# Weaving 4-Dimensional TQFTs with Ribbon Categories.

#### Bertrand Patureau Mirand



Lisbon Topological Quantum Field Theory Seminar April 30<sup>th</sup> 2025

Joint work with F. Costantino, N. Geer and B. Haïoun.









F. Costantino

N. Geer

B. Haïoun

arXiv:2306.03225 [pdf, other]

#### Skein (3+1)-TQFTs from non-semisimple ribbon categories

Francesco Costantino, Nathan Geer, Benjamin Haïoun, Bertrand Patureau-Mirand Comments: 30 pages

Subjects: Geometric Topology (math.GT); Quantum Algebra (math.QA)

arXiv:2302.04493 [pdf, other]

Based on

#### Admissible Skein Modules

Francesco Costantino, Nathan Geer, Bertrand Patureau-Mirand Comments: 15 pages

Subjects: Geometric Topology (math.GT); Quantum Algebra (math.QA)

# Definition of a non compact (n+1)-TQFT

A (n+1)-cobordism  $W: M_1 \to M_2$  between closed oriented n-manifolds  $M_1$  and  $M_2$  is an oriented compact smooth (n+1)-manifold W with boundary  $\partial W \cong (-M_1) \sqcup M_2$ .

Let  $(\mathbf{Cob}_{n+1}, \sqcup)$  (resp.  $\mathbf{Cob}_{n+1}^{\mathsf{nc}}$ ) be the monoidal category whose  $^{\triangleright}$  objects are closed oriented n-manifolds and

morphisms are equivalence classes of (n + 1)-cobordisms (resp. where every component has non empty incoming boundary.).

#### Definition

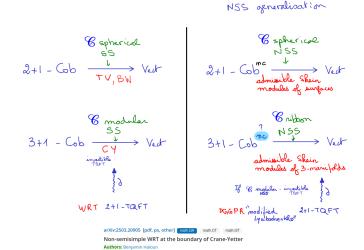
A (non compact) (n+1)-TQFT is a symmetric monoidal functor  $\mathfrak{X}: (\mathbf{Cob}_{n+1}^{\mathsf{nc}}, \sqcup) \to (\mathsf{Vect}_{\mathbb{K}}, \otimes).$ 

$$\begin{array}{ccc}
M_1 & & & & \\
M_2 & \mapsto & & \left( \mathfrak{T}(M_1) \xrightarrow{\text{linear map}} \mathfrak{T}(M_2) \right)
\end{array}$$

# TQFTs from semisimple categories

We learn in the 90's that finite tensor categories  $(\mathscr{C}, \circ, \otimes, \mathbb{1})$  which are **semi-simple** can be used to define TQFTs in dimension 3 & 4.

#### Non-semisimple TQFTs



#### What ribbon categories lead to 3+1-TQFTs?

A finite unimodular ribbon tensor category or, more generally, a ribbon chromatic category  $\mathscr C$  over a field  $\mathbb K$ :

- ▶ ribbon category ((%,⊗,1) with braiding  $\{b_{U,V}\}_{U,V\in\mathscr{C}}$  and pivotal)
- chromatic category
  - ▶ "sharp" K-additive (not necessarily abelian) is a
    - K-linear, finite dim Hom-spaces;
    - ▶  $\exists U \oplus V$ , idempotent complete;
    - 1 is simple and absolutely simple;
  - ▶  $\mathscr{C}$  has a non zero projective generator G (i.e.  $\mathscr{C}$  is finite);
  - $^{\triangleright}$  % is unimodular ( $P_1^* \simeq P_1$  which implies that % has a modified trace t on Proj);
  - ▶ % has a chromatic map  $c_{P_1} \in End_{\mathscr{C}}(G \otimes P_1)$  (for example if % is a finite ribbon tensor category);

Let 
$$\Delta^0 = \operatorname{ptr}_G^L(b^2 \circ {}_{P_1}) \in \operatorname{End}(P_1)$$
.

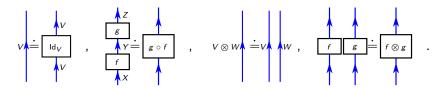
- % is chromatic non-degenerate if  $\Delta^0 \neq 0 \stackrel{\mathsf{Th}}{\Longrightarrow} \exists \mathsf{non-cpct} \; \mathsf{TQFT};$
- $\mathscr{C}$  is chromatic compact if  $\Delta^0$  is invertible  $\stackrel{\mathsf{Th}}{\Longrightarrow} \exists \mathsf{TQFT}$ .

#### Ribbon **%**-graphs

We use Reshetikhin-Turaev ribbon graphs colored by a ribbon category  $(\mathscr{C}, \otimes, \mathbb{1})$  where graphs are thickened into bands colored by objects and coupons colored by morphisms:



represents a morphism  $f: V_1 \otimes \cdots \otimes V_n \to W_1 \otimes \cdots W_m$ . RT-functor  $F: \mathcal{T}_{\mathscr{C}} \to \mathscr{C}$  associates  $\mathscr{C}$ -morphisms to ribbon graphs.



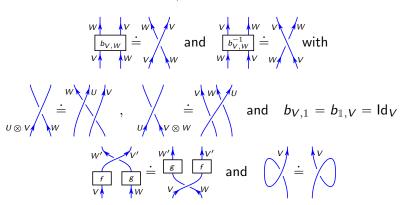
#### Pivotal graphical calculus

In a pivotal category  $\mathscr C$  any object V has a dual object  $\overset{}{V^*}$ , and duality morphisms  $\overset{}{\operatorname{ev}}_V:V^*\otimes V\to \mathbb 1,\quad\overset{}{\operatorname{coev}}_V,\overset{}{\operatorname{coev}}_V,\overset{}{\operatorname{coev}}_V$ 

$$\operatorname{Id}_{X} * \stackrel{:}{=} v \quad \text{and} \quad \stackrel{\longleftarrow}{\operatorname{ev}}_{V} \stackrel{:}{=} v \quad \stackrel{\stackrel{\longleftarrow}{=}}{\operatorname{ev}}_{V} \stackrel{:}{=} v \quad \stackrel{\stackrel{\longleftarrow}{=} v \quad \stackrel{\longleftarrow}{=} v \quad \stackrel{\longleftarrow$$

### Ribbon graphical calculus

A ribbon category  $\mathscr{C}$ , is a pivotal category with a braiding: a family of isomorphisms  $\{b_{V,W}: V \otimes W \to W \otimes V\}$ 



#### Admissible Skein module of a 3-manifold M

- Let  $\mathscr C$  be a ribbon category. If M is a closed 3-manifold, the skein module of M is the quotient of the linear span over  $\mathbb K$  of all finite  $\mathscr C$ -colored closed graph embedded in M modulo the relations
- 1. Ambient isotopy of the graph in M.
- 2. Skein relations : Local graphical calculus in a 3-ball  $\simeq [0,1]^3$ . An equivalence class of such graph is called a skein.

Example: If  $\mathscr{C}$  is the discrete category of an abelian group G, the skein module of M is just the ring of the group  $H_1(M,G)$ .

#### Admissible Skein module of a 3-manifold M

Let  $\mathscr C$  be a ribbon category. If M is a closed 3-manifold, the skein module of M is the quotient of the linear span over  $\mathbb K$  of all finite  $\mathscr C$ -colored closed graph embedded in M modulo the relations

- 1. Ambient isotopy of the graph in M.
- 2. Skein relations : Local graphical calculus in a 3-ball  $\simeq [0,1]^3$ . An equivalence class of such graph is called a skein.

**Admissible skein module**  $\mathcal{K}(M)$ : Only  $\mathscr{C}$ -colored graphs with at least an edge colored by a projective object of  $\mathscr{C}$  in each component of M. Only allow Proj-skein relations.

$$M \xrightarrow{\$k} \$k(M)$$

Assign to any 3-manifold a finite dimensional vector space; functorial with diffeomorphisms.

For which categories can it be extended to a 3+1-TQFT?



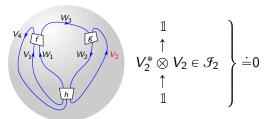
#### Why using the admissible skein module?

The idea was behind the definition of modified traces: In non semi-simple categories, F vanishes on all closed ribbon graphs with some fixed colors  $\in \mathscr{C}$ .

These vanishing colors form an ideal:

An *ideal*  $\mathcal{F}$  is a full subcategory stable by retracts and absorbing for tensor product. There can be a strictly decreasing sequence of ideals:

$$\mathscr{C}\supset \mathscr{I}_1=\mathsf{ker}(\mathsf{tr}_\mathscr{C})\supset \mathscr{I}_2\supset\cdots\supset \mathscr{I}_n=\mathsf{Proj}\supset\{0\}$$



# Why using the admissible skein module?

For example, if  $\mathcal{J}_2 = \text{Proj}$ ,

$$\mathsf{F'} \left( \begin{array}{c} w_3 \\ v_1 & w_1 \\ w_1 & w_2 \end{array} \right) := \mathsf{t}_{P} (\mathsf{F} \left( \begin{array}{c} w_2 \\ w_1 & h \\ w_3 & g \\ \end{array} \right)$$

$$\{\mathsf{t}_P : \mathsf{End}_{\mathscr{C}}(P) \to \mathbb{K}\}_{P \in \mathsf{Proj}}$$

F' invariant by Proj-skein relation ← t is an m-trace on Proj:

$$t(f \circ g) = t(g \circ f)$$
 and  $t \circ F \begin{pmatrix} P & V \\ h & V \end{pmatrix} = t \circ F \begin{pmatrix} P & V \\ h & V \end{pmatrix}$ 



#### Existence of m-trace

#### **Theorem**

There exists an unique m-trace on  $Proj\ iff\ \mathscr C$  is absolutely unimodular iff

$$\exists \quad \mathbb{1} \xrightarrow{\eta} P_{\mathbb{1}} \quad and \quad P_{\mathbb{1}} \xrightarrow{\varepsilon} \mathbb{1}$$

which generate their Hom-spaces.

Here  $P_1$  is the projective cover of 1 and the proof uses the Fitting Lemma which implies that  $\operatorname{End}_{\mathscr{C}}(P_1)$  is a local ring:

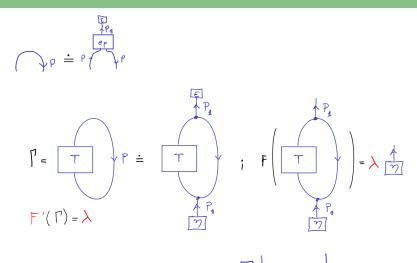
$$\mathsf{End}_{\mathscr{C}}(P_{\mathbb{1}}) = \mathbb{K}\mathsf{Id} \oplus J$$

where J is a nilpotent ideal.

$$(P_{\mathbb{I}} \xrightarrow{f} P_{\mathbb{I}}) = \lambda \operatorname{Id} + n \implies \varepsilon \circ f = \lambda \varepsilon \text{ and } f \circ \eta = \lambda \eta.$$



#### Definition of F'



### Non degeneracy of the m-trace

#### **Theorem**

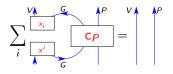
The m-trace t on Proj is non degenerate: The pairing  $\operatorname{Hom}_{\mathfrak{C}}(\mathbb{1},P) \times \operatorname{Hom}_{\mathfrak{C}}(P,\mathbb{1}) \to \mathbb{K}$  given by  $(f,g) \mapsto t_P(f \circ g)$  is non degenerate.

The copairing, given by any dual bases, is then a well defined element  $\Omega_P = \sum_i x^i \otimes_{\mathbb{K}} x_i \in \operatorname{Hom}_{\mathfrak{C}}(P, \mathbb{1}) \otimes_{\mathbb{K}} \operatorname{Hom}_{\mathfrak{C}}(\mathbb{1}, P)$ .

$$\Omega_P = \sum_i \overset{\mathbf{x}^i}{\downarrow} \otimes_{\mathbb{K}} \overset{\mathbf{x}_i}{\downarrow} \text{ where } \mathsf{F}' \overset{\mathbf{x}^j}{\downarrow} = \delta_i^j.$$

# The chromatic map as a "non semisimple Kirby color"

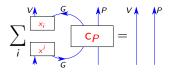
There is no non-semisimple Kirby color but we have an analogous notion introduced in [CGPT18]: A chromatic map for a projective generator G, based on a projective object P, is a map  $\mathsf{C}_P \in \mathsf{End}_{\mathscr{C}}(G \otimes P)$  such that  $\forall V \in \mathscr{C}$ ,



where  $\{x_i\}_i$  and  $\{x^i\}_i$  are dual bases with respect to the m-trace.

# The chromatic map as a "non semisimple Kirby color"

There is no non-semisimple Kirby color but we have an analogous notion introduced in [CGPT18]: A chromatic map for a projective generator G, based on a projective object P, is a map  $\mathbf{C}_P \in \operatorname{End}_{\mathfrak{C}}(G \otimes P)$  such that  $\forall V \in \mathfrak{C}$ ,



where  $\{x_i\}_i$  and  $\{x^i\}_i$  are dual bases with respect to the m-trace. **Theorem:** [CGPV] Finite tensor category have chromatic maps.

arXiv:2305.14626 [pdf, ps, other] math.QA

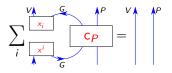
Chromatic maps for finite tensor categories

Authors: Francesco Costantino, Nathan Geer, Bertrand Patureau-Mirand, Alexis Virelizier



#### The chromatic map as a "non semisimple Kirby color"

There is no non-semisimple Kirby color but we have an analogous notion introduced in [CGPT18]: A chromatic map for a projective generator G, based on a projective object P, is a map  $\mathbf{C}_P \in \operatorname{End}_{\mathscr{C}}(G \otimes P)$  such that  $\forall V \in \mathscr{C}$ ,

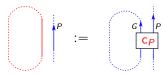


where  $\{x_i\}_i$  and  $\{x^i\}_i$  are dual bases with respect to the m-trace. **Theorem:** [CGPV] Finite tensor category have chromatic maps.

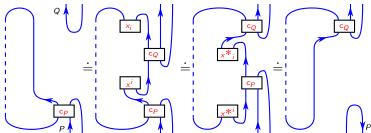
Chromatic maps allow to define skein elements of  $\Re(M)$  with ribbon circles colored by a "virtual" object (red). Red circles have the slidding property.

### Chromatic map and red curves

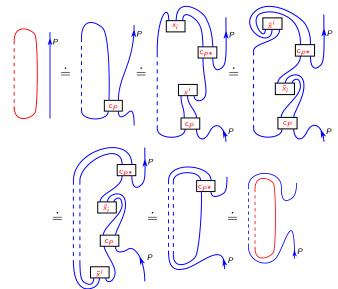
Extension of  $\Re(M)$  to bichrome graphs with red circles:



Independent of the choices made to turn the red circle blue:



# Sliding property for the chromatic map



# Summary for ribbon chromatic category

A ribbon chromatic category % has

- 1. Distinguished objects: the unit 1, its projective cover  $1 \xrightarrow{\eta} P_1 \xrightarrow{\varepsilon} 1$ , a projective generator G.
- 2. An m-trace  $\{\mathsf{t}_P : \mathsf{End}_{\mathscr{C}}(P) \to \mathbb{K}\}_{P \in \mathsf{Proj}}$  giving a renormalized invariant  $\mathsf{F}' : \mathscr{K}(S^3) \to \mathbb{K}$ .
- 3. Copairings in  $\operatorname{Hom}_{\mathscr{C}}(P,1) \otimes_{\mathbb{K}} \operatorname{Hom}_{\mathscr{C}}(1,P)$ :  $\left\{ \Omega_{P} = \sum_{i} \mathbf{x}^{i} \otimes_{\mathbb{K}} \mathbf{x}_{i} \right\}_{P \in \operatorname{Proj}}.$
- 4. Chromatic maps  $\{c_P \in End_{\mathscr{C}}(G \otimes P)\}_{P \in Proj}$ .

  Only one algebraic tool is missing in this list to extend  $\mathscr{K}$  to a TQFT following ideas of Walker-Reutter and using the presentation of  $\mathbf{Cob}_{3+1}$  by Juhász.

# Gluing map

A gluing map  $g \in End_{\mathscr{C}}(P_1)$  is a morphism of  $\mathscr{C}$  that satisfies

where 
$$\Delta^0 = \mathsf{F}\left( \bigcap_{p_1}^{p_1} \right) = \mathsf{ptr}_{\mathsf{G}}^{\mathsf{L}}(b^2 \circ \mathsf{c}_{P_1}) \in \mathsf{End}(P_1).$$

There is no gluing map if  $\Delta^0 = 0$ !

#### Existence of gluing map

#### Theorem

If  $\Delta^0 \neq 0$ , there exists a gluing map.

The proof uses the Frobenius structure of  $\operatorname{End}_{\mathscr{C}}(P_{\mathbb{I}})=\mathbb{K}\operatorname{Id}\oplus J$  given by the m-trace:

$$\operatorname{End}_{\operatorname{\mathscr{C}}}(P_1) \times \operatorname{End}_{\operatorname{\mathscr{C}}}(P_1) \to \mathbb{K} \quad (f,g) \mapsto \operatorname{\mathsf{t}}_{P_1}(f \circ g).$$

The morphism  $\eta \circ \varepsilon$  is orthogonal to J thus  $J^{\perp} = \mathbb{K} \eta \circ \varepsilon$ .

If  $(P_1 \xrightarrow{f} P_1) \neq 0$ , choose  $g \in J^k$  such that  $g \circ f \neq 0$  with k maximal.

Then  $\forall n \in J$ ,  $n \circ g \circ f = 0$  so  $g \circ f \in J^{\perp} = \mathbb{K} \eta \circ \varepsilon$ .

Then  $\lambda g$  is a gluing map.



# Summary for ribbon chromatic non-degenerate category

A ribbon chromatic non-degenerate category  $\operatorname{\mathscr{C}}$  has

- 1. An m-trace  $\{\mathsf{t}_P : \mathsf{End}_{\mathscr{C}}(P) \to \mathbb{K}\}_{P \in \mathsf{Proj}}$  giving a renormalized invariant  $\mathsf{F}' : \mathscr{K}(S^3) \to \mathbb{K}$ .
- 2. Copairings in  $\operatorname{Hom}_{\mathscr{C}}(P,1) \otimes_{\mathbb{K}} \operatorname{Hom}_{\mathscr{C}}(1,P)$ :  $\left\{ \Omega_{P} = \sum_{i} \mathbf{x}^{i} \otimes_{\mathbb{K}} \mathbf{x}_{i} \right\}_{P \in \operatorname{Proj}^{+}}$
- 3. Chromatic maps  $\{c_P \in End_{\mathscr{C}}(G \otimes P)\}_{P \in Proj}$ .
- 4. A gluing map  $g: P_1 \rightarrow P_1$ .

This is all you need to extend  $\Re$ :  $\mathcal{M}$ an<sub>3</sub>  $\rightarrow$  Vect to a non compact 3+1-TQFT

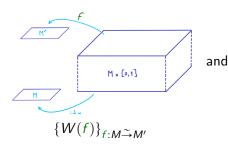
$$\Re$$
: Cob<sub>3+1</sub>  $\rightarrow$  Vect

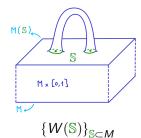


#### Juhász's presentation of Cob

Juhász's presentation of the smooth (n+1)-cobordism category

- Generators:
  - 1. mapping cylinders indexed by **diffeomorphisms** f of n-manifold,
  - 2. *k*-handles on top of trivial cylinder indexed by their framed attaching sphere  $\mathbb{S} \simeq S^{k-1} \times B^{n-k+1}$ .





#### Juhász's presentation of Cob

Juhász's presentation of the smooth (n+1)-cobordism category

- Generators:
  - 1. mapping cylinders indexed by **diffeomorphisms** f of n-manifold,
  - 2. *k*-handles on top of trivial cylinder indexed by their framed attaching sphere  $\mathbb{S} \simeq S^{k-1} \times B^{n-k+1}$ .
- ▶ Relations:
  - R1 composition of diffeo; isotopies have trivial mapping cylinders
  - R2 conjugation of attaching sphere by diffeo
  - R3 handles with disjoint attachment commute
  - R4 (k)-(k+1) handle cancellation when belt<sub>k</sub>  $\uparrow$   $S^k = \{*\}$
  - R5 handles do not depend of the orientation of the attaching sphere

Let  $\mathscr{F}$  be the free category whose objects are closed oriented n-manifolds and morphisms generated by generators.

$$\mathcal{F}/R \cong \mathbf{Cob}$$

#### Juhász's presentation of **Cob**

Juhász's presentation of the smooth (n+1)-cobordism category

- Generators:
  - 1. mapping cylinders indexed by **diffeomorphisms** *f* of *n*-manifold,
  - 2. *k*-handles on top of trivial cylinder indexed by their framed attaching sphere  $\mathbb{S} \simeq S^{k-1} \times B^{n-k+1}$ .
- Relations:
  - R1 composition of diffeo; isotopies have trivial mapping cylinders
  - R2 conjugation of attaching sphere by diffeo
  - R3 handles with disjoint attachment commute
  - R4 (k)-(k+1) handle cancellation when belt<sub>k</sub>  $\uparrow$   $S^k = \{*\}$
  - R5 handles do not depend of the orientation of the attaching sphere

Let  $\mathcal{F}^{nc}$  be the subcategory of  $\mathcal{F}$  with no 0-handle.

Corollary

$$\mathcal{F}^{nc}/R^{nc} \cong \mathbf{Cob}^{nc}$$

# Construction of the 3+1-TQFT **%**

% is a ribbon chromatic non-degenerate category.

3-manifold  $M \longmapsto \Re(M)$  admissible skein module

is functorial from the category of diffeomorphisms between 3-manifolds.

We need to associate maps  $\chi_{\mathbb{S}} = \mathscr{K}(W(\mathbb{S}))$ 

$$\mathscr{K}(M) \xrightarrow{\chi_{\mathbb{S}}} \mathscr{K}(M(\mathbb{S}))$$

$$[M,\Gamma] \stackrel{\chi_{\mathbb{S}}}{\longmapsto} [M(\mathbb{S}),\Gamma']$$

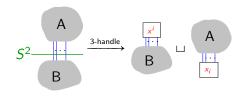
to any 4,3,2,1-handle and check the relations. Here if  $W(\mathbb{S})$  comes from gluing a k+1-handle, then  $M(\mathbb{S})$  is obtained from M by index k+1 surgery.

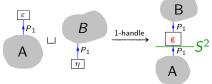


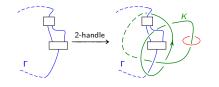
# Summary for $\Re(\text{index } k \text{ handles})$

$$[M, \Gamma_1] \sqcup [S^3, \Gamma_2] \xrightarrow{\text{4-handle}} \mathsf{F'}(\Gamma_2).[M, \Gamma_1]$$

A and B might be or not be connected.







$$[M,\Gamma] \xrightarrow{0-\text{handle}} [M,\Gamma] \sqcup [S^3,\zeta \bigvee_{\eta}^{\varepsilon}]$$
only for **%** chromatic compact

only for  $\mathscr C$  chromatic compact i.e. if  $\mathbf g = \zeta^{-1} \mathsf{Id}$  is invertible

# Example: $\mathbb{C}P^2$

The 4-manifold  $\mathbb{C}P^2$  is obtained by attaching successively exactly one index 0, 2 and 4-handle. The index 0 handle introduces  $\zeta$   $P_1$ 

in  $S^3$ . The index 2 handle is attached along a 1-framed unknot. The surgered manifold is still  $S^3$  and the meridian is a (-1)-framed unknot. The index 4 handle will evaluate this skein in  $S^3$  using F'.

$$1 \xrightarrow{\chi_0} \zeta \xrightarrow{\varepsilon} \chi_{\mathbb{S}^1} \qquad \zeta \xrightarrow{\varepsilon} \zeta \xrightarrow{\rho_1} = \zeta \xrightarrow{\varepsilon} \chi_{\mathbb{S}^3}$$

$$\zeta \vdash \zeta \xrightarrow{\rho_1} \chi_{\mathbb{S}^3}$$

$$\zeta \vdash \zeta \xrightarrow{\rho_1} \chi_{\mathbb{S}^3}$$

### 3 families of ribbon chromatic categories

A ribbon chromatic category & is

- 1. chromatic non degenerate if
  - $\implies$  **%** extends to a non-compact TQFT.

- 2. chromatic compact if
  - $\implies$  **%** extends to a TQFT.
- 3. **factorizable** if  $\forall P \in \mathsf{Proj}$ ,
- ⇒ **%** extends to an invertible TQFT.

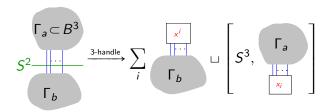
$$= \zeta \xrightarrow{\stackrel{P_1}{\eta}} \in \operatorname{End}_{\mathscr{C}}(P_1)$$

$$\downarrow^{P_1}$$

$$= \zeta \sum_{i} \xrightarrow{\stackrel{|X_i|}{\chi'}} \in \operatorname{End}_{\mathscr{C}}(P)$$

#### 3-4-handle cancellation

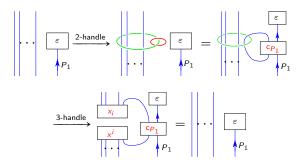
3-4-handle cancellation happens when 2-surgery (cutting) create a 3-sphere  $S^3$  which is then killed by a 4-handle.



$$\xrightarrow{\text{4-handle}} \sum_{i} \mathsf{F'} \left( \begin{array}{c} \Gamma_{a} \\ \vdots \\ \chi_{i} \end{array} \right) \begin{array}{c} \chi^{i} \\ \vdots \\ \Gamma_{b} \end{array}$$

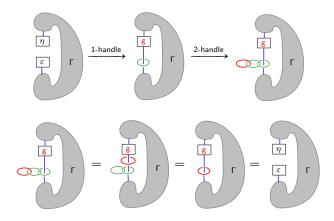
#### 2-3-handle cancellation

2-3-handle cancellation happen when we do surgery along an unknot, creating a 2-sphere that is then cut by a 2-surgery.



#### 1-2-handle cancellation

1-2-handle cancellation happens when we self connect a component of  $M_1$ , creating a  $S^2 \times S^1$  factor which is then killed by  $\mathbb{S}^1$ -surgery:



# 0-handle for chromatic compact $\mathscr C$

A gluing map is invertible iff  $\mathscr C$  is chromatic compact. Then  $\mathbf g=\zeta^{-1}\operatorname{Id}_{P_1}$  and the the map

$$\mathcal{K}(M) \xrightarrow{0-\text{handle}} \mathcal{K}(M \sqcup S^3)$$

is adding a component  $S^3$  which contains the skein

$$\Gamma_0 = \zeta$$

And the 0-1 handle cancellation is a consequence of  $\varepsilon \circ \mathbf{g} = \zeta^{-1} \varepsilon$ .

#### What about exotic 4-manifolds?

There are no example but no obstruction to the possibility of detecting exotic pairs of 4-manifolds.

$$\mathcal{K}(W_1 \sharp W_2) \approx \mathcal{K}(W_1)\mathcal{K}(W_2)$$

So we are looking for a chromatic non degenerate category  ${\mathscr C}$  for which

$$\mathscr{K}(\mathbb{C}P^2 \sharp \overline{\mathbb{C}P^2}) = \mathscr{K}(S^2 \times S^2) = 0$$

For  $\mathscr{C} = H$ -mod (H a ribbon Hopf algebra) it would mean that

$$\lambda(\theta)\lambda(\theta^{-1}) = \lambda \otimes \lambda(R_{21}R_{12}) = 0$$



Thank you for your attention!