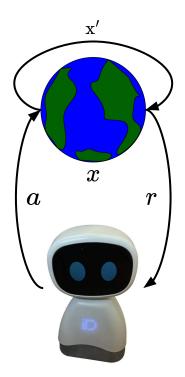
Introduction to MDPs and Reinforcement Learning II

Some Recent Results and Open Problems

Pedro A. Santos (w/ Diogo S. Carvalho, Francisco S. Melo)



For each policy π there is the state value function v_{π} and the state-action value function q_{π}

There is an optimal policy π^* with state value function v^* and state-action value function q^*

We have a space of functions $\mathcal{Q}=\{q:\mathcal{X}\times\mathcal{A}\to\mathbb{R}\}$, with finite $\mathcal{X}\times\mathcal{A}$

We have an operator $H:\mathcal{Q} \to \mathcal{Q}$ such that

$$(\mathrm{H}q)(x,a) := \mathbb{E}\left[r(x,a) + \gamma \cdot \max_{a' \in \mathcal{A}} q(\mathrm{x}',a')
ight]$$

Goal: We want to solve $\,q={
m H}q\,$, i.e., to find a fixed-point of $\,{
m H}\,$

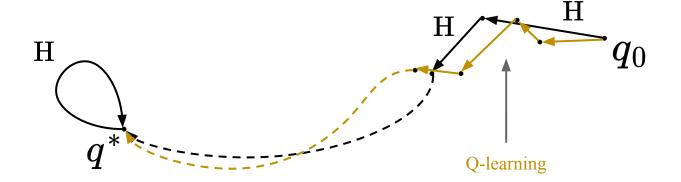
Theorem: H is contractive with contraction factor γ in the infinity-norm

```
\begin{aligned} &\operatorname{Proof:} \\ &\|\operatorname{H} q - \operatorname{H} p\|_{\infty} = \max_{x,a \in \mathcal{X} \times \mathcal{A}} |(\operatorname{H} q)(x,a) - (\operatorname{H} p)(x,a)| \\ &= \max_{x,a \in \mathcal{X} \times \mathcal{A}} |\mathbb{E}[r(x,a) + \gamma \cdot \max_{a' \in \mathcal{A}} q(x',a')] - \mathbb{E}[r(x,a) + \gamma \cdot \max_{a' \in \mathcal{A}} p(x',a')]| \\ &= \gamma \cdot \max_{x,a \in \mathcal{X} \times \mathcal{A}} |\mathbb{E}[\max_{a' \in \mathcal{A}} q(x',a') - \max_{a' \in \mathcal{A}} p(x',a')]| \\ &\leq \gamma \cdot \max_{x,a \in \mathcal{X} \times \mathcal{A}} \mathbb{E}[|\max_{a' \in \mathcal{A}} q(x',a') - \max_{a' \in \mathcal{A}} p(x',a')|] \\ &\leq \gamma \cdot \max_{x,a \in \mathcal{X} \times \mathcal{A}} \mathbb{E}[\max_{a' \in \mathcal{A}} |q(x',a') - p(x',a')|] \\ &= \gamma \cdot \max_{x,a \in \mathcal{X} \times \mathcal{A}} \mathbb{E}[\|q - p\|_{\infty}] \end{aligned}
```

Corollary: There exists a unique fixed-point $\,q^*$ of $\,{
m H}\,$

 $=\gamma\cdot\|q-p\|_{\infty}$

$$q^* = Hq^*$$



Q-learning:

$$q_{t+1} = q_t + lpha_t(r_t + \gamma \cdot \max_{a' \in \mathcal{A}} q_t(x_t', a') - q_t(x_t, a_t)) \mathbb{1}_{(x_t, a_t)}$$

Stochastic approximation

$$w_{t+1} = w_t + lpha_t(f(w_t) + \mathrm{noise}_t)$$

Assumptions:

 $f: \mathbb{R}^k \to \mathbb{R}$ is Lipschitz

 $\mathrm{H}q_t-q_t$

 $\sum_{t=0}^{\infty} \alpha_t$ is infinite, $\sum_{t=0}^{\infty} \alpha_t^2$ is finite

 $\operatorname{noise}_t:\Omega\to\mathbb{R}^k$ has zero-mean given the past and bounded variance

Theorem:

If the dynamical system governed by the o.d.e. $\dot{w} = f(w)$ has a unique globally asymptotically stable equilibrium w^* then $w_t \to w^*$ almost surely

Dynamical systems

$$rac{1}{2}\|q^*-q\|_2^2$$

Theorem:

 $\dot{w}=f(w)$ has a unique globally asymptotically stable equilibrium w^* such that $f(w^*)=0$ if there is a Lyapunov function $l:\mathbb{R}^k\to\mathbb{R}$ such that $l(w)>0, \quad \text{for all } w\neq w^*, \quad \text{and} \quad l(w^*)=0$ $\dot{l}(w)=(\nabla l(w))\cdot f(w)<0, \quad \text{for all } w\neq w^*$ $\lim_{\|w\|\to\infty} l(w)=\infty$

We have a linear function approximation space generated by features $\phi: \mathcal{X} \times \mathcal{A} \to \mathbb{R}^k$

$$\mathcal{Q} = \{q_w: \mathcal{X} imes \mathcal{A}
ightarrow \mathbb{R} \mid q_w(x,a) = \phi(x,a) \cdot w, w \in \mathbb{R}^k \}$$

We have a distribution $\ \mu \in \Delta(\mathcal{X} imes \mathcal{A})$

Goal: We want to find the function in $\mathcal Q$ that is closest to q^* , i.e.,

$$\operatorname{Proj} q^* := \operatorname{argmin}_{q \in \mathcal{Q}} rac{1}{2} \| q^* - q \|_{2,\mu}^2$$

Where the norm
$$\|\cdot\|_{2,\mu}$$
 is $\|q\|_{2,\mu}:=\sqrt{\mathbb{E}_{\mu}[q^2(x,a)]}$

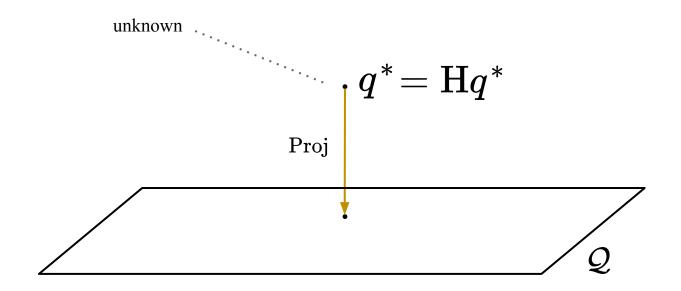
Proposition:

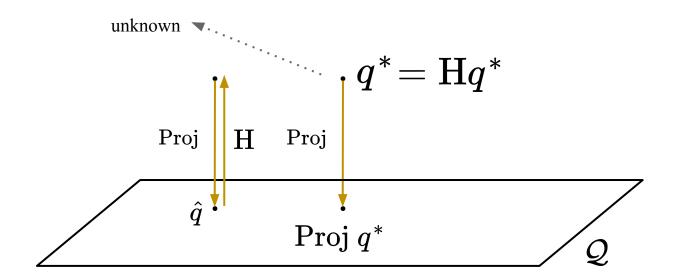
The projection is a unique and given by

$$(\operatorname{Proj} q)(x,a) = \phi(x,a) \cdot \mathbb{E}_{\mu}[\phi(\mathrm{x},\mathrm{a})\phi^{ op}(x,a)]^{-1} \cdot \mathbb{E}_{\mu}[\phi(\mathrm{x},\mathrm{a})q(\mathrm{x},\mathrm{a})]$$

Proof:

We have that
$$\|q-q_w\|_{2,\mu}^2=\mathbb{E}_{\mu}[(q(\mathbf{x},\mathbf{a})-\phi(\mathbf{x},\mathbf{a})^{\top}w)^2]$$
 and so $\nabla_w \frac{1}{2}\|q-q_w\|_{2,\mu}^2=\mathbb{E}_{\mu}[(q(\mathbf{x},\mathbf{a})-\phi(\mathbf{x},\mathbf{a})^{\top}w)\phi(\mathbf{x},\mathbf{a})]$ We want to solve $\nabla_w\|q-q_w\|_{2,\mu}^2=0$ and we obtain $\mathbb{E}_{\mu}[\phi(\mathbf{x},\mathbf{a})\phi^{\top}(\mathbf{x},\mathbf{a})]w=\mathbb{E}_{\mu}[\phi(\mathbf{x},\mathbf{a})q(\mathbf{x},\mathbf{a})] \iff w=\mathbb{E}_{\mu}[\phi(\mathbf{x},\mathbf{a})\phi^{\top}(\mathbf{x},\mathbf{a})]^{-1}\mathbb{E}_{\mu}[\phi(\mathbf{x},\mathbf{a})q(\mathbf{x},\mathbf{a})]$





ection approximation
$$\hat{q}=(\operatorname{Proj} H)\hat{q}$$

Q-learning with linear function approximation:

$$w_{t+1} = w_t + lpha_t (r_t + \gamma \cdot \max_{a' \in \mathcal{A}} \phi^ op (x_t', a') w - \phi(x_t, a_t)^ op w) \phi(x_t, a_t)$$

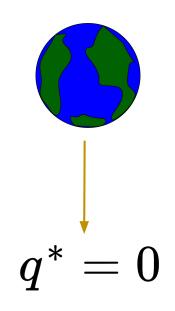
$$egin{aligned} \mathcal{X} &= \{s_1, s_2\} \ \mathcal{A} &= \{a\} \ r(x,a) &= 0 \ \mu &= \mathrm{uniform}(\mathcal{X} imes \mathcal{A}) \end{aligned} \qquad egin{aligned} s_1 \ \phi(s_1,a) &= 1 \ \phi(s_2,a) &= 2 \end{aligned}$$

Proposition:

Proj H is expansive in any norm if $\gamma > \frac{5}{6}$

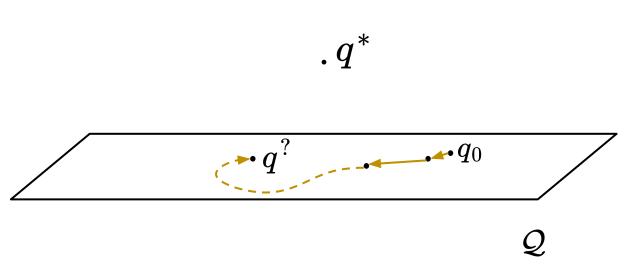
Proof sketch:

$$(ext{Proj H})q_w = rac{6}{5}\gamma\,q_w$$
so $\|(ext{Proj H})q_u - (ext{Proj H})q_v\| = rac{6}{5}\gamma\|q_u - q_v\|$



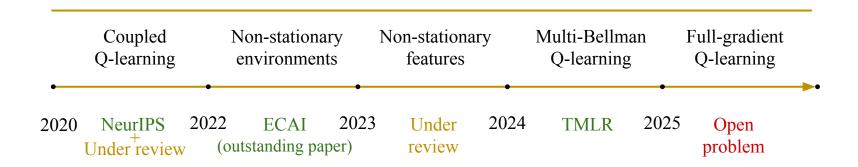
Research problem

How can we approximate the optimal value function?

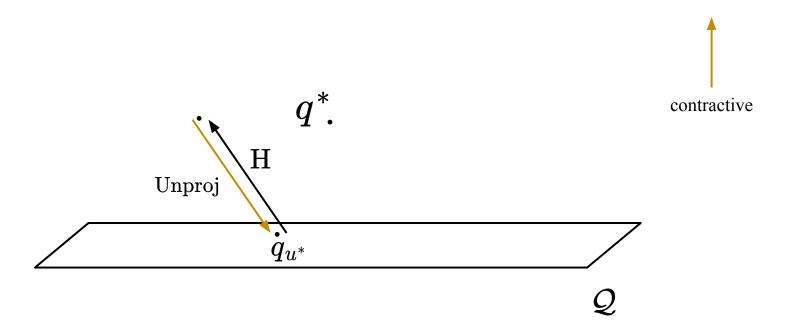


Contributions

How can we approximate the optimal value function?



$$q_{u^*} = (\mathrm{Unproj}\ \mathrm{H})q_{u^*}$$



$$q_{u^*} = (\mathrm{Unproj}\ \mathrm{H})q_{u^*}$$

$$(\operatorname{Proj} q)(x,a) = \phi(x,a) \cdot \mathbb{E}[\phi(x,a)\phi^{ op}(x,a)]^{-1} \cdot \mathbb{E}[\phi(x,a)q(x,a)] \ (\operatorname{Unproj} q)(x,a) = \phi(x,a) \cdot \mathbb{E}[\phi(x,a)q(x,a)]$$

$$q_{u^*} = (\mathrm{Unproj}\ \mathrm{H})q_{u^*}$$

Theorem:

If $\|\phi(x,a)\| \leq 1 \quad \forall x,a$, the operator Unproj is non-expansive

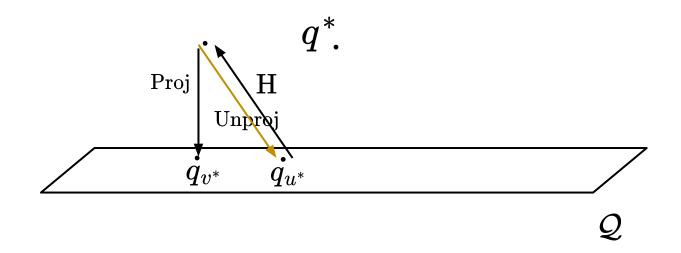
Proof:

$$egin{aligned} \| \mathrm{Unproj} \ q - \mathrm{Unproj} \ p \|_{\infty} &= \max_{x,a \in \mathcal{X} imes \mathcal{A}} |\phi(x,a) \mathbb{E}[\phi(\mathrm{x},\mathrm{a})q(\mathrm{x},\mathrm{a})] - \phi(x,a) \mathbb{E}[\phi(\mathrm{x},\mathrm{a})p(\mathrm{x},\mathrm{a})] | \ &= \max_{x,a \in \mathcal{X} imes \mathcal{A}} |\phi(x,a) \mathbb{E}[\phi(\mathrm{x},\mathrm{a})(q(\mathrm{x},\mathrm{a}) - p(\mathrm{x},\mathrm{a}))] | \ &\leq \max_{x,a \in \mathcal{X} imes \mathcal{A}} \|\phi(x,a)\| \cdot \| \mathbb{E}[\phi(\mathrm{x},\mathrm{a})(q(\mathrm{x},\mathrm{a}) - p(\mathrm{x},\mathrm{a}))] \| \ &\leq \mathbb{E}[\|\phi(\mathrm{x},\mathrm{a})(q(\mathrm{x},\mathrm{a}) - p(\mathrm{x},\mathrm{a})) \|] \ &\leq \mathbb{E}[\|\phi(\mathrm{x},\mathrm{a})\| \cdot |(q(\mathrm{x},\mathrm{a}) - p(\mathrm{x},\mathrm{a})) \|] \ &\leq \|q - p\|_{\infty} \end{aligned}$$

Corollary:

The combined operator Unproj H has a unique fixed-point q_{u^*}

$$egin{aligned} q_{v^*} &= (\operatorname{Proj} \operatorname{H}) q_{u^*} \ q_{u^*} &= (\operatorname{Unproj} \operatorname{H}) q_{u^*} \end{aligned}$$



Two-time-scale stochastic approximation

$$egin{aligned} v_{t+1} &= v_t + lpha_t(f^{ ext{fast}}(v_t, u_t) + ext{noise}_t^{ ext{fast}}) \ u_{t+1} &= u_t + eta_t(f^{ ext{slow}}(v_t, u_t) + ext{noise}_t^{ ext{slow}}) \end{aligned}$$

Additional assumption: $\beta_t = o(\alpha_t)$

Theorem:

If the dynamical system governed by the o.d.e. $\dot{v} = f^{\rm fast}(v,u)$ has a unique globally asymptotically stable equilibrium $\lambda(u)$ for all u and the dynamical system governed by the o.d.e. $\dot{u} = f^{\rm slow}(\lambda(u),u)$ has a unique globally asymptotically stable equilibrium u^* then $u \to u^*$ and $v \to v^* = \lambda(u^*)$ almost surely

Coupled Q-learning with linear function approximation:

$$egin{aligned} v_{t+1} &= v_t + lpha_t (r_t + \gamma \cdot \max_{a' \in \mathcal{A}} \phi^ op (x_t', a') u - \phi(x_t, a_t)^ op v) \phi(x_t, a_t) \ u_{t+1} &= u_t + eta_t (\phi(x, a) \phi^ op (x, a) v - u) \end{aligned}$$

Theorem:

We have that
$$v_t o v^*$$
 and $u_t o u^*$

such that
$$q_{v^*} = (\operatorname{Proj} H)q_{u^*}$$
 and $q_{u^*} = (\operatorname{Unproj} H)q_{u^*}$

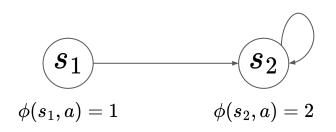
Additional Assumption:

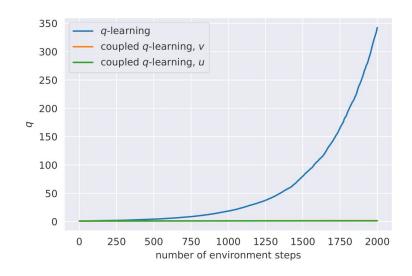
The features are orthogonal and uniformly excited, i.e, $\mathbb{E}[\phi(x,a)\phi^{\top}(x,a)] = \sigma\mathbb{I}$

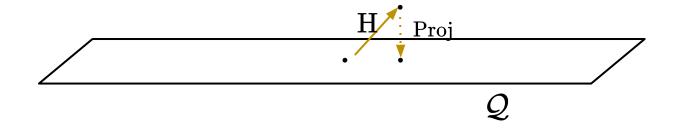
Theorem:

We have that
$$\|q^*-q_{v^*}\|_{\infty} \leq \frac{1}{1-\sigma^{-1}\gamma}\|q^*-\operatorname{Proj} q^*\|_{\infty} + \gamma \frac{1-\sigma}{\sigma} \frac{r_{\max}}{(1-\gamma)^2}$$

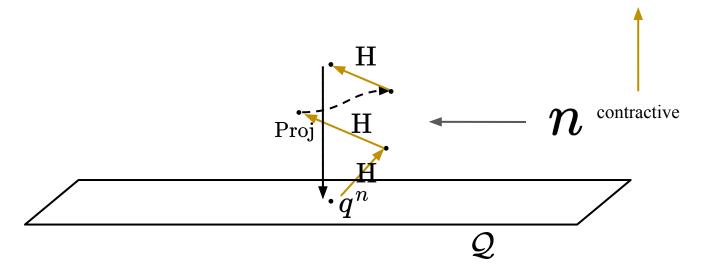
and
$$\|q^* - q_{u^*}\|_{\infty} \leq \frac{1}{1 - \sigma^{-1} \gamma} \|q^* - \operatorname{Proj} q^*\|_{\infty} + \frac{1 - \sigma}{\sigma} \frac{r_{\max}}{(1 - \gamma)^2}$$







$$ilde{q}_n = (\operatorname{Proj} \mathbf{H}^n) ilde{q}_n$$



$$ig(\mathrm{H}^{n+1}qig)(x,a) = \mathbb{E}\left[r(x,a) + \gamma \cdot \mathrm{max}_{a'}\mathrm{H}^n(\mathrm{x}',a')
ight]$$

$$ilde{q}_n = (\operatorname{Proj} \mathbf{H}^n) ilde{q}_n$$

Proposition:

The operator \mathbb{H}^n is contractive with contraction factor γ^n

Proof:

$$egin{aligned} \|\mathrm{H}^{n+1}q - \mathrm{H}^{n+1}p\|_{\infty} &= \|\mathrm{H}^n(\mathrm{H}q) - \mathrm{H}^n(\mathrm{H}p)\|_{\infty} \ &\leq \gamma^n \|\mathrm{H}q - \mathrm{H}p\|_{\infty} \ &\leq \gamma^{n+1} \|q-p\|_{\infty} \end{aligned}$$

$$ilde{q}_n = (\operatorname{Proj} \mathbf{H}^n) ilde{q}_n$$

Assumption: $\|\phi(x,a)\| \leq 1$ $\forall x,a$ and $\|\mathbb{E}[\phi(x,a)\phi^{ op}(x,a)]^{-1}\|_2 = \sigma^{-1}$

Proposition:

The operator Proj is Lipschitz with factor σ^{-1}

Proof:

$$\begin{split} \| \text{Proj } q - \text{Proj } p \|_{\infty} &= \max_{x, a \in \mathcal{X} \times \mathcal{A}} |\phi(x, a) \mathbb{E}[\phi(\mathbf{x}, \mathbf{a}) \phi^{\top}(\mathbf{x}, \mathbf{a})]^{-1} \mathbb{E}[\phi(\mathbf{x}, \mathbf{a}) (q(x, a) - p(x, a))] | \\ &\leq \max_{x, a \in \mathcal{X} \times \mathcal{A}} \|\phi(x, a)\|_{2} \cdot \| \mathbb{E}[\phi(\mathbf{x}, \mathbf{a}) \phi^{\top}(\mathbf{x}, \mathbf{a})]^{-1} \|_{2} \cdot \mathbb{E}[\|\phi(\mathbf{x}, \mathbf{a})\|_{2} | q(x, a) - p(x, a)|] \\ &\leq \max_{x, a \in \mathcal{X} \times \mathcal{A}} \|\phi(x, a)\|_{2} \cdot \| \mathbb{E}[\phi(\mathbf{x}, \mathbf{a}) \phi^{\top}(\mathbf{x}, \mathbf{a})]^{-1} \|_{2} \cdot \mathbb{E}[\|\phi(\mathbf{x}, \mathbf{a})\|_{2}] \| q - p \|_{\infty} \\ &\leq \sigma^{-1} \|q - p\|_{\infty} \end{split}$$

$$ilde{q}_n = (\operatorname{Proj} \mathbf{H}^n) ilde{q}_n$$

Theorem:

The operator $\operatorname{Proj} \operatorname{H}^n$ is contractive for $n > \log_\gamma \sigma$

Proof:

$$egin{aligned} \|\operatorname{Proj}(\mathrm{H}^nq) - \operatorname{Proj}(\mathrm{H}^np)\|_{\infty} & \leq \sigma^{-1} \|\mathrm{H}^nq - \mathrm{H}^np\|_{\infty} \ & \leq \sigma^{-1}\gamma^n \|q-p\|_{\infty} \end{aligned}$$

Corollary:

There exists a unique fixed point $ilde{q}_n = (\operatorname{Proj} \mathrm{H}^n) ilde{q}_n$

$$ilde{q}_n = (\operatorname{Proj} \mathbf{H}^n) ilde{q}_n$$

Proposition:

We have that
$$\|q^* - ilde{q}_n\|_\infty \leq rac{1}{1-\sigma^{-1}\gamma^n} \|q^* - \operatorname{Proj}\,q^*\|_\infty$$

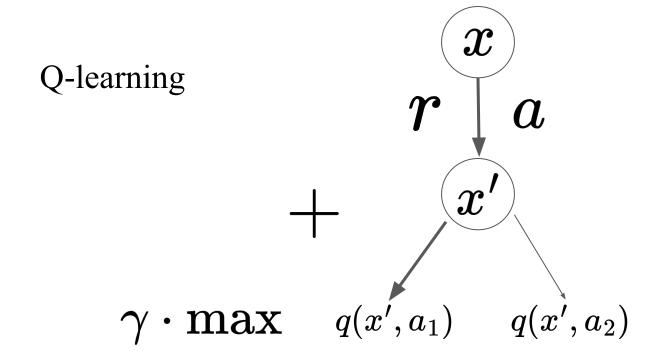
Proof:

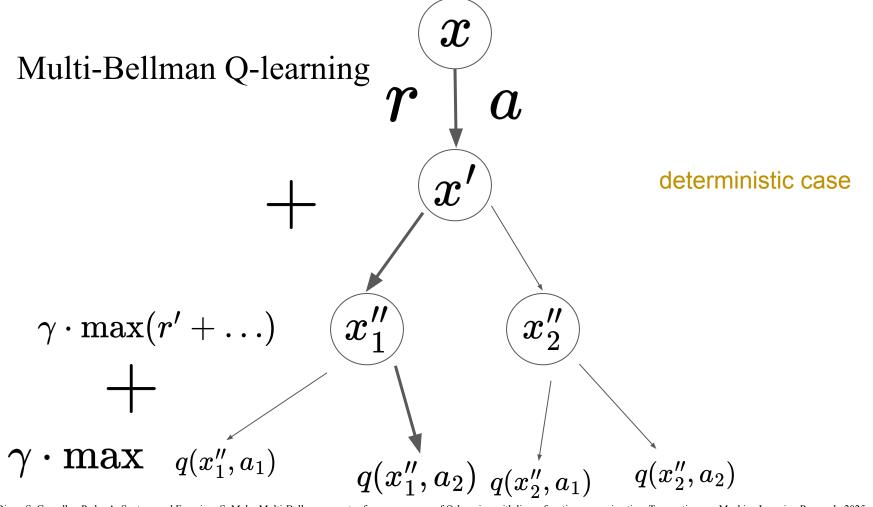
$$\|q^* - ilde{q}_n\|_\infty \leq \|q^* - \operatorname{Proj} q^*\|_\infty + \|\operatorname{Proj} q^* - ilde{q}_n\|_\infty$$

and
$$\|\operatorname{Proj} q^* - ilde{q}_n\|_{\infty} = \|\operatorname{Proj} \operatorname{H}^n q^* - \operatorname{Proj} \operatorname{H}^n ilde{q}_n\|_{\infty} \\ \leq \sigma^{-1} \gamma^n \|q^* - ilde{q}_n\|_{\infty}$$

Corollary:

$$\lim_{n o\infty} ilde{q}_n=\operatorname{Proj} q^*$$





$$ilde{q}_n = (\operatorname{Proj} \mathrm{H}^n) ilde{q}_n$$

Theorem:

In deterministic environments we have that $\ q_{w_t} o q_n$

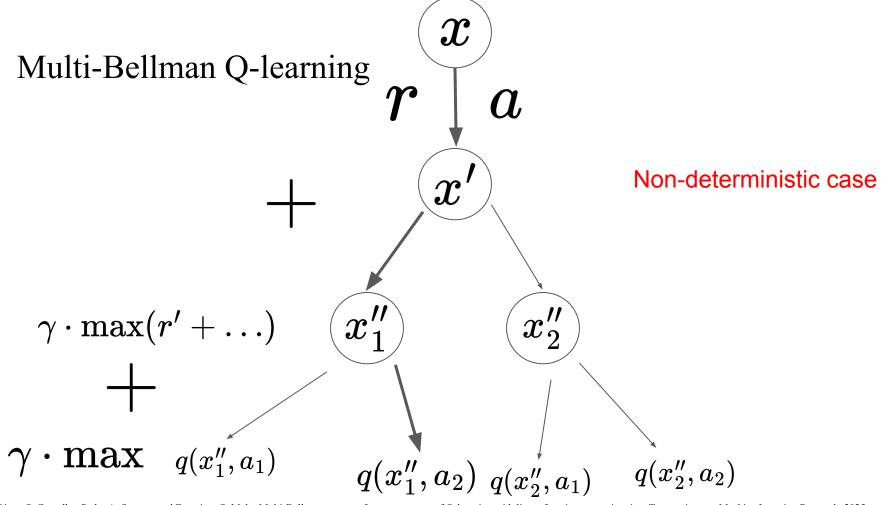
$$ilde{q}_n = (\operatorname{Proj} \mathbf{H}^n) ilde{q}_n$$

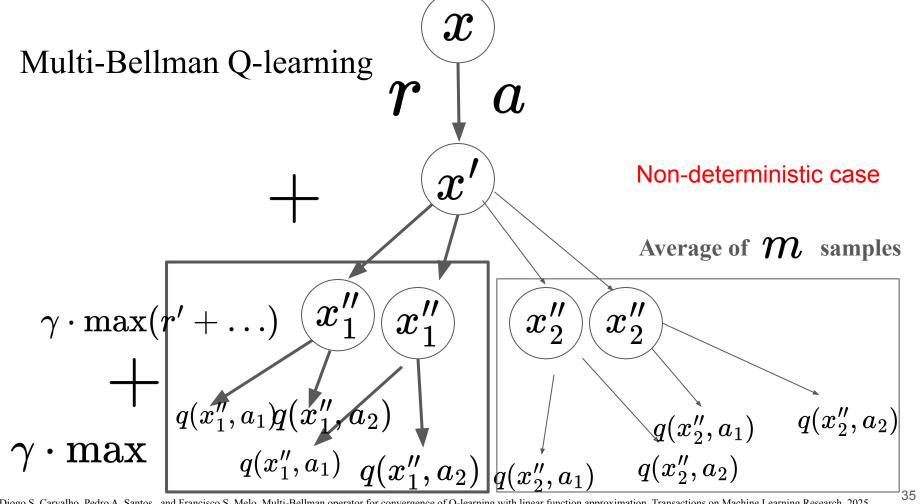
Non-deterministic case

$$\max_i \mathbb{E}\left[\mathbf{Z}_i
ight]
eq \mathbb{E}\left[\max_i \mathbf{Z}_i
ight]$$

maximization of expected values

$$ig(\mathrm{H}^{n+1}qig)(x,a) = \mathbb{E}\left[r(x,a) + \gamma \cdot \mathrm{max}_{a'}\mathrm{H}^n(\mathrm{x}',a')
ight]$$





Proposition:

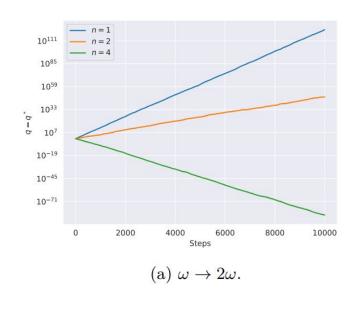
The time complexity of the algorithm is $\mathcal{O}((m \cdot |\mathcal{A}|)^n)$

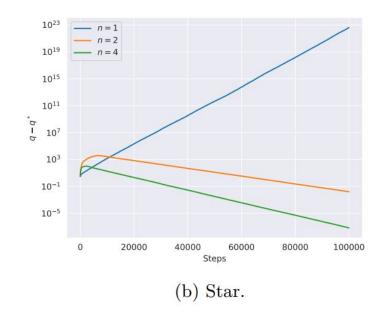
Proposition:

In non-deterministic environments, we have that $\;q_{w_t}
ightarrow \hat{q}_{n,m}$

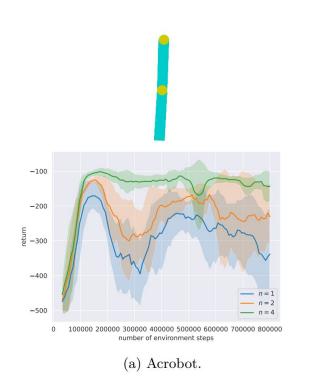
We have, however, that $\lim_{m o \infty} \hat{q}_{n,m} = ilde{q}_n$

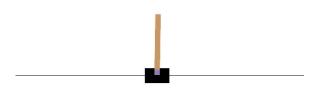
Multi-Bellman Q-learning

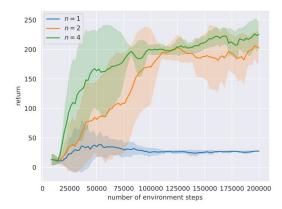




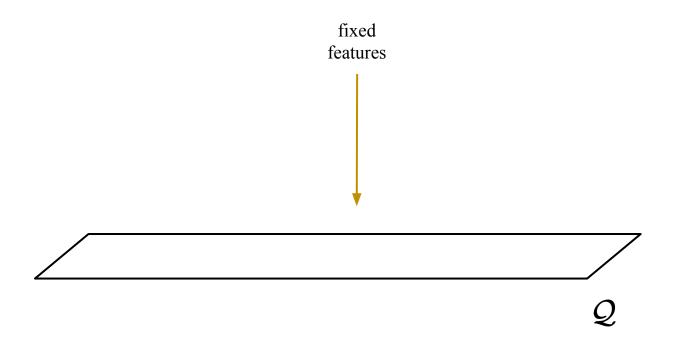
Multi-Bellman Q-learning



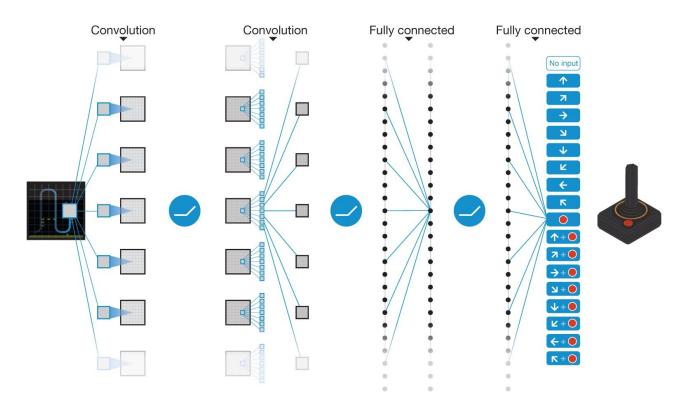




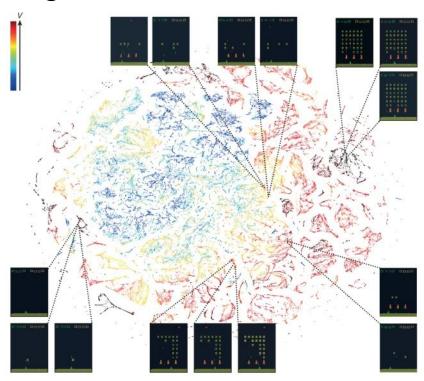
(b) Cartpole.



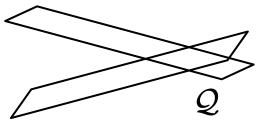
Deep Q-Learning in Practice

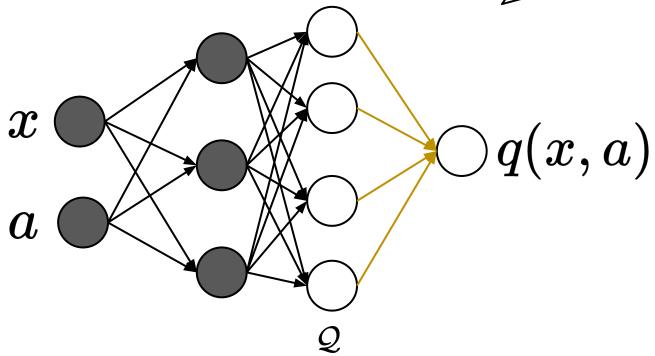


Deep Q-Learning in Practice

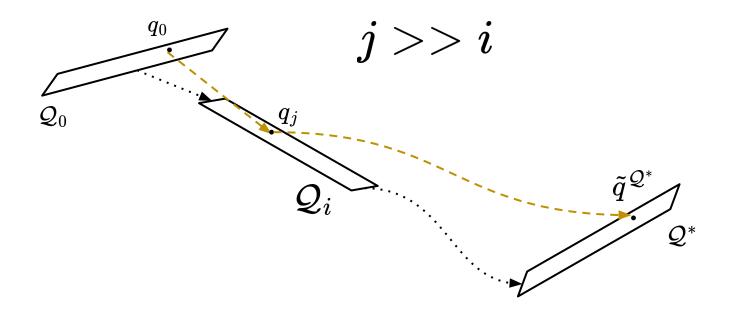


Deep reinforcement learning





Non-stationary features



Non-stationary features

We have parameterized features $\phi_u: \mathcal{X} \times \mathcal{A} \to \mathbb{R}^{k_1}, \quad u \in \mathbb{R}^{k_2}$ for instance the inner layers of a neural network $q_{u,v}: \mathcal{X} \times \mathcal{A} \to \mathbb{R}, \quad v \in \mathbb{R}^{k_1}$ such that $q_{u,v}(x,a) = \phi_u^\top(x,a)v$

Assumptions:

 ϕ_u is Lipschitz with respect to the parameters $\,u\,$

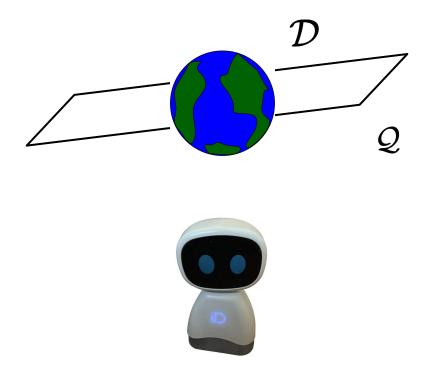
u follows a **convergent** stochastic approximation update along a slower time-scale $\beta_t = o(\alpha_t)$

Theorem:

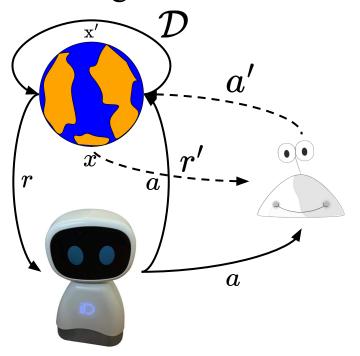
The updates

$$v_{t+1} = v_t + lpha_t((r_t + \gamma \cdot \max_{a' \in \mathcal{A}} q_{u_t,v_t}(x_t', a') - \xi \cdot q_{u_t,v_t}(x_t, a_t))\phi(x_t, a_t)) - lpha_t \eta v_t$$

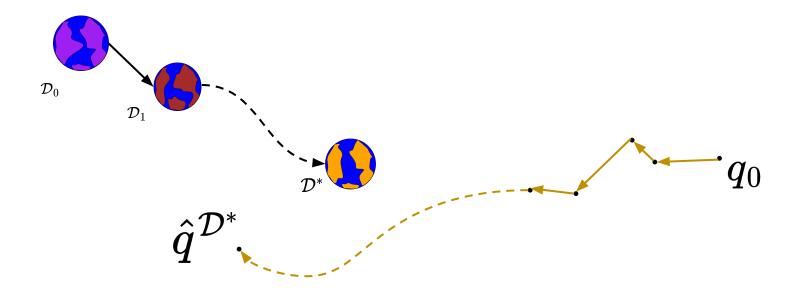
where $\eta \geq 0$ and $\xi \geq 1$ are regularizers converge for sufficiently large η and ξ



Hierarchical reinforcement learning



Non-stationary environments



Non-stationary environments

The low level is an MDP
$$\mathcal{M}^{\text{low}} = (\mathcal{X}^{\text{low}} \times \mathcal{A}^{high}, \mathcal{A}^{\text{low}}, P^{\text{low}}, r^{\text{low}}, \gamma^{\text{low}})$$

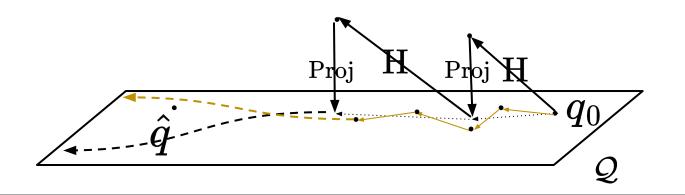
$$\mathcal{M}^{\text{high}} = (\mathcal{X}^{\text{high}}, \mathcal{A}^{\text{high}}, P^{\text{high}}(\pi^{\text{low}}), r^{\text{high}}(\pi^{\text{low}}), \gamma^{\text{high}})$$
Assumption:

Low-level episodes duration follows a geometric distribution

Theorem:

Despite the non-stationarity on the high level, \mathcal{M}^{high} converges Furthermore, Q-learning converges on convergent MDPs Therefore, Q-learning converges in hierarchical MDPs.

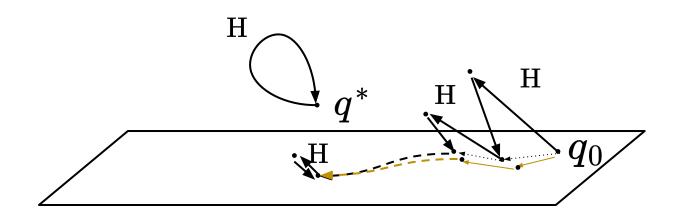
Full-gradient Q-learning



Remark:

Q-learning takes steps in the direction of the "semi-gradient" of the loss $l(w) = \|Hq_w - q_w\|_{2,\mu}^2$ i.e., fixes the target Hq_w and only takes the derivative of the current estimate q_w

Full-gradient Q-learning

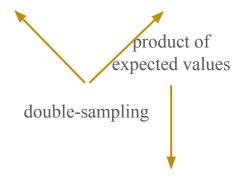


Open problem:

Perform "full-gradient" descent on the loss function, $l(w) = \|\mathbf{H}q_w - q_w\|_{2,\mu}^2$ Convergence could be guaranteed, but local minima could be a problem

Full-gradient Q-learning

$$\mathbb{E}\left[f\left(\mathbf{Z}
ight)\right]\cdot\mathbb{E}\left[g\left(\mathbf{Z}
ight)\right]
eq\mathbb{E}\left[f\left(\mathbf{Z}
ight)\cdot g\left(\mathbf{Z}
ight)\right]$$



$$(\nabla l)(q) = \mathbb{E}\left[\left((\mathrm{H}q)(\mathrm{x},\mathrm{a}) - q(\mathrm{x},\mathrm{a})\right) \cdot \left((\nabla (\mathrm{H}q))(\mathrm{x},\mathrm{a}) - (\nabla q)(\mathrm{x},\mathrm{a})\right)\right]$$