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Introduction - Basic theory about stochastic processes

Let (Ω,A, P ) be a probability space, where Ω is the sample space, A is a
σ-algebra and P is a probability measure function. Let (E, ε) be a measurable
space and T a set of indexes.

I A stochastic process indexed by T is a family of random variables
(Xt, t ∈ T ) defined over (Ω,A, P ) and with values in (E, ε).

I T is called the time-space.

I E is called the state space of the process.

I For each w ∈ Ω, fixed, (Xt(w), t ∈ T ) defines a realisation or a
trajectory of the process.
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Introduction - Basic theory about stochastic processes

I A stochastic process is strictly stationary if:

∀k,∀t1, . . . , tk ∈ Z, ∀h ∈ Z, (Xt1 , . . . , Xtk )
d
= (Xt1+h, . . . , Xtk+h).

I A stochastic process is weakly stationary (or just stationary) if:
I E(Xt) = m, ∀t ∈ Z,

I Cov(Xt, Xt+h) = γ(h),∀t ∈ Z.

I White noise is a random series ε = (εt, t ∈ Z) such that:
I E[εt] = 0, ∀t ∈ Z,
I cov(εs, εt) = 0, ∀s 6= t,

I V ar(εt) = σ2, independent of t.
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Introduction - Basic theory about stochastic processes

I Considering that the time is discrete, e.g. T = N or T = Z, then the
stochastic process is called a stochastic process in discrete time or a
time series.

I The lag operator (L) operates on an element of a time series to produce
the previous element, i.e., LXt = Xt−1,∀t ∈ Z (or t > 1).

Time

2006−01−03 2006−01−07 2006−01−11 2006−01−15 2006−01−19 2006−01−23 2006−01−27

Example of a time series.
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Introduction - Decomposition of time series
I In general, time series are decomposed into their natural components

(trend, seasonal, cyclical and irregular components) before further
analysis.

I The irregular component is the hardest component to model, which
makes of it the most interesting.
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Example of a time series decomposition into seasonal, trend and irregular components.
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Introduction - Decomposition of time series
I Nevertheless, a decomposition into unusual components can also be

useful in several areas of research.
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Seasonal-Trend decomposition process based on LOESS (STL)

STL is a classical method for decomposing time series into trend, seasonal and
remainder components, proposed by Cleveland et al. (1990) [1]. This method
uses iterative LOESS smoothing to obtain an estimate of the trend and then
LOESS smoothing again to extract a changing additive seasonal component.
LOESS smoothing denotes a method that is also known as locally weighted
polynomial regression.

This method is not fully automated and a set of parameters must be manually
set to guarantee the performance.
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Discrete Fourier Transform (DFT)

The Fourier Transform (FT) is one of the techniques used to decompose a
signal into a sum of sinusoids.

DFT is a classical technique used to perform Fourier analysis in many practical
applications. DFT converts a time series into the frequency domain.

The assumption behind Fourier analysis is that a time series can be
decomposed into a set of linear, stationary and harmonic components. The
number of harmonics required to describe a time series increases when the
non-linearity and non-stationarity of the time series increases.

Although DFT is valid under extremely general conditions, there are some
crucial restrictions for a Fourier spectral analysis:

I the system must be linear;

I the data must be strictly periodic or stationary.

Otherwise, the resulting spectrum will make little physical sense.

DFT cannot accurately model a linear trend or non-linear abnormality.

12 / 43



Decomposition of
time series: An
application to
simulated time

series

Maria Almeida
Silva

Introduction

Decomposition of
time series into
trend, seasonality
and noise

Decomposition of
time series into
unusual
components

Discrete Fourier Transform
(DFT)

Discrete Wavelet Transform
(DWT)

Empirical Mode
Decomposition (EMD)

Independent Component
Analysis (ICA)

Application to a
simulated time
series

Conclusions

References

Discrete Fourier Transform (DFT)

The Fourier Transform (FT) is one of the techniques used to decompose a
signal into a sum of sinusoids.

DFT is a classical technique used to perform Fourier analysis in many practical
applications. DFT converts a time series into the frequency domain.

The assumption behind Fourier analysis is that a time series can be
decomposed into a set of linear, stationary and harmonic components. The
number of harmonics required to describe a time series increases when the
non-linearity and non-stationarity of the time series increases.

Although DFT is valid under extremely general conditions, there are some
crucial restrictions for a Fourier spectral analysis:

I the system must be linear;

I the data must be strictly periodic or stationary.

Otherwise, the resulting spectrum will make little physical sense.

DFT cannot accurately model a linear trend or non-linear abnormality.

12 / 43



Decomposition of
time series: An
application to
simulated time

series

Maria Almeida
Silva

Introduction

Decomposition of
time series into
trend, seasonality
and noise

Decomposition of
time series into
unusual
components

Discrete Fourier Transform
(DFT)

Discrete Wavelet Transform
(DWT)

Empirical Mode
Decomposition (EMD)

Independent Component
Analysis (ICA)

Application to a
simulated time
series

Conclusions

References

Discrete Fourier Transform (DFT)

The Fourier Transform (FT) is one of the techniques used to decompose a
signal into a sum of sinusoids.

DFT is a classical technique used to perform Fourier analysis in many practical
applications. DFT converts a time series into the frequency domain.

The assumption behind Fourier analysis is that a time series can be
decomposed into a set of linear, stationary and harmonic components. The
number of harmonics required to describe a time series increases when the
non-linearity and non-stationarity of the time series increases.

Although DFT is valid under extremely general conditions, there are some
crucial restrictions for a Fourier spectral analysis:

I the system must be linear;

I the data must be strictly periodic or stationary.

Otherwise, the resulting spectrum will make little physical sense.

DFT cannot accurately model a linear trend or non-linear abnormality.

12 / 43



Decomposition of
time series: An
application to
simulated time

series

Maria Almeida
Silva

Introduction

Decomposition of
time series into
trend, seasonality
and noise

Decomposition of
time series into
unusual
components

Discrete Fourier Transform
(DFT)

Discrete Wavelet Transform
(DWT)

Empirical Mode
Decomposition (EMD)

Independent Component
Analysis (ICA)

Application to a
simulated time
series

Conclusions

References

Discrete Fourier Transform (DFT)

The Fourier Transform (FT) is one of the techniques used to decompose a
signal into a sum of sinusoids.

DFT is a classical technique used to perform Fourier analysis in many practical
applications. DFT converts a time series into the frequency domain.

The assumption behind Fourier analysis is that a time series can be
decomposed into a set of linear, stationary and harmonic components. The
number of harmonics required to describe a time series increases when the
non-linearity and non-stationarity of the time series increases.

Although DFT is valid under extremely general conditions, there are some
crucial restrictions for a Fourier spectral analysis:

I the system must be linear;

I the data must be strictly periodic or stationary.

Otherwise, the resulting spectrum will make little physical sense.

DFT cannot accurately model a linear trend or non-linear abnormality.

12 / 43



Decomposition of
time series: An
application to
simulated time

series

Maria Almeida
Silva

Introduction

Decomposition of
time series into
trend, seasonality
and noise

Decomposition of
time series into
unusual
components

Discrete Fourier Transform
(DFT)

Discrete Wavelet Transform
(DWT)

Empirical Mode
Decomposition (EMD)

Independent Component
Analysis (ICA)

Application to a
simulated time
series

Conclusions

References

Discrete Wavelet Transform (DWT)

A wavelet is a mathematical function, that can be viewed as a wave-like
oscillation.

Examples of wavelet functions. [Source: Raj Endiran]

DWT is a tool for decomposing a signal by location and frequency. It is similar
to DFT. However, DWT makes it possible to analyse time series not only in
the frequency domain, like DFT, but also locally in the time domain. Thus,
DWT is very helpful for non-stationary processes.
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Discrete Wavelet Transform (DWT)
The decomposition is represented in the form of a set of detail series (related
with the high-pass filter) and one approximation series (related to the low-pass
filter).
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Example of a time series decomposition using DWT.
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Discrete Wavelet Transform (DWT)

The choice of the basic wavelet function has a significant influence on the
wavelet decomposition results, because the essence of DWT is to discover the
similarity between the analysed series and the wavelet used.
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Wavelet Packet Transform (WPT)

An extension of DWT is the Wavelet Packet Decomposition (WPD) [3].

With WPD, besides the approximation coefficients, the detail series is also
decomposed, resulting in a set of detail series and a set of approximation
series.

WPD achieves better frequency resolution for the decomposed signal than
DWT since the last one may miss important information in higher frequency
components.

The decomposition results are still very dependent on the basic wavelet

function.
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Empirical Mode Decomposition (EMD)

Huang et al. [2] proposed in 1998 a new method for analysing nonlinear and
non-stationary data, named Hilbert-Huang Transform (HHT). EMD is a key
part of the HHT, that decomposes any data set into Intrinsic Mode Functions
(IMFs).

An IMF is a function that satisfies two conditions:

I in the whole data set, the number of extrema and the number of zero
crossings must either equal or differ at most by one;

I at any point, the mean value of the envelope defined by the local
maxima and the envelope defined by the local minima is zero.

Example of an IMF. Source: [2]
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part of the HHT, that decomposes any data set into Intrinsic Mode Functions
(IMFs).

An IMF is a function that satisfies two conditions:

I in the whole data set, the number of extrema and the number of zero
crossings must either equal or differ at most by one;

I at any point, the mean value of the envelope defined by the local
maxima and the envelope defined by the local minima is zero.

Example of an IMF. Source: [2]
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Empirical Mode Decomposition (EMD)

Example of the sifting process. Source: [2]
(adapted)

I Identify all the local extrema.

I Connect all the local maxima
(minima) by a cubic spline
line as the upper (lower)
envelope.

I Compute the mean of the
upper and lower envelopes,
designated as m1.

I The difference between the
data and m1 is the first
component, h1:

X(t)−m1 = h1.

I If h1 is not an IMF, then the
process is repeated replacing
the original time series by h1,
until to obtain an IMF, c1.
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Empirical Mode Decomposition (EMD)

First IMF. Source: [2]

I Consider the residue r1
obtained as:

X(t)− c1 = r1.

I The residue r1 is treated as
the new data and subjected
to the same sifting process
as describe before.

I The process stops when the
residue rn becomes a
monotonic function from
which no more IMF can be
extracted.

I Then

X(t) =
n∑
j=1

cj + rn.
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Empirical Mode Decomposition (EMD)

EMD has been tested and validated but only empirically. The true physical
meanings in many of the data examined is an advantage of this method.

The advantage of EMD, compared to DWT, is that the EMD is a data-driven
algorithm: it decomposes a time series into a natural way without prior
knowledge about the signal of interest embedded in the data. Moreover, EMD
works in temporal space directly rather than in the corresponding frequency
space.

Despite the EMD method has been widely adopted to decompose time series,
a problem was pointed out when the same IMF has very different amplitudes
along time or different IMFs have similar oscillations in amplitudes, what is
named as mode mixing.
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Ensemble Empirical Mode Decomposition (EEMD)

Aiming solving the mode mixing problem, a new method called Ensemble
Empirical Mode Decomposition (EEMD) was developed by Wu and Huang in
2009 [5], in which the original signal is added by random white Gaussian
noises.

Xi(t) = X(t) +Wi(t)

Adding white noise improves the accuracy of the decomposed signal and
preserves the original information of the signal.

EEMD depends on the amplitude of the added noise and the ensemble times:

I When the amplitude of the added white noise is too low, the mode
mixing problem cannot be suppressed, while if the amplitude is too high,
more pseudo components will appear.

I Relative to the ensemble times, if the noise is added in the EEMD more
times, then the noise of the average result is smaller and the result is
closer to the real value.
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Independent Component Analysis (ICA)

Independent Component Analysis (ICA) has been introduced in order to
decompose data into statistically Independent Components (ICs). A priori
knowledge is not necessary to apply this method, which is an advantage of
ICA.

ICA aims to reveal hidden factors and components in data.

For t = 1, 2, . . . , T , the ICA model is defined as:

x(t) = As(t),

where x(t) is a column vector of the observations of a time series set at time
instant t, A is an unknown square matrix and s(t) is an unknown column
vector of the independent components at time instant t.

In practice, data should be centred and whitened, before the application of
any algorithm.
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Independent Component Analysis (ICA)

In general, the ICs are considered as statistically uncorrelated and
non-Gaussian.

However, in the time series case, the hypothesis of non-Gaussianity is not
necessary. Alternatively, it is assumed that the ICs have different
autocovariances, in particular, they are all different from zero. Note that the
covariance between ICs is zero due to the independence, however if the data
have time-dependences, the autocovariances are often different from zero.
Another approach is to consider that the variances of the ICs are
non-stationary.

Moreover, instead of estimate A, a matrix W is estimated such that:

Wz(t) = s(t),

where Z is the whitened data.

Since the data is whitened, then W is an orthogonal matrix, which reduces

the complexity of the estimation problem.
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Independent Component Analysis (ICA)

1. Estimation of ICs through the autocovariances:

In this approach, the time-lagged covariance matrix
Cz
τ = E[z(t)z(t− τ)T ] is used, where τ is some lag.

The motivation for
the use of these matrices is, for the ICs, the lagged covariances are all
zero due to the independence.

1.1 Using one lag:

Since W is an orthogonal matrix,
C

z
τ = 1

2
(Cz

τ + (Cz
τ )T ) = WTDW, where D = Cs

τ .
D is diagonal due to the independence of the ICs and, then, W is
part of the eigenvalue decomposition of C

z
τ , i.e., the rows of W

are given as the eigenvectors of C
z
τ .

This algorithm only works when the eigenvectors of C
z
τ are

uniquely defined, otherwise ICs cannot be estimated.
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1. Estimation of ICs through the autocovariances:

1.2 Using several lags:

Using several lags, we want to simultaneously diagonalize all the
corresponding lagged covariance matrices.

One approach for
measuring the nondiagonality is: for any positive-definite matrix
M, the nondiagonality of M can be measure by

F (M) =
∑
i

log (mii)− log |det M|.

Summing these measures for different time lags and considering
whitened data, we obtain the following objective function to
minimize:

J(W) =
1

2

∑
τ∈S

F (WC
z
τW

T ) =
∑
τ∈S

∑
i

1

2
log (wi(t)C

z
τwi) + constant.

Thus, the gradient descent algorithm can be applied, followed by

the orthogonalization of W in each iteration.

The estimation of ICs using autocovariances has a basic limitation that
cannot be avoided: if the ICs have identical autocovariances, they
cannot be estimated.
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Independent Component Analysis (ICA)

2. Estimation of ICs through the nonstationarity of variances:

In this approach, it is assumed that the variances of the ICs change
smoothly in time.

2.1 Using local autocorrelations:

If we find a matrix W such that the components of
y(t) = Wz(t) are uncorrelated at every time point t, we have
estimated the ICs. The (local) uncorrelatedness of y(t) could be
measured using the same measures of nondiagonality:

Q(W, t) =
∑
i

log (Et[yi(t)
2])− log (Et[y(t)y(t)T ]),

where the expectations are around the time point t.
Expressing this as a function of W = (w1, . . . ,wn)T and
considering that W is orthogonal, the objective function to
minimize is given by:

J(W) =
∑
i,t

log (Et[(w
T
i z(t))2]) + constant.

Thus, the gradient descent algorithm can be applied, followed by

the symmetric orthogonalization of W in each iteration.
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2. Estimation of ICs through the nonstationarity of variances:

2.2 Using non-linear autocorrelations:

The variance nonstationarity of a signal Y (t) could be measured
using a measure based on the fourth-order cross-cumulant:

cum(y(t), y(t), y(t− τ), y(t− τ)) =E[y(t)2y(t− τ)2]− E[y(t)2]E[y(t− τ)2]

− 2(E[y(t)t(t− τ)])2.

Using the principle of fixed-point iteration, w is updated as
follows:

w←E[z(t)wT z(t)(wT z(t− τ))2] + E[z(t− τ)wT z(t− τ)(wT z(t))2]

− 2w − 4C
z
τw(wTC

z
τw).

After each iteration, w is normalised.

To estimate several ICs, deflationary orthogonalization or

symmetric orthogonalization can be used.
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Example of ICA with sounds
Data

play stop play stop play stop

Structure

play stop play stop play stop

FastICA

play stop play stop play stop
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Independent Component Analysis (ICA) for single-channel

signal

For the original application of ICA, a set of time series is necessary. Generally,
the number of sensors must be no less than that of the sources to acquire
information to support the signal decomposition.

However, in real cases, frequently only one single measure of a certain specific
physical variable is available.

In this case, EMD and ICA can be combined. The proposal of Yu et al. in
2018 [6] consists of the following steps:

I EMD is firstly applied to decompose the time series;

I the first IMF is excluded, since it mainly concentrates the
high-frequency noise;

I ICA is applied to the set consisting of the original time series and the
IMFs less correlated with the original time series.
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Independent Component Analysis (ICA) for single-channel

signal

ICA can also be combined with EEMD.

Mijovic et al. in 2010 [4] proposed a technique that applies EEMD and ICA
sequentially:

I EEMD is firstly applied to decompose the time series;

I ICA is applied to the set of all IMFs.
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Application to a simulated time series
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Simulated time series and their sum.

Z(t) = X(t) + Y (t) = 0.9X(t− 1) + εX(t) + 0.7Y (t− 2) + εY (t)

where εX
d
= εY ∼ N (0, 1).
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Application to a simulated time series - EMD decomposition
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EMD decomposition of the simulated time series.

I 9 IMFs and the residue, which is a high number of components
compared with the real one.

I The original components of the time series Z may not be represented by
IMFs.

I However, there are many possible combinations of IMFs that can
represent the original components of Z.
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Application to a simulated time series - EEMD decomposition
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EEMD decomposition of the simulated time series.

I 7 averaged IMFs and the residue, which is still a high number of
components compared with the real one.

I There are also many possible combinations of IMFs that can represent
the original components of the time series Z.
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Application to a simulated time series - (E)EMD and ICA

decomposition

I Applying ICA to the set of all IMFs obtained with EMD or EEMD, the
number of Independent Components (ICs) is also high compared with
the real number of components that exist in Z.

I However, the ICs can have a behaviour more similar to the real
behaviour of the Z components.

0 100 200 300 400 500 600

−
4

0
2

1−st IC

0 100 200 300 400 500 600

−
4

0
2

2−nd IC

0 100 200 300 400 500 600

−
4

0
2

3−rd IC

0 100 200 300 400 500 600

−
4

0
2

4−th IC

0 100 200 300 400 500 600

−
4

0
2

5−th IC

0 100 200 300 400 500 600

−
4

0
2

6−th IC

0 100 200 300 400 500 600

−
4

0
2

7−th IC

0 100 200 300 400 500 600

−
4

0
2

8−th IC

0 100 200 300 400 500 600

−
4

0
2

9−th IC

EMD and ICA decomposition of the simulated
time series, considering the set of all IMFs.
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EEMD and ICA decomposition of the flow time
series, considering the set of all averaged IMFs.

35 / 43



Decomposition of
time series: An
application to
simulated time

series

Maria Almeida
Silva

Introduction

Decomposition of
time series into
trend, seasonality
and noise

Decomposition of
time series into
unusual
components

Application to a
simulated time
series

Conclusions

References

Application to a simulated time series - (E)EMD and ICA

decomposition
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EMD and ICA decomposition of the flow time
series, considering the set of the original time
series and the IMFs less correlated with the
original time series (2nd, 5th, 7th, 8th and 9th

IMFs).
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EEMD and ICA decomposition of the flow time
series, considering the set of the original time
series and the IMFs less correlated with the
original time series (2nd, 6th and 7th IMFs).

I Unfortunately, no component of Z was obtained when combinations of
ICs were tested.
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decomposition
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EMD and ICA decomposition of the flow time
series, considering the set of the IMFs more
correlated with the original time series (1st,

3rd, 4th and 6th IMFs).

I Considering A = IC2 + IC4,
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EEMD and ICA decomposition of the flow
time series, considering the set of the IMFs
more correlated with the original time series

(1st, 3rd, 4th and 5th IMFs).

I Considering B = IC2 + IC4,

then
A(t) = 0.08A(t− 1) + 0.70A(t− 2) + 0.04

B(t) = 0.08B(t− 1) + 0.70B(t− 2) + 0.00
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A(t) = 0.08A(t− 1) + 0.70A(t− 2) + 0.04

B(t) = 0.08B(t− 1) + 0.70B(t− 2) + 0.00

The original time series components were simulated as:

X(t) = 0.9X(t− 1) + ZX(t)

and
Y (t) = 0.7Y (t− 2) + ZY (t)

where ZX and ZY are white noise.

Then, Y can be recovered using these methods. This is the component with
lower variance, which can be the reason why this was the only one that was
recovered. More studies need to be run to obtain more conclusions and to
recover the other component.
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Concluding remarks

I This work presented a set of time series decomposition methods.

I Two approaches can be followed when the purpose is to decompose
time series: the first approach decomposes the time series into its
natural components (seasonality, trend and noise); the second one
decomposes the time series into unusual components.

I STL is the most usual method for the first approach.

I The second approach has been widely applied in recent years with EMD
and ICA the most used methods.

I Some of the methods presented in this work were applied to a simulated
time series.

I The original component with lower variation was possible to recover
combining (E)EMD and ICA.

I The original component with higher variation was not possible to
recover with the methods and combinations tested.
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Future work

I In the future, more simulations need to be run to obtain more
knowledge about the components that can be recovered with these
combinations of methods.

I Additionally, new combinations of methods need to be studied to
recover the remain components.

I Moreover, these methods will be applied to flow time series. The
decomposition results should be analysed to understand if they
decompose the time series into metered consumption, unmetered
consumption, base losses and pipe breaks.

I This decomposition is essential for water utilities to improve the water
supply system management and to reduce water losses.
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