Ordering Protoalgebraic Logics

Pedro Filipe

Instituto Superior Técnico

LisMath Seminar, 2018

э

Table of Contents

Introduction

- Motivation
- Logic A crash course
- 2 Protoalgebraic logics
 - Protoalgebraic logics
 - Coherent Δ-logics
 - δ -logics

Ordering Prot

- General results
- Iteration of formulas
- Ordering the logics \mathcal{L}_Δ
- Leibniz operator and Leibniz hierarchy
 - The Lindenbaum-Tarski process
 - The Leibniz operator
 - The Leibniz hierarchy

References

Table of Contents

Introduction

- Motivation
- Logic A crash course
- Protoalgebraic logics
 - Protoalgebraic logics
 - Coherent Δ -logics
 - δ -logics

Ordering Prot

- General results
- Iteration of formulas
- Ordering the logics \mathcal{L}_Δ
- Leibniz operator and Leibniz hierarchy
 - The Lindenbaum-Tarski process
 - The Leibniz operator
 - The Leibniz hierarchy

References

4 3 4 3 4 3 4

э

A D N A B N A B N A B N

• As a way of axiomatizing mathematics

э

- As a way of axiomatizing mathematics
- As a way of reasoning about systems

- As a way of axiomatizing mathematics
- As a way of reasoning about systems

Wait... logic's'?

э

Definition (Similarity type)

A similarity type (or algebraic language) L is a pair (L, ar), where L is a set of symbols and $ar : L \to \mathbb{N}$ is a function.

Definition (Similarity type)

A similarity type (or algebraic language) L is a pair (L, ar), where L is a set of symbols and $ar : L \to \mathbb{N}$ is a function.

Definition (\mathcal{L} -algebra)

Let **L** be a similarity type, a **L**-algebra \mathcal{A} is a pair $\langle A, (-)^{\mathcal{A}} \rangle$, where A is a set and, for each $\lambda \in L$, if $\operatorname{ar}(\lambda) = n$, then $\lambda^{\mathcal{A}} : A^n \to A$ is a function.

Definition (Similarity type)

A similarity type (or algebraic language) L is a pair (L, ar), where L is a set of symbols and $ar : L \to \mathbb{N}$ is a function.

Definition (\mathcal{L} -algebra)

Let **L** be a similarity type, a **L**-algebra \mathcal{A} is a pair $\langle A, (-)^{\mathcal{A}} \rangle$, where A is a set and, for each $\lambda \in L$, if $\operatorname{ar}(\lambda) = n$, then $\lambda^{\mathcal{A}} : A^n \to A$ is a function.

Definition (\mathcal{L} -homomorphism)

Let \mathcal{A} and \mathcal{B} be two L- algebras, then a function $h : A \to B$ is said to be a L-homomorphism if, for every $\lambda \in L$, $\operatorname{ar}(\lambda) = n$ and $a_1, \ldots, a_n \in A$

$$h(\lambda^{\mathcal{A}}(a_1,\ldots,a_n)=\lambda^{\mathcal{B}}(h(a_1),\ldots,h(a_n))$$

In this case we simply write $h : \mathcal{A} \to \mathcal{B}$.

A B b A B b

э

Definition (Algebra of formulas over L)

Let **L** be a similarity type and V a coutable set such that $V \cap L = \emptyset$, then $\mathcal{F}m_L$, the algebra of formulas over **L**, is the free **L**-algebra generated by V.

Definition (Algebra of formulas over L)

Let **L** be a similarity type and V a coutable set such that $V \cap L = \emptyset$, then $\mathcal{F}m_L$, the algebra of formulas over **L**, is the free **L**-algebra generated by V.

• $x \in \mathcal{F}m_{\mathsf{L}}$, for all $x \in V$

Definition (Algebra of formulas over L)

Let **L** be a similarity type and V a coutable set such that $V \cap L = \emptyset$, then $\mathcal{F}m_{\mathsf{L}}$, the algebra of formulas over **L**, is the free **L**-algebra generated by V.

- $x \in \mathcal{F}m_{\mathsf{L}}$, for all $x \in V$
- if $\lambda \in L$, $\operatorname{ar}(\lambda) = n$ and $\varphi_1, \ldots, \varphi_n \in \mathcal{F}m_L$, then $\lambda(\varphi_1, \ldots, \varphi_n) \in \mathcal{F}m_L$

Definition (Algebra of formulas over L)

Let **L** be a similarity type and V a coutable set such that $V \cap L = \emptyset$, then $\mathcal{F}m_L$, the algebra of formulas over **L**, is the free **L**-algebra generated by V.

• $x \in \mathcal{F}m_{\mathsf{L}}$, for all $x \in V$

• if
$$\lambda \in L$$
, $\operatorname{ar}(\lambda) = n$ and $\varphi_1, \ldots, \varphi_n \in \mathcal{F}m_L$, then $\lambda(\varphi_1, \ldots, \varphi_n) \in \mathcal{F}m_L$

Definition (Substitution)

A substitution is an endomorphism $\sigma : \mathcal{F}m_{\mathsf{L}} \to \mathcal{F}m_{\mathsf{L}}$, or equivalently, a function $\sigma : \mathsf{V} \to \mathcal{F}m_{\mathsf{L}}$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

- ∢ ⊒ →

< □ > < @ >

э

Definition (Logic over a language)

Fix a similarity type **L**. A logic over **L** is a pair $\mathcal{L} = \langle \mathbf{L}, \vdash_{\mathcal{L}} \rangle$, where $\vdash_{\mathcal{L}} \subseteq \mathscr{P}(\mathscr{F}m) \times \mathscr{F}m$ is such that

(E) if φ ∈ Γ, then Γ ⊢_⊥ φ
(M) if Γ ⊢_⊥ φ and Γ ⊆ Δ, then Δ ⊢_⊥ φ
(I) if Γ ⊢_⊥ φ and Δ ⊢_⊥ ψ for every ψ ∈ Γ, then Δ ⊢_⊥ φ
(S) if Γ ⊢_⊥ φ, then σΓ ⊢_⊥ σφ, for every substitution σ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition (Logic over a language)

Fix a similarity type **L**. A logic over **L** is a pair $\mathcal{L} = \langle \mathbf{L}, \vdash_{\mathcal{L}} \rangle$, where $\vdash_{\mathcal{L}} \subseteq \mathscr{P}(\mathscr{F}m) \times \mathscr{F}m$ is such that

(E) if φ ∈ Γ, then Γ ⊢_⊥ φ
(M) if Γ ⊢_⊥ φ and Γ ⊆ Δ, then Δ ⊢_⊥ φ
(I) if Γ ⊢_⊥ φ and Δ ⊢_⊥ ψ for every ψ ∈ Γ, then Δ ⊢_⊥ φ
(S) if Γ ⊢_⊥ φ, then σΓ ⊢_⊥ σφ, for every substitution σ

$$\mathcal{C}_{\mathcal{L}}\mathsf{\Gamma} = \{\varphi : \mathsf{\Gamma} \vdash_{\mathcal{L}} \varphi\}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition (Logic over a language)

Fix a similarity type **L**. A logic over **L** is a pair $\mathcal{L} = \langle \mathbf{L}, \vdash_{\mathcal{L}} \rangle$, where $\vdash_{\mathcal{L}} \subseteq \mathscr{P}(\mathscr{F}m) \times \mathscr{F}m$ is such that

(E)
$$\Gamma \subseteq C_{\mathcal{L}}\Gamma$$

(M) if $\Gamma \subseteq \Delta$, then $C_{\mathcal{L}}\Gamma \subseteq C_{\mathcal{L}}\Delta$
(I) $C_{\mathcal{L}}C_{\mathcal{L}}\Gamma = C_{\mathcal{L}}\Gamma$
(S) $\sigma C_{\mathcal{L}}\Gamma \subseteq C_{\mathcal{L}}\sigma\Gamma$

$$\mathcal{C}_{\mathcal{L}}\mathsf{\Gamma} = \{\varphi : \mathsf{\Gamma} \vdash_{\mathcal{L}} \varphi\}$$

- 3

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition (Logic over a language)

Fix a similarity type **L**. A logic over **L** is a pair $\mathcal{L} = \langle \mathbf{L}, \vdash_{\mathcal{L}} \rangle$, where $\vdash_{\mathcal{L}} \subseteq \mathcal{P}(\mathcal{F}m) \times \mathcal{F}m$ is such that

(E)
$$\Gamma \subseteq C_{\mathcal{L}}\Gamma$$

(M) if $\Gamma \subseteq \Delta$, then $C_{\mathcal{L}}\Gamma \subseteq C_{\mathcal{L}}\Delta$
(I) $C_{\mathcal{L}}C_{\mathcal{L}}\Gamma = C_{\mathcal{L}}\Gamma$
(S) $\sigma C_{\mathcal{L}}\Gamma \subseteq C_{\mathcal{L}}\sigma\Gamma$

Definition (Closure operator)

Let A be a set, a closure operator on A is a function $C : \mathcal{P}(A) \to \mathcal{P}(A)$ such that, for every $X, Y \subseteq A$

(E)
$$X \subseteq CX$$

(M) if $X \subseteq Y$, then $CX \subseteq CY$
(I) $CCX = CX$

Theorems

<ロト <問ト < 目ト < 目ト

3

Theorems

Theorem

Let \mathcal{L} be a logic, then $C_{\mathcal{L}}: \mathscr{P}(\mathcal{F}m) \to \mathscr{P}(\mathcal{F}m)$ defined as

$$\mathcal{C}_{\mathcal{L}}\mathsf{\Gamma} = \{\varphi \in \mathcal{F}\boldsymbol{m} : \mathsf{\Gamma} \vdash_{\mathcal{L}} \varphi\}$$

is a structural closure operator.

3

A B b A B b

< (T) >

Theorems

Theorem

Let \pounds be a logic, then $\mathcal{C}_{\pounds}:\mathscr{P}(\mathscr{F}m) o \mathscr{P}(\mathscr{F}m)$ defined as

$$\mathcal{C}_{\mathcal{L}}\mathsf{\Gamma} = \{\varphi \in \mathcal{F}\boldsymbol{m} : \mathsf{\Gamma} \vdash_{\mathcal{L}} \varphi\}$$

is a structural closure operator.

Theorem

Let C be a closure operator on $\mathcal{F}m$, then $\vdash_C \subseteq \mathscr{P}(\mathcal{F}m) \times \mathcal{F}m$ defined as

$$\Gamma \vdash_{C} \varphi \quad iff \quad \varphi \in C\Gamma$$

is a closure relation. Furthermore, if C is structural then $\mathcal{L}_C = \langle \mathbf{L}, \vdash_C \rangle$ is a logic.

- 31

A B A A B A

A D N A B N A B N A B N

3

Definition (Closure system)

A closure system on a set A is a collection of subsets $C \subseteq \mathcal{P}(A)$ that satisfies the following conditions:

- *A* ∈ *C*
- if $\mathcal{B} \subseteq \mathcal{C}$ is non-empty, then $\cap \mathcal{B} \in \mathcal{C}$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Definition (Closure system)

A closure system on a set A is a collection of subsets $C \subseteq \mathcal{P}(A)$ that satisfies the following conditions:

- *A* ∈ *C*
- if $\mathcal{B} \subseteq \mathcal{C}$ is non-empty, then $\cap \mathcal{B} \in \mathcal{C}$

Theorem

Let C be a closure operator on A, then the collection

$$\mathcal{C} = \{X \subseteq A : CX = X\}$$

is a closure system on A.

3

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Let C be a closure system on A, then $C : \mathscr{P}(A) \to \mathscr{P}(A)$ defined as

$$CX = \cap \{F \in \mathcal{C} : X \subseteq F\}$$

is a closure operator on A whose closed sets are exactly the members of C.

▶ ∢ ∃ ▶

3

<ロト <問ト < 目ト < 目ト

3

Definition (Trivial logic)

A logic \mathcal{L} is said to be trivial if $x \vdash_{\mathcal{L}} y$ for some variables $x, y \in V$ (equivalently, when $\varphi \vdash_{\mathcal{L}} \psi$ for every $\varphi, \psi \in \mathcal{F}m$).

(4) (日本)

3

Definition (Trivial logic)

A logic \mathcal{L} is said to be trivial if $x \vdash_{\mathcal{L}} y$ for some variables $x, y \in V$ (equivalently, when $\varphi \vdash_{\mathcal{L}} \psi$ for every $\varphi, \psi \in \mathcal{F}m$).

There are exactly two trivial logics:

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Definition (Trivial logic)

A logic \mathcal{L} is said to be trivial if $x \vdash_{\mathcal{L}} y$ for some variables $x, y \in V$ (equivalently, when $\varphi \vdash_{\mathcal{L}} \psi$ for every $\varphi, \psi \in \mathcal{F}m$).

There are exactly two trivial logics:

inconsistent logic $C_{\mathcal{L}}\Gamma = \mathcal{F}m$, for every $\Gamma \subseteq \mathcal{F}m$

< □ > < □ > < □ > < □ > < □ > < □ >

- 3

Definition (Trivial logic)

A logic \mathcal{L} is said to be trivial if $x \vdash_{\mathcal{L}} y$ for some variables $x, y \in V$ (equivalently, when $\varphi \vdash_{\mathcal{L}} \psi$ for every $\varphi, \psi \in \mathcal{F}m$).

There are exactly two trivial logics: inconsistent logic $C_{\mathcal{L}}\Gamma = \mathcal{F}m$, for every $\Gamma \subseteq \mathcal{F}m$

almost-inconsistent logic $C_{\mathcal{L}}\Gamma = \mathcal{F}m$, for every non-empty $\Gamma \subseteq \mathcal{F}m$ and $C_{\mathcal{L}} \varnothing = \varnothing$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ordering Log

Definition

A logic \mathcal{L} is weaker than a logic \mathcal{L}' , and we write $\mathcal{L} \leq \mathcal{L}'$, when $\vdash_{\mathcal{L}} \subseteq \vdash_{\mathcal{L}'}$. In this case, \mathcal{L}' is said to be an extension of \mathcal{L} .

Theorem (The lattice of logics)

The set **Log** of all logics, ordered under the relation \leq , is a complete lattice:

Meet if
$$\mathcal{L} = \wedge_{i \in I} \mathcal{L}_i$$
 then $\vdash_{\mathcal{L}} = \cap_{i \in I} \vdash_{\mathcal{L}_i}$

Join if $\mathcal{L} = \bigvee_{i \in I} \mathcal{L}_i$ then $Th\mathcal{L} = \bigcap_{i \in I} Th\mathcal{L}_i$

Also, it has a maximum (the inconsistent logic) and a minimum (the identity logic).

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Table of Contents

Introductio

- Motivation
- Logic A crash course

2 Protoalgebraic logics

- Protoalgebraic logics
- Coherent Δ-logics
- δ -logics

Ordering Prot

- General results
- Iteration of formulas
- Ordering the logics \mathcal{L}_Δ
- Leibniz operator and Leibniz hierarchy
 - The Lindenbaum-Tarski process
 - The Leibniz operator
 - The Leibniz hierarchy

References

э

(B)

Protoalgebraic logics

イロト イヨト イヨト イヨト

æ

Protoalgebraic logics

Definition (Protoalgebraic logic)

A logic \mathcal{L} is protoalgebraic if there is a set $\Delta(x, y)$ of formulas, such that

$$\begin{array}{ll} (I_{\Delta}) & \vdash_{\mathscr{L}} \Delta(x,x) \\ (MP_{\Delta}) & x, \Delta(x,y) \vdash_{\mathscr{L}} y \end{array}$$

In this case, we say that the set Δ witnesses the protoalgebraicity of \mathcal{L} . The set of all protoalgebraic logics is denoted by **Prot**.

4 1 1 1 4 1 1 1

Protoalgebraic logics

Definition (Protoalgebraic logic)

A logic \mathcal{L} is protoalgebraic if there is a set $\Delta(x, y)$ of formulas, such that

$$\begin{array}{ll} (I_{\Delta}) & \vdash_{\mathscr{L}} \Delta(x,x) \\ (MP_{\Delta}) & x, \Delta(x,y) \vdash_{\mathscr{L}} y \end{array}$$

In this case, we say that the set Δ witnesses the protoalgebraicity of \mathcal{L} . The set of all protoalgebraic logics is denoted by **Prot**.

Theorem

If $\Delta = \emptyset$ or $\Delta = \Delta(x, x)$ for some variable x, then any logic witnessed by it is trivial. Furthermore, the only protoalgebraic logic without theorems is the almost-inconsistent logic.

- 3

< □ > < □ > < □ > < □ > < □ > < □ >

Δ -logics

ヘロト ヘロト ヘヨト ヘヨト

- 2

Δ -logics

Definition (Δ -logics)

Let $\Delta(x, y) \subseteq \mathcal{F}m(2)$ be a non-empty set of formulas then the logic \mathcal{L}_{Δ} is the logic defined by the following axiomatic system:

axioms $\Delta(x, x)$ rules $x, \Delta(x, y) \vdash_{\Delta} y$

A B A A B A

Coherent sets

A D N A B N A B N A B N

3

Coherent sets

Definition (Coherent sets)

A non-empty set $\Delta(x, y) \subseteq \mathcal{F}m(2)$ is coherent when $\delta(x, x) = \delta'(x, x)$ for all $\delta, \delta' \in \Delta(x, y)$. Furthermore, if $\Delta(x, y), \Delta'(x, y) \subseteq \mathcal{F}m(2)$ are non-empty, then Δ is said to be coherent with Δ' when $\Delta \cup \Delta'$ is coherent.

Coherent sets

Definition (Coherent sets)

A non-empty set $\Delta(x, y) \subseteq \mathcal{F}m(2)$ is coherent when $\delta(x, x) = \delta'(x, x)$ for all $\delta, \delta' \in \Delta(x, y)$. Furthermore, if $\Delta(x, y), \Delta'(x, y) \subseteq \mathcal{F}m(2)$ are non-empty, then Δ is said to be coherent with Δ' when $\Delta \cup \Delta'$ is coherent.

Theorem

Let $\delta_1(x, y), \delta_2(x, y) \in \mathcal{F}m(2)$ be different and coherent with each other. If $\delta_1(\alpha, \beta) = \delta_2(\gamma, \epsilon)$ then $\alpha = \epsilon$ and $\beta = \gamma$. In particular, if $\delta_1(\alpha, \beta) = \delta_2(\alpha, \beta)$, then $\alpha = \beta$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A D N A B N A B N A B N

æ

Theorem

If $\Delta(x, y) \subseteq \mathcal{F}m(2)$ is coherent and $\delta(x, y) \in \Delta(x, y)$, then the theorems of \mathcal{L}_{Δ} are all substitution instances of $\delta(x, x)$, i.e.

 $\mathcal{C}_{\Delta} \varnothing = \{\delta(\varphi, \varphi) : \varphi \in \mathcal{F}m\}$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

3

Theorem

If $\Delta(x, y) \subseteq \mathcal{F}m(2)$ is coherent and $\delta(x, y) \in \Delta(x, y)$, then the theorems of \mathcal{L}_{Δ} are all substitution instances of $\delta(x, x)$, i.e.

$$\mathcal{C}_{\Delta} arnothing = \{ \delta(arphi, arphi) : arphi \in \mathcal{F} m \}$$

Theorem

Let $\Delta(x, y), \Delta'(x, y) \subseteq \mathcal{F}m(2)$ be two coherent sets, then $C_{\Delta} \varnothing = C_{\Delta'} \varnothing$ if and only if Δ is coherent with Δ' .

< ロ > < 同 > < 回 > < 回 > < 回 > <

Theorem

Let Δ be a coherent set. If $\Gamma \vdash_{\Delta} \varphi$ then φ is either a theorem or a subformula of some formula in Γ .

3

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Let Δ be a coherent set. If $\Gamma \vdash_{\Delta} \varphi$ then φ is either a theorem or a subformula of some formula in Γ .

Corollary

For each coherent set Δ :

- **1** If Γ is a set of variables, then $C_{\Delta}\Gamma = \Gamma \cup C_{\Delta}\varnothing$
- **2** If Γ is finite, then $C_{\Delta}\Gamma$ contains only a finite number of non-theorems
- **3** No finite set is inconsistent
- **9** $\phi \dashv \vdash_{\Delta} \psi$ if and only if ϕ and ψ are both theorems or $\phi = \psi$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Let Δ be a coherent set. If $\Gamma \vdash_{\Delta} \varphi$ then φ is either a theorem or a subformula of some formula in Γ .

Corollary

For each coherent set Δ :

- **1** If Γ is a set of variables, then $C_{\Delta}\Gamma = \Gamma \cup C_{\Delta}\varnothing$
- **2** If Γ is finite, then $C_{\Delta}\Gamma$ contains only a finite number of non-theorems
- **③** No finite set is inconsistent
- **9** $\phi \dashv \vdash_{\Delta} \psi$ if and only if ϕ and ψ are both theorems or $\phi = \psi$

Theorem

Let $\Delta(x, y) \subseteq \mathcal{F}m(2)$ a coherent and Γ be a finite set with fewer elements than Δ . Then $C_{\Delta}\Gamma = \Gamma \cup C_{\Delta}\varnothing$.

3

(日)

A D N A B N A B N A B N

3

Definition ($\tilde{\delta}$ notation)

Let $\delta \in \mathcal{F}m(2)$, β be a formula and $\overrightarrow{\alpha}$ be a finite sequence of formulas. Then $\widetilde{\delta}(\overrightarrow{\alpha},\beta)$ denotes the formula inductively defined as follows:

• $\tilde{\delta}(\varnothing,\beta) = \beta$

•
$$\tilde{\delta}(\langle \alpha \rangle, \beta) = \delta(\alpha, \beta)$$

•
$$\tilde{\delta}(\overrightarrow{\alpha},\beta) = \delta(\alpha_1, \tilde{\delta}(\overrightarrow{\alpha}_{(2)},\beta))$$

N 4 E N

Definition ($\tilde{\delta}$ notation)

Let $\delta \in \mathcal{F}m(2)$, β be a formula and $\overrightarrow{\alpha}$ be a finite sequence of formulas. Then $\tilde{\delta}(\overrightarrow{\alpha},\beta)$ denotes the formula inductively defined as follows:

•
$$\tilde{\delta}(\emptyset, \beta) = \beta$$

• $\tilde{\delta}(\langle \alpha \rangle, \beta) = \delta(\alpha, \beta)$
• $\tilde{\delta}(\overrightarrow{\alpha}, \beta) = \delta(\alpha_1, \widetilde{\delta}(\overrightarrow{\alpha}_{(2)}, \beta))$

Corollary

With the above notation, if $\delta \in \mathcal{F}m(2)$ and $\overrightarrow{\epsilon} = \langle \epsilon_1, \ldots, \epsilon_n \rangle$ is a finite sequence of formulas, then $\epsilon_1, \ldots, \epsilon_n, \widetilde{\delta}(\overrightarrow{\epsilon}, \beta) \vdash_{\delta} \beta$.

A B b A B b

Theorem

If $\Gamma \vdash_{\delta} \beta$ then β satisfies one of the following conditions:

- $\ \, \textbf{0} \ \, \boldsymbol{\beta} \ \, \textbf{is a theorem}$
- $\bigcirc \beta \in \mathsf{\Gamma}$
- **3** there is a finite non-empty sequence of formulas $\vec{\epsilon}$, each satisfying one of these three conditions, such that $\tilde{\delta}(\vec{\epsilon},\beta) \in \Gamma$

Theorem

If $\Gamma \vdash_{\delta} \beta$ then β satisfies one of the following conditions:

- $\textcircled{0} \beta \text{ is a theorem}$
- $\bigcirc \beta \in \mathsf{\Gamma}$
- **3** there is a finite non-empty sequence of formulas $\vec{\epsilon}$, each satisfying one of these three conditions, such that $\tilde{\delta}(\vec{\epsilon},\beta) \in \Gamma$

Theorem

 $\alpha \vdash_{\delta} \beta$ if and only if β satisfies one of the following conditions:

• β is a theorem

$$a = \beta$$

• $\alpha = \tilde{\delta}(\overrightarrow{\tau}, \beta)$ for some finite non-empty sequence $\overrightarrow{\tau}$ of theorems

< □ > < □ > < □ > < □ > < □ > < □ >

Table of Contents

Introductio

- Motivation
- Logic A crash course
- Protoalgebraic logics
 - Protoalgebraic logics
 - Coherent Δ-logics
 - δ -logics

Ordering Prot

- General results
- Iteration of formulas
- Ordering the logics \mathcal{L}_Δ
- Leibniz operator and Leibniz hierarchy
 - The Lindenbaum-Tarski process
 - The Leibniz operator
 - The Leibniz hierarchy

References

э

(B)

A D N A B N A B N A B N

æ

Theorem

If $\mathcal{L} \in \mathbf{Prot}$ and $\mathcal{L} \leq \mathcal{L}'$ then $\mathcal{L}' \in \mathbf{Prot}$ and has the same witnessing set as \mathcal{L} . Thus **Prot** is an up-set of the lattice **Log**.

Theorem

If $\mathcal{L} \in \mathbf{Prot}$ and $\mathcal{L} \leq \mathcal{L}'$ then $\mathcal{L}' \in \mathbf{Prot}$ and has the same witnessing set as \mathcal{L} . Thus **Prot** is an up-set of the lattice **Log**.

Corollary

If $\{\mathcal{L}_i : i \in I\} \subseteq \text{Prot}$ is non-empty, then $\forall_{i \in I} \mathcal{L}_i \in \text{Prot}$. Thus, the poset **Prot** is a join-complete sub-semilattice of **Log**.

A B b A B b

Theorem

There is no weakest protoalgebraic logic, that is, **Prot** has no minimum.

3

→ ∃ →

Theorem

There is no weakest protoalgebraic logic, that is, **Prot** has no minimum.

Corollary

Prot is not a meet-complete semilattice.

3

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Theorem

There is no weakest protoalgebraic logic, that is, Prot has no minimum.

Corollary

Prot is not a meet-complete semilattice.

Theorem

Prot is not a meet-semilattice.

3

A B A A B A

э

26 / 36

- ∢ ⊒ →

< □ > < 同 >

Definition

Let $\delta(x, y) \in \mathcal{F}m(2)$, the formula $\delta^{i}(x, y)$ (called the iteration of δ) is defined as follows

$$\delta^{\mathbf{i}}(x,y) = \delta(\delta(x,x),\delta(x,y))$$

This definition is extended to sets $\Delta(x, y) \subseteq \mathcal{F}m(2)$ as

$$\Delta^{\mathbf{i}}(x,y) = \{\delta'(\delta(x,x),\delta(x,y)) : \delta,\delta' \in \Delta\}$$

A B A A B A

3

Definition

Let $\delta(x, y) \in \mathcal{F}m(2)$, the formula $\delta^{i}(x, y)$ (called the iteration of δ) is defined as follows

$$\delta^{\mathbf{i}}(x,y) = \delta(\delta(x,x),\delta(x,y))$$

This definition is extended to sets $\Delta(x, y) \subseteq \mathcal{F}m(2)$ as

$$\Delta^{\mathbf{i}}(x,y) = \{\delta'(\delta(x,x),\delta(x,y)) : \delta, \delta' \in \Delta\}$$

Theorem

If $\Delta(x, y)$ is coherent, then $\Delta^{i}(x, y)$ is coherent as well. More precisely, if $\Delta(x, y)$ is coherent with $\delta(x, y)$, then $\Delta^{i}(x, y)$ is coherent with $\delta^{i}(x, y)$.

- 3

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Let $\Delta(x,y) \subseteq \mathcal{F}m(2)$ be a coherent set, then $\mathcal{L}_{\Delta^{i}} < \mathcal{L}_{\Delta}$.

3

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Let $\Delta(x, y) \subseteq \mathcal{F}m(2)$ be a coherent set, then $\mathcal{L}_{\Delta^{i}} < \mathcal{L}_{\Delta}$.

Corollary

There are infinitely many strictly descending chains in **Prot**, having no lower bound.

A B A A B A

3

Ordering the logics \pounds_Δ

イロト イポト イヨト イヨト

3

Ordering the logics \mathcal{L}_Δ

Theorem

Let $\Delta(x, y) \subseteq \mathcal{F}m(2)$ be a coherent set and $\Delta', \Delta'' \subseteq \Delta$ be non-empty. Then $\Delta' \subseteq \Delta''$ if and only if $\mathcal{L}_{\Delta''} \leq \mathcal{L}_{\Delta'}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Ordering the logics \mathcal{L}_Δ

Theorem

Let $\Delta(x, y) \subseteq \mathcal{F}m(2)$ be a coherent set and $\Delta', \Delta'' \subseteq \Delta$ be non-empty. Then $\Delta' \subseteq \Delta''$ if and only if $\mathcal{L}_{\Delta''} \leq \mathcal{L}_{\Delta'}$.

Corollary

Every finite Boolean lattice is isomorphic to a lattice of protoalgebraic logics.

A B M A B M

3

Table of Contents

Introduction

- Motivation
- Logic A crash course
- 2 Protoalgebraic logics
 - Protoalgebraic logics
 - Coherent Δ-logics
 - δ -logics

3 Ordering Prot

- General results
- Iteration of formulas
- Ordering the logics \mathcal{L}_Δ

Leibniz operator and Leibniz hierarchy

- The Lindenbaum-Tarski process
- The Leibniz operator
- The Leibniz hierarchy

References

э

The Lindenbaum-Tarski process

э

30 / 36

< 47 ▶

The Lindenbaum-Tarski process

$\mathsf{\Gamma}\vdash_{\mathcal{C}\ell}\varphi\Longleftrightarrow\mathsf{\Gamma}\vdash_{\mathbf{2}}\varphi$

(日) (四) (日) (日) (日)

э

$\mathsf{\Gamma} \vdash_{\mathcal{C}\ell} \varphi \Longleftrightarrow \mathsf{\Gamma} \vdash_{\mathbf{2}} \varphi$

● Suppose $\Gamma \nvDash_{\mathcal{Cl}} \varphi$

3

A B F A B F

Image: A matrix

$\mathsf{\Gamma} \vdash_{\mathcal{C} \ell} \varphi \Longleftrightarrow \mathsf{\Gamma} \vdash_{\mathbf{2}} \varphi$

- $\textbf{0} \quad \mathsf{Suppose} \ \mathsf{\Gamma} \nvDash_{\mathcal{C} \ell} \varphi$
- Show that there is a maximally consistent theory Γ' such that Γ ⊆ Γ' and φ ∉ Γ' (Lindenbaum Lema)

4 1 1 1 4 1 1 1

3

$\mathsf{\Gamma} \vdash_{\mathcal{C} \ell} \varphi \Longleftrightarrow \mathsf{\Gamma} \vdash_{\mathbf{2}} \varphi$

- **●** Suppose $\Gamma \nvDash_{\mathcal{Cl}} \varphi$
- Show that there is a maximally consistent theory Γ' such that Γ ⊆ Γ' and φ ∉ Γ' (Lindenbaum Lema)
- **③** Define the function $h: \mathcal{F}m \to \mathbf{2}$ as $h(\varphi) = 1$ if and only if $\varphi \in \Gamma'$

3

4 1 1 4 1 4 1 4

$\mathsf{\Gamma}\vdash_{\mathcal{C}\ell}\varphi\Longleftrightarrow\mathsf{\Gamma}\vdash_{\mathbf{2}}\varphi$

- **1** Suppose $\Gamma \nvDash_{\mathcal{Cl}} \varphi$
- Show that there is a maximally consistent theory Γ' such that Γ ⊆ Γ' and φ ∉ Γ' (Lindenbaum Lema)
- **③** Define the function $h: \mathcal{F}m \to \mathbf{2}$ as $h(\varphi) = 1$ if and only if $\varphi \in \Gamma'$
- Prove that the above function is an homomorphism

3

4 1 1 4 1 4 1 4

$\Gamma \vdash_{\mathcal{C}} \varphi \iff \Gamma \vdash_{\mathcal{D}} \varphi$

- **1** Suppose $\Gamma \nvDash_{Cl} \varphi$
- 2 Show that there is a maximally consistent theory Γ' such that $\Gamma \subset \Gamma'$ and $\varphi \notin \Gamma'$ (Lindenbaum Lema)
- Solution Define the relation $\Omega\Gamma'$ in $\mathcal{F}m$ as: $\varphi \equiv \psi(\Omega\Gamma')$ if and only if $\varphi \leftrightarrow \psi \in \Gamma'$

A B A A B A

$\mathsf{\Gamma} \vdash_{\mathcal{C} \ell} \varphi \Longleftrightarrow \mathsf{\Gamma} \vdash_{\mathbf{2}} \varphi$

- $\textcircled{0} Suppose \ \mathsf{\Gamma} \nvDash_{\mathcal{C} \ell} \varphi$
- Show that there is a maximally consistent theory Γ' such that Γ ⊆ Γ' and φ ∉ Γ' (Lindenbaum Lema)
- Obefine the relation ΩΓ' in 𝔅m as: φ ≡ ψ(ΩΓ') if and only if φ ↔ ψ ∈ Γ'
- Show that $\Omega\Gamma'$ is a congruence in $\mathcal{F}m$

3

A B A A B A

$\mathsf{\Gamma} \vdash_{\mathcal{C}\ell} \varphi \Longleftrightarrow \mathsf{\Gamma} \vdash_{\mathbf{2}} \varphi$

- $\textcircled{0} Suppose \ \mathsf{\Gamma} \nvDash_{\mathcal{C} \ell} \varphi$
- Show that there is a maximally consistent theory Γ' such that Γ ⊆ Γ' and φ ∉ Γ' (Lindenbaum Lema)
- Obtaine the relation ΩΓ' in 𝔅m as: φ ≡ ψ(ΩΓ') if and only if φ ↔ ψ ∈ Γ'
- ${\small \textcircled{\sc 0}}$ Show that $\Omega {\displaystyle \ulcorner}'$ is a congruence in ${\mathscr F}m$
- Show that for any $\varphi \in \mathcal{F}m$, $\varphi \in \Gamma'$ if and only if $\varphi/\Omega\Gamma' \in \Gamma'/\Omega\Gamma'$

- 31

4 1 1 4 1 4 1 4

$\mathsf{\Gamma} \vdash_{\mathcal{C}\ell} \varphi \Longleftrightarrow \mathsf{\Gamma} \vdash_{\mathbf{2}} \varphi$

- $\textcircled{0} Suppose \ \mathsf{\Gamma} \nvDash_{\mathcal{C} \ell} \varphi$
- Show that there is a maximally consistent theory Γ' such that Γ ⊆ Γ' and φ ∉ Γ' (Lindenbaum Lema)
- Obtaine the relation ΩΓ' in 𝔅m as: φ ≡ ψ(ΩΓ') if and only if φ ↔ ψ ∈ Γ'
- ${ullet}$ Show that $\Omega {f \Gamma}'$ is a congruence in ${\mathcal F}m$
- Show that for any $\varphi \in \mathcal{F}m$, $\varphi \in \Gamma'$ if and only if $\varphi/\Omega\Gamma' \in \Gamma'/\Omega\Gamma'$
- **(**) Show that $\mathcal{F}m/\Omega\Gamma'$ is a boolean algebra

The Leibniz operator

Definition

A congruence θ in an algebra \mathcal{A} is said to be compatible with a set $F \subseteq A$ when any of the following properties hold:

- **1** For any $a, b \in A$, if $a \in F$ and $a \equiv b(\theta)$, then $b \in F$
- **2** For any $a \in A$, $a \in F$ if and only if $a/\theta \in F/\theta$

$$\bullet F = \cup_{a \in F} a/\theta$$

32 / 36

The Leibniz operator

Definition

A congruence θ in an algebra \mathcal{A} is said to be compatible with a set $F \subseteq A$ when any of the following properties hold:

- **1** For any $a, b \in A$, if $a \in F$ and $a \equiv b(\theta)$, then $b \in F$
- **2** For any $a \in A$, $a \in F$ if and only if $a/\theta \in F/\theta$
- $I = \cup_{a \in F} a/\theta$

Definition (The Leibniz operator)

The Leibniz operator in an algebra \mathcal{A} is the function $\Omega^{\mathcal{A}}: \mathcal{P}(\mathcal{A}) \to Con\mathcal{A}$ that associates to each $F \subseteq A$ the largest congruence on \mathcal{A} compatible with F.

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > <

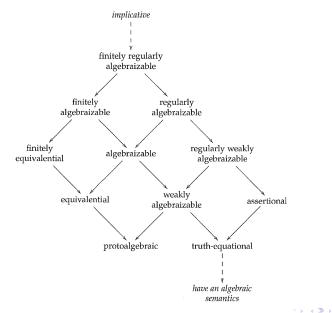
The Leibniz operator

${\cal L}$ is if and only	if over every A , Ω^A is (equivalently: over Fm , Ω is)
Protoalgebraic	monotone
Equivalential	monotone and commutes with endomorphisms
Finitely equivalential	continuous
Truth-equational	completely order-reflecting
Weakly algebraizable	monotone and injective (i.e., an isomorphism)
Algebraizable	an isomorphism that commutes with endomorphisms
Finitely algebraizable	a continuous isomorphism

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

The Leibniz hierarchy



э

Table of Contents

Introductio

- Motivation
- Logic A crash course
- Protoalgebraic logics
 - Protoalgebraic logics
 - Coherent Δ -logics
 - δ -logics

3 Ordering Prot

- General results
- Iteration of formulas
- Ordering the logics \mathcal{L}_Δ
- Leibniz operator and Leibniz hierarchy
 - The Lindenbaum-Tarski process
 - The Leibniz operator
 - The Leibniz hierarchy

References

э

References

- Josep Maria Font, Ordering protoalgebraic logics, Journal of Logic and Computation 26 (2016)
- Josep Maria Font, Abstract Algebraic Logic An Introductory Textbook, 2016

4 E b

3

36 / 36