ_{CZ}^s .

The jump is determined by the *B*-sign. The CZ-index may be computed directly (numerically or via above formulas), or via deformation of known cases.

Floer numerical invariants



Given a bifurcation at x, the Floer number of x is

$$\chi(x) = \sum_{i} (-1)^{CZ_i^{bef}} = \sum_{j} (-1)^{CZ_j^{aft}}.$$

The sum on the LHS is over (**good**) orbits *before* bifurcation, and RHS is over (**good**) orbits *after* bifurcation.

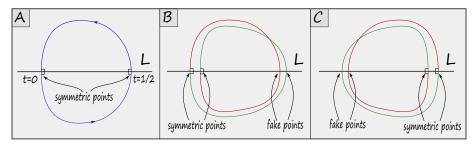
Invariance

The fact that the sums agree before and after *-invariance*- follows from very deep results in **Floer theory** from symplectic geometry.

In Memoriam Andreas Floer, 1956-1991.

The Floer number can be used as a **test**: if the sums do *not* agree, we know the algorithm missed an orbit.

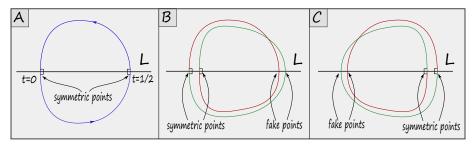
Example: symmetric period doubling bifurcation



The simple symmetric orbit *x* goes from elliptic to negative hyperbolic.

 A priori there could be two bifurcations for each symmetric point (B or C).

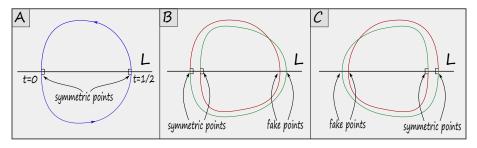
Example: symmetric period doubling bifurcation



The simple symmetric orbit *x* goes from elliptic to negative hyperbolic.

- A priori there could be two bifurcations for each symmetric point (B or C).
- Invariance of $\chi(x^2)$ implies only one can happen (note x^2 is *bad*).

Example: symmetric period doubling bifurcation



The simple symmetric orbit *x* goes from elliptic to negative hyperbolic.

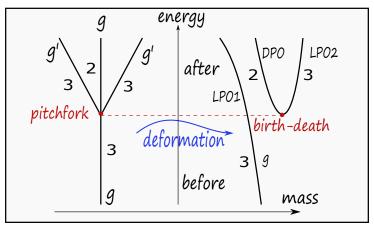
- A priori there could be two bifurcations for each symmetric point (B or C).
- Invariance of $\chi(x^2)$ implies only one can happen (note x^2 is *bad*).
- Bifurcation happens at the symmetric point in which the *B*-sign does *not* jump.

Summary of toolkit

- (1) **The B-signs**: a \pm sign associated to elliptic/hyperbolic orbits, which helps predict bifurcations.
- (2) **Global topological methods:** the *GIT-sequence*, a topological refinement of *Broucke's stability diagram*, which encodes bifurcations and stability of orbits.
- (3) **Conley-Zehnder indices:** an integer associated to a (non-degenerate) orbit which only jumps at bifurcation, and so predicts which families connect to which.
- (4) Floer numerical invariants: numerical counts of orbits that stay the same before and after a bifurcation, and so help predict existence of orbits.

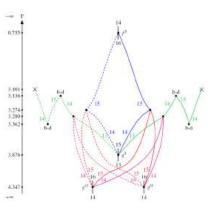
Numerical work

Example: pitchfork bifurcation

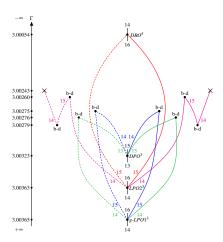


Hill's problem has plenty of symmetry: a (nno-generic) pitchfork bifurcation (Hénon) deforms to a generic bifurcation in Jupiter–Europa. Birth-death branch is hard to detect. The Floer number is easy to compute.

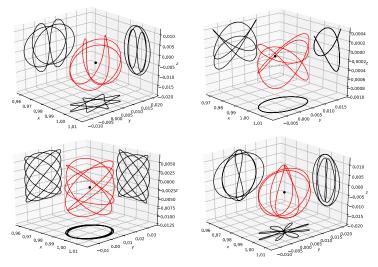
Bifurcation graphs



Hill lunar problem.

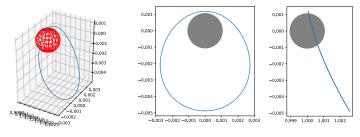


Jupiter-Europa.

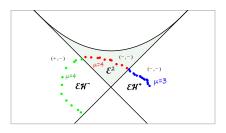


Jupiter-Europa: Spatial connection between retrograde planar orbit to direct planar orbit, CZ-index 15.

Halo orbits in Saturn-Enceladus



Halo orbit, altitude = 29km, CZ = 4 (Enceladus Orbilander, NASA).



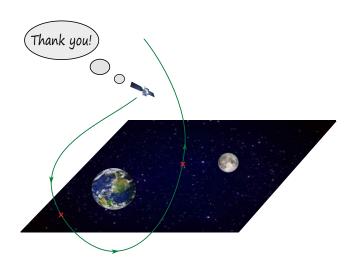
GIT plot of Halo orbits with CZ-index.

Remarks

 Otto van Koert produced a Python CZ-index calculator for CR3BP (available in GitHub); Bhanu Kumar has a MATLAB version.

Remarks

- Otto van Koert produced a Python CZ-index calculator for CR3BP (available in GitHub); Bhanu Kumar has a MATLAB version.
- With Dan Scheeres and Gavin Brown, we applied these tools to the HR4BP, a higher-fidelity, time-dependent deformation of the CR3BP (Astrodynamics Specialists Conference 2024).



References I

- P. Albers, J. Fish, U. Frauenfelder, H. Hofer, O. van Koert. Global surfaces of section in the planar restricted 3-body problem. Arch. Ration. Mech. Anal. 204(1) (2012), 273–284.
- Albers, Peter; Frauenfelder, Urs; van Koert, Otto; Paternain, Gabriel P.

 Contact geometry of the restricted three-body problem.

 Comm. Pure Appl. Math. 65 (2012), no. 2, 229–263.
- Wanki Cho, Hyojin Jung, Geonwoo Kim. The contact geometry of the spatial circular restricted 3-body problem.

arXiv:1810.05796

C. Conley.

On Some New Long Periodic Solutions of the Plane Restricted Three Body Problem.

Comm. Pure Appl. Math. 16 (1963), 449-467.

References II

- Frauenfelder, Urs; Koh, Dayung; Moreno, Agustin.

 On Floer-type numerical invariants, GIT quotients, and orbit bifurcations of real-life planetary systems.

 To Appear.
- U. Hryniewicz and Pedro A. S. Salomão.

 Elliptic bindings for dynamically convex Reeb flows on the real projective three-space.
 - Calc. Var. Partial Differential Equations 55 (2016), no. 2, Art. 43, 57 pp.
 - U. Hryniewicz, Pedro A. S. Salomão and K. Wysocki. Genus zero global surfaces of section for Reeb flows and a result of Birkhoff.

arXiv:1912.01078.

References III

Frauenfelder, Urs; Moreno, Agustin.

On GIT quotients of the symplectic group, stability and bifurcations of symmetric orbits

Preprint arXiv:2109.09147.

Koh, Dayung; Anderson, Rodney L.; Bermejo-Moreno, Ivan. Cell-mapping orbit search for mission design at ocean worlds using parallel computing.

The Journal of the Astronautical Sciences, Volume 68, Issue 1, p.172-196.

McGehee, Richard Paul.

Some homoclinic orbits for the restricted three-body problem. Thesis (Ph.D.), The University of Wisconsin - Madison. ProQuest LLC, Ann Arbor, MI, 1969. 63 pp.0.

References IV

Moreno, Agustin.

Pseudo-holomorphic dynamics in the restricted three-body problem.

Preprint arXiv:2011.06568

Moreno, Agustin; van Koert, Otto.

Global hypersurfaces of section in the spatial restricted three-body problem.

To appear in Nonlinearity.

Moreno, Agustin; van Koert, Otto.

A generalized Poincaré-Birkhoff theorem.

J. Fixed Point Theory Appl. 24 (2022), no. 2, Paper No. 32.

Poincaré, H.

Sur un théoreme de géométrie.

Rend. Circ. Matem. Palermo 33, 375-407 (1912).