Derivation of reaction-diffusion equations from kinetic systems for cell populations

Ana Jacinta Soares

Centre of Mathematics University of Minho, Portugal

Research supported by FCT-CMAT-UIDB-UIDP/00013/2020 and FCT 2022.03091.PTDC

Collaborators

- Marzia Bisi | Univ. Parma | Italy
- Davide Cusseddu | CMAT-Univ. Minho | Portugal
- Romina Travaglini | INDAM Francesco Severi | Italy
 Univ. Parma | Italy
 CMAT-Univ. Minho | Portugal

Structure of the talk

1. Introduction

Kinetic Theory
Boltzmann equation
Hydrodynamic limits
Extension to complex systems limits

2. Model for cell populations

Kinetic equations
Reaction diffusion equations
Turing instability

Turing instability

3. Numerical illustrations

Pattern formation Self and cross diffusion

1. Introduction

Kinetic Theory og Gases

Description of Maxwell-Boltzmann

JC Maxwell (1831-1879)

L Boltzmann (1844-1906)

Kinetic Theory

a branch of Statistical Mechanics

Mesoscopic scale

in the between *macro-micro* scales based on a **collisional dynamics**

Maxwell-Boltzmann description

rarefied or moderate dense gas

formed by a huge number of particles which undergo binary collisions

Mesoscopic scale

Maxwell and Boltzmann introduce the

density function

$$f(x, v, t)$$
, $x, v \in \mathbb{R}^3$, $t \in \mathbb{R}_0^+$ of finding a molecule at position x , with velocity v , at time t

Thus, the integral

$$\int_{\mathbb{R}^3} f(x, v, t) \, dv = n(x, t)$$

gives the density of particles at position x and time t

Within the mesoscopic approach

Boltzmann equation

Changes in f(x, v, t) are due to

- streaming (transport part)
- conservative binary collisions $(v, v_1) \leftrightarrow (v', v_1')$

General form of the BE

$$\frac{\partial f}{\partial t}(x, v, t) + \underbrace{v \cdot \nabla_x f(x, v, t)}_{\text{streaming}} = \underbrace{J(f, f)(x, v, t)}_{\text{collisions}}$$

Boltzmann equation

$$\frac{\partial f}{\partial t}(x, v, t) + \underbrace{v \cdot \nabla_{x} f(x, v, t)}_{\text{streaming part}} = \underbrace{J(f, f)(x, v, t)}_{\text{collisional part}}$$

$$f(x,v,t)\geq 0,$$
 $f(x,v,t) o 0$ as $\|v\| o \infty$ $x,v\in \mathbb{R}^3$, $t\in \mathbb{R}^+_0$

J(f, f) is the collisional operator defined by

$$J(f,f) = \int_{\mathbb{R}^3} \int_{\mathbb{S}} B(v-v_1,\omega) (f'f_1'-ff_1) d\omega dv_1$$

which acts only on the velocity dependence of f

In the collision operator

$$J(f,f) = \int_{\mathbb{R}^3} \int_{\mathbb{S}} B(v-v_1,\omega) (f'f_1'-ff_1) d\omega dv_1$$

we use the **notation**

$$f = f(x, v, t)$$
 $f_1 = f(x, v_1, t)$
 $f' = f(x, v', t)$ $f'_1 = f(x, v'_1, t)$

where

 v, v_1 are pre-collisional velocities (loss terms)

 v', v'_1 are post-collisional velocities (gain terms)

Moreover

 ω is a unit vector (geometry of the collision)

 $\mathbb S$ is the unit sphere in $\mathbb R^3$

In the collision operator

$$J(f,f) = \int_{\mathbb{R}^3} \int_{\mathbb{S}} B(v-v_1,\omega) (f'f_1'-ff_1) d\omega dv_1$$

we have that

$$B(v - v_1, \omega)$$
 is the collision kernel, positive a.e.

and

$$v' = v - (v - v_1) \cdot \omega \ \omega$$

$$v'_1 = v_1 + (v - v_1) \cdot \omega \ \omega$$

with

$$v'+v_1'=v+v_1$$
 (conservation of momentum) $|v'|^2+|v_1'|^2=|v|^2+|v_1|^2$ (conservation of kinetic energy)

The most important result

about the structure of the Boltzmann equation

 \mathcal{H} -Theorem The function \mathcal{H} defined by

$$\mathcal{H}(t) = \int_{\Omega} \int_{\mathbb{D}^3} f(x, v, t) \log \left[f(x, v, t) \right] dv dx$$

is a Lyapunov function, such that

$$\bullet \ \frac{d\mathcal{H}}{dt} \leq 0$$

•
$$\frac{d^{2}H}{dt} = 0$$
 iff $J(f, f) = 0$ iff $f = f^{M}$ is Maxwellian

that is, there exist n, T > 0 and $u \in \mathbb{R}^3$ such that

$$f = f^{M} = n \left(\frac{m}{2\pi kT}\right)^{3/2} \exp\left[-\frac{m(v-u)^{2}}{2kT}\right]$$

It can be proven that

$$f = f^{M} = n \left(\frac{m}{2\pi kT}\right)^{3/2} \exp\left[-\frac{m(v-u)^{2}}{2kT}\right]$$

with n, T, u macroscopic observables given by

$$n(x,t) = \int_{\mathbb{R}^3} f(x,v,t) dv$$

$$u(x,t) = \frac{1}{n} \int_{\mathbb{R}^3} v \, f(x,v,t) dv$$

mean velocity

$$T(x,t) = \frac{1}{3kn(x,t)} \int_{\mathbb{R}^3} m(v-u(x,t))^2 f(x,v,t) dv$$
temperature

\mathcal{H} -Theorem

states that

function \mathcal{H} is strictly decreasing until functions f are locally Maxwellians, that is, until there exist hydrodynamic (macroscopic) fields

$$n$$
 (scalar), u (vector), T (scalar)

such that

$$f = f^{M} = n \left(\frac{m}{2\pi k T}\right)^{3/2} \exp\left[-\frac{m(v-u)^{2}}{2k T}\right]$$

\mathcal{H} -Theorem

Demonstrates

- the trend to equilibrium in the limit $t \to +\infty$
- the irreversibility character of the Boltzmann equation
- the evolution towards a hydrodynamic state characterized by density functions f univocally defined in terms of macroscopic fields n, u, T

Constitutes an important tool in studying hydrodynamic limits

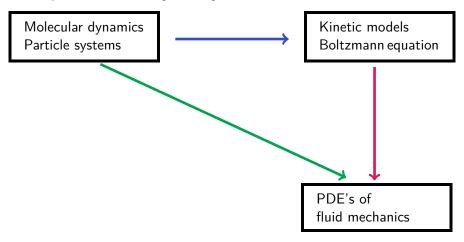
Hydrodynamic limits Challenging problem

How can we pass

from a mesoscopic regime of Boltzmann equation holding on a microscopic scale (time and space) to a hydrodynamic regime

(Euler, Navier-Stokes, Diffusive, ...), holding on a macroscopic scale (time and space)?

The problem of hydrodynamic limits



- Lanford (1974), Gallagher & Collaborators (2016-2022)
- Varadhan (1993), Olla & Varadhan (1995)
- Bardos, Golse, Levermore (1991-93), Golse & Saint Raymond (2004-2009)

Hydrodynamic limit

The first attempt is due to **D. Hilbert**, who proposed to search a solution of the BE with small variations in time and space

D Hilbert (1862-1943)

Hilbert's expansion (1912)

$$f(x,t,v) = f_{\varepsilon}(\varepsilon x, \varepsilon t, v) = f_{\varepsilon}(\hat{x}, \hat{t}, v)$$
$$f_{\varepsilon}(\hat{x}, \hat{t}, v) = \sum_{n \geq 0} \varepsilon^n f_n(\hat{x}, \hat{t}, v)$$

zero-order approximation \rightarrow Euler equations first-order approximation \rightarrow Navier-Stokes equations

Hydrodynamic limits

Mathematical result

If the initial density f_0 is a **perturbation** of the Maxwellian equilibrium with fields n_0, u_0, T_0 ,

then, in the limit $\varepsilon \rightarrow 0$,

the function f_{ε} tends to a Maxwellian equilibrium density whose fields n(x,t), u(x,t), T(x,t) define a solution of the **hydrodynamic equations**

Euler equations Navier Stokes equations Diffusion equations

with initial data n_0 , u_0 , T_0

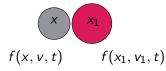
Complex systems

other relevant effects

Modelling of more complex systems Dense gas (Enskog equation, 1922)



The two functions in the collisional term are evaluated at different points



Polyatomic gas

monatomic gases

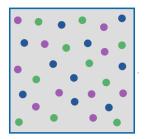
polyatomic gases

Function f depends on t, x, v, as before, **but also** on an **internal energy variable** $l \in [0, +\infty[$ f(t, x, v, l)

A weight function $\varphi_i(I)$ is introduced and . . .

$$n(t,x) = \int_{\mathbb{R}^3} \int_0^{+\infty} f(t,\mathbf{x},\mathbf{v},\mathbf{l}) \varphi(\mathbf{l}) \, d\mathbf{l} \, d\mathbf{v}$$

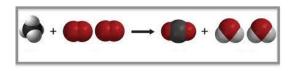
Mixtures



$$\frac{\partial f_i}{\partial t} + \mathbf{v}_i \cdot \nabla_{\mathbf{x}} f_i = \sum_{s=1}^{N} J_{is}(\underline{f}, \underline{f}), \quad i = 1, 2, \dots, N$$

collisions among all constituents of the mixture

Chemically reactive mixtures



four constituents
$$A_i$$
 $A_1 + A_2 \leftrightharpoons A_3 + A_4$

$$\frac{\partial f_{i}}{\partial t} + \mathbf{v} \cdot \nabla_{x} f_{i} = \sum_{j=1}^{4} J_{ij}^{E}(\underline{f}, \underline{f}) + J_{i}^{R}(\underline{f}, \underline{f})$$

$$\downarrow \qquad \qquad \downarrow$$
streaming inert mixture chem reaction

Changing to a biological context Kinetic theory of active particles

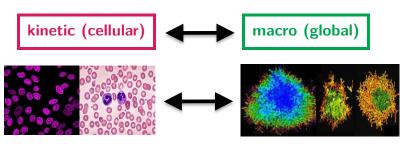
- cellular dynamics
- biological expression of cells (activity)
- cellular interactions
 conservative and non-conservative
 proliferation and destruction
 birth and death rates

Crucial question

How the cellular activity and the individual behaviour of cells at the microscopic level (kinetic)

AFFECT

the **collective** behaviour of the **populations** at the *observable* level (**macroscopic**)?



Biological context

Kinetic theory

Competing bacterial populations on a leaf surface

Hydrodynamic limit

Reaction-diffusion equations
Self and **cross diffusion** effects

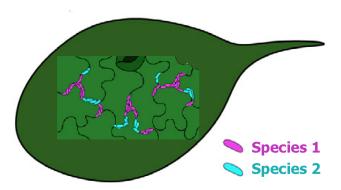
Turing instability

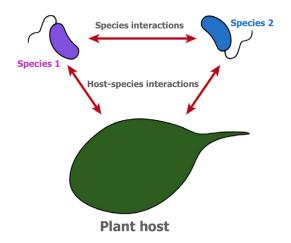
Formation of spatial patterns

2. Model for cell populations

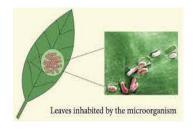
Problem | bacteria populations on a leaf surface

Two bacterial strains leave on a leaf surface





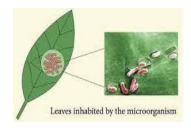
Bacteria **interact** one with each other and with **host**They experience different **processes** with the **host**



Bacteria are exposed to **environmental stress** like radiation, temperature oscillations, dryness

They interact and compete with other microbes

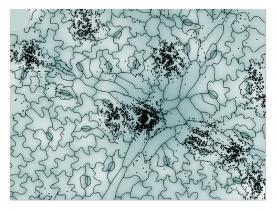
Their **survival** on the leaf surface depends on how many **nutrients** are available



Bacteria compete for resources and the resources availability fluctuates

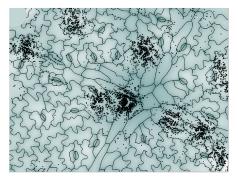
They **extract** the **nutrients** from the leaf surface also by **cooperating**

Bacteria form clusters in extracting nutrients



Esser, Leveau, Meyer, Wiegand, FEMS Microbiol Ecol, 91, 2015

Bacteria form **clusters** in extracting nutrients Some **spatial patterns** appear



Esser, Leveau, Meyer, Wiegand, FEMS Microbiol Ecol, 91, 2015

These interactions occur at **different scales** of time and space

Understanding these scales is crucial for **interpreting** spatial microbial **collonization patterns**

[Esser, Leveau, Meyer, Wiegand, FEMS Microbiol Ecol, 91, 2015]

Kinetic Theory of Active Particles

- provides powerful tools to study this biological process
- is able to describe how macroscopic phenomena like observable patterns
 self organization
 collective motion

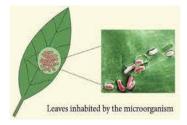
emerge from the underlying **microscopic** dynamics and **individual** behaviour

The problem

Bacterial populations C_1 and C_2 , with C_2 being more competitive Cells of C_2 can **destroy** cells of C_1

Host population ${\bf H}$ constituted by the cells of the leaf Population ${\bf L}$ of cells of the leaf having disposable nutrient

The bacteria proliferate when extracting nutrient from the leaf



The kinetic description

The behaviour of cells is described by distribution functions

$$f_i: [0,\infty] \times \Gamma \times \mathbb{R}^2 \times [-1,1] \to \mathbb{R}^+, i=1,2,H,L$$

such that $f_i(t, x, v, u)$ gives the number of cells of *i*-population with activity $u \in [-1, 1]$ and velocity $v \in \mathbb{R}^2$ at time $t \geq 0$ and position $x \in \Gamma$

$$i = 1, 2$$
 for bacteria $i = H$ for Host $i = L$ for Leaf nourishing cells

The number of cells of the *i*-population at time t and position x is

$$n_i(t,x) = \int_{-1}^1 \int_{\mathbb{R}^2} f_i(t,x,v,u) \, dv \, du, \quad i = 1,2,H,L$$

Kinetic equations

We follow the behaviour of bacterial populations and population L

$$\frac{\partial f_{1}}{\partial t} + u \mathbf{c}_{1}(\mathbf{x}, t) \cdot \nabla_{\mathbf{X}} f_{1} = \mathcal{G}_{1}^{H}[f_{1}, f_{H}] + \mathcal{L}_{12}[f_{1}, f_{2}] \\
+ \left(\mathcal{N}_{1L}[f_{1}, f_{L}] + \mathcal{N}_{12}[f_{1}, f_{2}]\right) \\
\frac{\partial f_{2}}{\partial t} + u \mathbf{c}_{2}(\mathbf{x}, t) \cdot \nabla_{\mathbf{X}} f_{2} = \mathcal{G}_{2}^{H}[f_{2}, f_{H}] + \mathcal{L}_{21}[f_{2}, f_{1}] \\
+ \left(\mathcal{N}_{2L}[f_{2}, f_{L}] + \mathcal{N}_{22}[f_{2}, f_{2}] + \mathcal{J}_{2}[f_{2}]\right) \\
\frac{\partial f_{L}}{\partial t} = \left(\mathcal{N}_{L1}[f_{L}, f_{1}] + \mathcal{N}_{L2}[f_{L}, f_{2}]\right) + \mathcal{Q}_{12}^{L}[f_{1}, f_{2}]$$

The terms on the r.h.s are non-linear integral operators

$$\begin{split} \frac{\partial f_{1}}{\partial t} + u c_{1}(\mathbf{x}, t) \cdot \nabla_{\mathbf{x}} f_{1} &= \mathcal{G}_{1}^{H}[f_{1}, f_{H}] + \mathcal{L}_{12}[f_{1}, f_{2}] + \left(\mathcal{N}_{1L}[f_{1}, f_{L}] + \mathcal{N}_{12}[f_{1}, f_{2}]\right) \\ \frac{\partial f_{2}}{\partial t} + u c_{2}(\mathbf{x}, t) \cdot \nabla_{\mathbf{x}} f_{2} &= \mathcal{G}_{2}^{H}[f_{2}, f_{H}] + \mathcal{L}_{21}[f_{2}, f_{1}] + \left(\mathcal{N}_{2L}[f_{2}, f_{L}] + \mathcal{N}_{22}[f_{2}, f_{2}] + \mathcal{J}_{2}[f_{2}]\right) \\ \frac{\partial f_{L}}{\partial t} &= \left(\mathcal{N}_{L1}[f_{L}, f_{1}] + \mathcal{N}_{L2}[f_{L}, f_{2}]\right) + \mathcal{Q}_{12}^{L}[f_{1}, f_{2}] \end{split}$$

 $\mathcal{G}_i^H[f_i, f_H]$ conservative interactions between bacteria and host tissue

$$\mathcal{G}_i^H[f_i, f_H] = \overline{\eta}_i \overline{\beta}_i \int_{-1}^1 \left[f_i(u') - f_i(u) \right] du', \quad i = 1, 2$$

where

 $\overline{\eta}_i \geq 0$ is the **interaction frequency** between bacteria and host cell $\overline{\beta}_i \in [0,1]$ is a **transition probability** for a bacteria to pass from activity u to activity u' after interaction with a host cell

$$\begin{split} \frac{\partial f_{1}}{\partial t} + u c_{1}(\mathbf{x}, t) \cdot \nabla_{\mathbf{x}} f_{1} &= \mathcal{G}_{1}^{H}[f_{1}, f_{H}] + \mathcal{L}_{12}[f_{1}, f_{2}] + \left(\mathcal{N}_{1L}[f_{1}, f_{L}] + \mathcal{N}_{12}[f_{1}, f_{2}]\right) \\ \frac{\partial f_{2}}{\partial t} + u c_{2}(\mathbf{x}, t) \cdot \nabla_{\mathbf{x}} f_{2} &= \mathcal{G}_{2}^{H}[f_{2}, f_{H}] + \mathcal{L}_{21}[f_{2}, f_{1}] + \left(\mathcal{N}_{2L}[f_{2}, f_{L}] + \mathcal{N}_{22}[f_{2}, f_{2}] + \mathcal{J}_{2}[f_{2}]\right) \\ \frac{\partial f_{L}}{\partial t} &= \left(\mathcal{N}_{L1}[f_{L}, f_{1}] + \mathcal{N}_{L2}[f_{L}, f_{2}]\right) + \mathcal{Q}_{12}^{L}[f_{1}, f_{2}] \end{split}$$

 $\mathcal{L}_{ij}[f_i, f_j]$ turning operators that modify the re-orientation of bacteria (they depend on densities n_1, n_2)

$$\mathcal{L}_{ij}[f_i, f_j] = \int_{\mathbb{S}^1} \lambda_{ij} \, \hat{\mathbf{v}} \cdot \hat{\mathbf{v}}'(\hat{\mathbf{v}}' \cdot \nabla_{\mathbf{x}} n_j(t, \mathbf{x})) \, f_i(t, \mathbf{x}, \hat{\mathbf{v}}', u) d \hat{\mathbf{v}}'$$

where

$$\lambda_{ij}$$
 is a turning rate of type $\lambda_{ij} \Big(n_1(t, \mathbf{x}), n_2(t, \mathbf{x}) \Big)$

$$\frac{\partial f_{1}}{\partial t} + uc_{1}(x,t) \cdot \nabla_{x} f_{1} = \mathcal{G}_{1}^{H}[f_{1}, f_{H}] + \mathcal{L}_{12}[f_{1}, f_{2}] + \left(\mathcal{N}_{1L}[f_{1}, f_{L}] + \mathcal{N}_{12}[f_{1}, f_{2}]\right)
\frac{\partial f_{2}}{\partial t} + uc_{2}(x,t) \cdot \nabla_{x} f_{2} = \mathcal{G}_{2}^{H}[f_{2}, f_{H}] + \mathcal{L}_{21}[f_{2}, f_{1}] + \left(\mathcal{N}_{2L}[f_{2}, f_{L}] + \mathcal{N}_{22}[f_{2}, f_{2}] + \mathcal{J}_{2}[f_{2}]\right)
\frac{\partial f_{L}}{\partial t} = \left(\mathcal{N}_{L1}[f_{L}, f_{1}] + \mathcal{N}_{L2}[f_{L}, f_{2}]\right) + \mathcal{Q}_{12}^{L}[f_{1}, f_{2}]$$

Population C_2 is supposed to be more aggressive than C_1

$$\mathcal{J}_2[\mathit{f}_2]$$
 natural decay $\;\mathcal{J}_2[\mathit{f}_2] = -\overline{ au}_2\,\mathit{f}_2(\hat{m{v}},u)$

 $\mathcal{N}_{i2}[f_i, f_2]$ destructive interactions

$$\mathcal{N}_{i2}[f_i, f_2] = -\overline{\nu}_{i2} f_i(\hat{\boldsymbol{v}}, u) \int_{\mathbb{S}^1} \int_{-1}^1 f_2(\hat{\boldsymbol{v}}', u') du' d\hat{\boldsymbol{v}}'$$

where $\mathcal{N}_{12}[f_1, f_2]$ describes **interspecific** competition $\mathcal{N}_{22}[f_2, f_2]$ describes **intraspecific** competition

$$\begin{split} \frac{\partial f_{1}}{\partial t} + u c_{1}(\mathbf{x}, t) \cdot \nabla_{\mathbf{x}} f_{1} &= \mathcal{G}_{1}^{H}[f_{1}, f_{H}] + \mathcal{L}_{12}[f_{1}, f_{2}] + \left(\mathcal{N}_{1L}[f_{1}, f_{L}] + \mathcal{N}_{12}[f_{1}, f_{2}]\right) \\ \frac{\partial f_{2}}{\partial t} + u c_{2}(\mathbf{x}, t) \cdot \nabla_{\mathbf{x}} f_{2} &= \mathcal{G}_{2}^{H}[f_{2}, f_{H}] + \mathcal{L}_{21}[f_{2}, f_{1}] + \left(\mathcal{N}_{2L}[f_{2}, f_{L}] + \mathcal{N}_{22}[f_{2}, f_{2}] + \mathcal{J}_{2}[f_{2}]\right) \\ \frac{\partial f_{L}}{\partial t} &= \left(\mathcal{N}_{L1}[f_{L}, f_{1}] + \mathcal{N}_{L2}[f_{L}, f_{2}]\right) + \mathcal{Q}_{12}^{L}[f_{1}, f_{2}] \end{split}$$

 $\mathcal{N}_{iL}[f_i, f_L]$ proliferative for bacteria due the nutrient extracted from the leaf $\mathcal{N}_{Li}[f_i, f_L]$ destructive for the leaf due the detriment of population L

$$\mathcal{N}_{iL}[f_{i}, f_{L}] = \overline{\mu}_{iL}\varphi_{iL}(\hat{\boldsymbol{v}}, u) \iint_{\mathbb{S}^{1} \times \mathbb{S}^{1} - 1 - 1} \int_{1}^{1} f_{i}(\hat{\boldsymbol{v}}_{*}, u_{*}) f_{L}(\hat{\boldsymbol{v}}', u') du_{*} du' d\hat{\boldsymbol{v}}_{*} d\hat{\boldsymbol{v}}'$$

$$\mathcal{N}_{Li}[f_{L}, f_{i}] = -\overline{\nu}_{Li} f_{L}(\hat{\boldsymbol{v}}, u) \int_{\mathbb{S}^{1} - 1}^{1} f_{j}(\hat{\boldsymbol{v}}', u') du' d\hat{\boldsymbol{v}}'$$

where $\overline{\mu}_{iL}$ is a **proliferative** rate and $\overline{\nu}_{Li}$ a **consumption** rate

$$\begin{split} \frac{\partial f_{1}}{\partial t} + u c_{1}(\mathbf{x}, t) \cdot \nabla_{\mathbf{x}} f_{1} &= \mathcal{G}_{1}^{H}[f_{1}, f_{H}] + \mathcal{L}_{12}[f_{1}, f_{2}] + \left(\mathcal{N}_{1L}[f_{1}, f_{L}] + \mathcal{N}_{12}[f_{1}, f_{2}]\right) \\ \frac{\partial f_{2}}{\partial t} + u c_{2}(\mathbf{x}, t) \cdot \nabla_{\mathbf{x}} f_{2} &= \mathcal{G}_{2}^{H}[f_{2}, f_{H}] + \mathcal{L}_{21}[f_{2}, f_{1}] + \left(\mathcal{N}_{2L}[f_{2}, f_{L}] + \mathcal{N}_{22}[f_{2}, f_{2}] + \mathcal{J}_{2}[f_{2}]\right) \\ \frac{\partial f_{L}}{\partial t} &= \left(\mathcal{N}_{L1}[f_{L}, f_{1}] + \mathcal{N}_{L2}[f_{L}, f_{2}]\right) + \mathcal{Q}_{12}^{L}[f_{1}, f_{2}] \end{split}$$

 $Q_{12}^{L}[f_i, f_L]$ cooperative operator

$$Q_{12}^{L}[f_i, f_L] = \overline{\sigma}_{12}^{L} \psi_{12}^{L}(\hat{\boldsymbol{v}}, u) \iint \int_{\mathbb{S}^1 \times \mathbb{S}^1 - 1 - 1}^{1} f_1(\hat{\boldsymbol{v}}_*, u_*) f_2(\hat{\boldsymbol{v}}', u') du_* du' d\hat{\boldsymbol{v}}_* d\hat{\boldsymbol{v}}'$$

where $\overline{\sigma}_{12}^L$ is an interaction frequency ψ_{12}^L the expected density of newborn *L*-cells

Asymptotic analysis

• We perform a **time scaling** assuming that

the dominant process is the
interaction of bacteria with the host environment
slow processes are
proliferative interations and destructive interations
moderate processes are
re-orientation of bacteria
movement of bacteria
cooperation of bacteria

 We choose a small parameter ε and perform the the scaling of the equations the expansion of the unknown functions

Rescalled kinetic equations (diffusive limit)

$$\varepsilon \frac{\partial f_1}{\partial t} + u \mathbf{c}_1(\mathbf{x}, t) \cdot \nabla_{\mathbf{x}} f_1 = \frac{1}{\varepsilon} \mathcal{G}_1^H[f_1, f_H] + \mathcal{L}_{12}[f_1, f_2]$$

$$+ \varepsilon \left(\mathcal{N}_{1L}[f_1, f_L] + \mathcal{N}_{12}[f_1, f_2] \right)$$

$$\varepsilon \frac{\partial f_2}{\partial t} + u \mathbf{c}_2(\mathbf{x}, t) \cdot \nabla_{\mathbf{x}} f_2 = \frac{1}{\varepsilon} \mathcal{G}_2^H[f_2, f_H] + \mathcal{L}_{21}[f_2, f_1]$$

$$+ \varepsilon \left(\mathcal{N}_{2L}[f_2, f_L] + \mathcal{N}_{22}[f_2, f_2] + \mathcal{J}_2[f_2] \right)$$

$$\varepsilon \frac{\partial f_L}{\partial t} = \varepsilon \left(\mathcal{N}_{L1}[f_L, f_1] + \mathcal{N}_{L2}[f_L, f_2] \right) + \mathcal{Q}_{12}^L[f_1, f_2]$$

where the time is also rescaled as $\tilde{t} = \varepsilon t$ and the tilde is omitted

Hilbert expansions of f_i in terms of ε

$$f_i(t, \mathbf{x}, \hat{\mathbf{v}}, u) = f_i^0(t, \mathbf{x}, \hat{\mathbf{v}}, u) + \varepsilon f_i^1(t, \mathbf{x}, \hat{\mathbf{v}}, u) + \varepsilon^2 f_i^2(t, \mathbf{x}, \hat{\mathbf{v}}, u) + O(\varepsilon^3)$$

with the usual, convenient assumption that the total mass density is concentrated on the ε^0 term

$$\int\limits_{\mathbb{S}^1}\int\limits_{-1}^1 f_i^0(t,oldsymbol{x},\hat{oldsymbol{v}},u)\,du\,d\hat{oldsymbol{v}}=n_i(t,oldsymbol{x})$$
 $\int\limits_{\mathbb{S}^1}\int\limits_{-1}^1 f_i^k(t,oldsymbol{x},\hat{oldsymbol{v}},u)\,du\,d\hat{oldsymbol{v}}=0,\quad ext{for }k\geq 1$

Solvability condition

about the equilibrium of the conservative operators

Assumption

• There exists an **equilibrium** distribution $M_i(u)$ of the **conservative** operator, uniform in $\hat{\mathbf{v}}$ and independent of x and t, satisfying a **detailed balance principle**, such that

$$\mathcal{G}_i^H[extstyle{ extstyle M}_i, f_H] = 0$$

$$\int\limits_{-1}^1 M_i(u) \, du = 1 \qquad ext{and} \qquad \int\limits_{-1}^1 u \, M_i(u) \, du = 0$$

ullet There exists $\gamma>0$ such that the following **bound condition** holds

$$\overline{\eta}_i \overline{\beta}_i \int_{-1}^1 f_{\mathcal{H}}(u_*) du_* \geq \gamma M_i(u)$$

Crucial result

about the equilibrium of the conservative operators

Theorem

Consider the previous Assumption.

Then, the equation

$$\mathcal{G}_i^H[\mathbf{h}_i, f_H] = g_i$$
 with $\int\limits_{-1}^1 g_i(u) \, du = 0$

has a **unique solution** $extbf{ extit{h}}_i \in L^2\left([-1,1], rac{du}{M_i}
ight)$ satisfying

$$\int_{1}^{1} h_i(u) du = 0$$

Macroscopic equations

Inserting expansions of f_i in the scaled equations equating terms of the same order in ε going from 0-order to 1-order and then to 2-order using the properties of the operators

we obtain **global balance equations** for the time-space evolution of the densities of the bacterial populations

Theorem Reaction-diffusion equations (mac)

$$\frac{\partial n_1}{\partial t} = c_1 \nabla_{\mathbf{X}} \cdot \left(c_1 \mathcal{D}_1 \nabla_{\mathbf{X}} n_1 - \chi_1 \lambda_{12} \nabla_{\mathbf{X}} n_2 \right) + \frac{\zeta n_1^2 n_2}{n_1 + \beta n_2} - n_1 n_2$$

$$\frac{\partial n_2}{\partial t} = c_2 \nabla_{\mathbf{X}} \cdot \left(c_2 \mathcal{D}_2 \nabla_{\mathbf{X}} n_2 - \chi_2 \lambda_{21} \nabla_{\mathbf{X}} n_1 \right) + \frac{\zeta \beta n_1 n_2^2}{n_1 + \beta n_2} - \tau n_2 - \nu n_2^2$$

 λ_{ij} turning rates \mathcal{D}_i self diffusion coefficients χ_i chemotaxis (cross diffusion) coefficients

they depend on microscopic interaction rates

The **cross-diffusion** terms come from the turning operators and re-orientation of bacteria

The kinetic equation for cells of the **leaf surface** is used to close the macroscopic equations for n_1 , n_2

Turing instability

Homogeneous steady state (without diffusion)

$$(\overline{n}_1, \overline{n}_2) = \left(\frac{\beta \tau}{(\zeta - 1)(\beta - \nu)}, \frac{\tau}{\beta - \nu}\right), \quad \zeta > 1, \ \beta > \nu$$

- It is **stable** if $\zeta > \frac{1-\beta}{1-\nu}$ and $\nu > 1$
- It is **unstable** if $\zeta < \frac{1-\beta}{1-\nu}$
- An **Hopf bifurcation** occurs if $\zeta = \frac{1-\beta}{1-\nu}$

Patterns formation and Turing instability

- a Turing pattern arises when a stable equilibrium state of the spatial homogeneous system becomes unstable in presence of diffusion
- This condition may lead to spatial patterns that can describe relevant processes in the leaf flora and bacterial life

Turing instability

This requires to linearize the macroscopic system with diffusion around the equilibrium state

We obtain

$$\frac{\partial \mathbf{w}}{\partial t}(t,x) = \mathbf{D}\Delta_{\mathbf{x}}\mathbf{w}(t,x) + \mathbf{J}\mathbf{w}(t,x) \quad \text{on } (0,+\infty) \times \Gamma$$

where J is the Jacobian matrix and D is the diffusion matrix

Turing instability is reached whenever the steady state becomes unstable to spatial perturbations.

Turing instability

We use **separation of variables** and consider a **normal mode** expansion in **Fourier series** to search solutions

$$\mathbf{w}(\mathbf{x},t) = \sum_{k \in \mathbb{N}} c_k e^{\lambda_k t} \, \overline{\mathbf{w}}_k(\mathbf{x})$$

Eigenfunctions $\overline{\mathbf{w}}_k(\mathbf{x})$ represent independent **perturbation modes Eigenvaluess** λ_k are the corresponding growth rates

Thus, eigenfunctions $\overline{\mathbf{w}}_k(\mathbf{x})$ solve the time-independent problem

$$\begin{cases} \Delta \overline{\mathbf{w}}_k + k^2 \overline{\mathbf{w}}_k = \mathbf{0} & \text{in } \Gamma \\ \nu \cdot \nabla_{\mathbf{x}} \overline{\mathbf{w}}_k = 0 & \text{at } \partial \Gamma \end{cases}$$

and λ_k are **eigenvalues** of the matrix

$$J - k^2 D$$

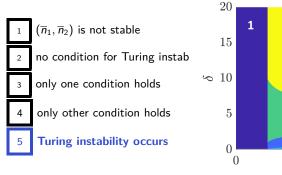
Turing **instability** occurs if there exists an **eigenvalue** with **positive real part**

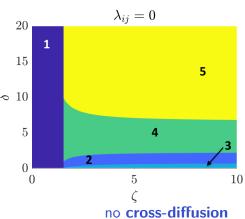
3. Numerical illustrations

Numerical simulations (cross diffusion)

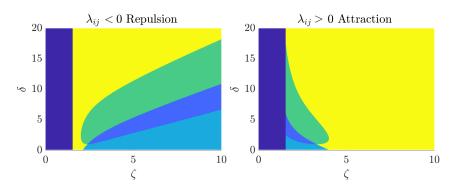
Stability of the homogeneous steady state and **instability** of the equilibrium state in presence of **diffusion** leads to a suitable **parameter space**.

Bifurcation diagram ($\delta = \mathcal{D}_2/\mathcal{D}_1$)





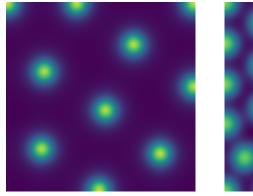
Bifurcation diagrams



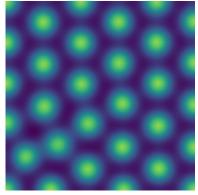
cross-diffusion repulsive potential

cross-diffusion attractive potential

Pattern formation (2D domain) for n_1

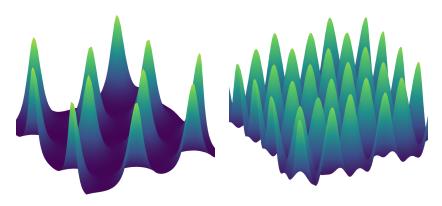


constant self-diffusion cross-diffusion repulsive potential



constant self-diffusion cross-diffusion attractive potential

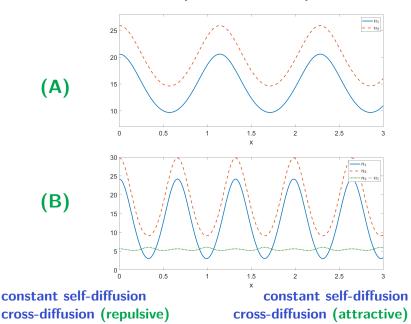
Pattern formation (2D domain)



constant self-diffusion cross-diffusion repulsive potential

constant self-diffusion cross-diffusion attractive potential

Pattern formation (2D domain)



Numerical method

- square domain $\Omega = [0,\pi] imes [0,\pi]$
- initial conditions correspond to a small perturbation of the steady state
- Neumann boundary conditions with no flux at the boundary
- ▶ finite element method in space x
- finite difference method in time t
- non linear system
- the numerical scheme is implemented in Python

References

M. Bisi, D. Cusseddu, A.J. Soares, R. Travaglini

Reaction-diffusion systems from kinetic models for bacterial communities on a leaf surface (to submit very soon)

C. Bardos, H. Hutridurga

Simultaneous diffusion and homogenization asymptotic for the linear Boltzmann equation. Asymptotic Analysis, **100**, 111–130, 2016

J.A. Cañizo, A. Einav, B. Lods

On the rate of convergence to equilibrium for the linear Boltzmann equation with soft potentials. Journal of Mathematical Analysis and Applications, **462**, 801–839, 2018

D.S. Esser, J.H. Leveau, K.M. Meyer, K. Wiegand

Spatial scales of interactions among bacteria and between bacteria and the leaf surface. FEMS microbiology ecology, $\bf 91$, 2015

Obrigada pela vossa atenção!

Thank you for your attention!