Non-compact 3d TQFTs from non-semisimple modular categories

Theodoros Lagiotis University of Edinburgh

$$\square \quad \stackrel{\nu^{\dagger}}{\Leftarrow} \quad \Theta \qquad \stackrel{\Theta}{\underset{\omega}{\overset{\mu^{\dagger}}{\xleftarrow{}}}} \quad \stackrel{\mu}{\underset{\omega}{\overset{\mu^{\dagger}}{\xleftarrow{}}}} \quad \stackrel{\mu}{\underset{\omega}{\overset{\mu}{\xleftarrow{}}}} \quad \stackrel{\mu}{\underset{\omega}{\overset{\mu}{\underset{\omega}{\xleftarrow{}}}} \quad \stackrel{\mu}{\underset{\omega}{\overset{\mu}{\underset{\omega}{\atop{}}}}} \quad \stackrel{\mu}{\underset{\omega}{\overset{\mu}{\underset{\omega}{\atop{}}}} \quad \stackrel{\mu}{\underset{\omega}{\underset{\omega}{\atop{}}}} \quad \stackrel{\mu}{\underset{\omega}{\atop{}}} \quad \stackrel{\mu}{\underset{\omega}{\underset{\omega}{\atop{}}}} \quad \stackrel{\mu}{\underset{\omega}{\atop{}}} \quad \stackrel{\mu}{\underset{\omega}{\atop{}}} \quad \stackrel{\mu}{\underset{\omega}{\underset{\omega}{\atop{}}} \quad \stackrel{\mu}{\underset{\omega}{\atop{}}} \quad \stackrel{\mu}{\underset{\omega}{\atop{}} \quad \stackrel{\mu}{\underset{\omega}{\atop{}}} \quad \stackrel{\mu}{\underset{\omega}{\atop{}}} \quad \stackrel{\mu}{\underset{\omega}{\atop{}}} \quad \stackrel{\mu}{\underset{\omega}{\atop{}} \quad \stackrel{\mu}{\underset{\omega}{\atop{}}} \quad \stackrel{\mu}{\underset{\omega}{\atop{}}} \quad \stackrel{\mu}{\underset{\omega}{\atop{}}} \quad \stackrel{\mu}{\underset{\omega}{\atop{}} \quad \stackrel{\mu}{\underset{\omega}{\atop{}}} \quad \stackrel{\mu}{\underset{\omega}{\atop{}}} \quad \stackrel{\mu}{\underset{\omega}{\atop{}} \quad \stackrel{\mu}{\underset{\omega}{\atop{}}} \quad \stackrel{\mu}{\underset{\omega}{\atop{}}} \quad \stackrel{\mu}{\underset{\omega}{\atop{}} \quad \stackrel{\mu}{\underset{\omega}{\atop{}} \quad \stackrel{\mu}{\underset{\omega}{\atop{}}} \quad \stackrel{\mu}{\underset{\omega}{\atop{}} \quad \stackrel{\mu}{\underset{\omega}{\underset{\omega}{\atop{}} \quad \stackrel{\mu}{\underset{\omega}{\atop }} \quad \stackrel{\mu}{\underset{\omega}{\atop }} \quad \stackrel{\mu}{\underset{\omega}{\atop{}} \quad \stackrel{\mu}{\underset{\omega}{\underset{\omega}{\atop{}} \quad \stackrel{\mu}{\underset{\omega}{\atop }} \quad \stackrel{\mu}{\underset{\omega}{\underset{\omega}{\atop }} \quad \stackrel{\mu}{\underset{\omega}{\underset{\omega}{\atop }} \quad$$

Lisbon TQFT 18/12/2024

Theodoros Lagiotis

Non-compact 3d TQFTs

Outline

- 1 Introduction & Motivation
 - The RT TQFT
 - Towards non-semisimplicity
- 2 Non-semisimplicity in the extended setting
 - Non-semisimplicity and non-compactness
- **3** Presentation of $Bord_{3,2,1}^{nc}$
 - Generators for Bord_{3,2,1}
 - Generators for $Bord_{3,2,1}^{nc}$
 - Results
 - Non-compact TQFT
 - 3-manifold invariants
 - Modified trace

Table Of Contents

INTRODUCTION & MOTIVATION

- The RT TQFT
- Towards non-semisimplicity

2 Non-semisimplicity in the extended setting

3 Presentation of $Bord_{3,2,1}^{nc}$

The RT TQFT

- Input data is a semisimple modular tensor category \mathcal{C}_0 .
- Initially invariants of links, later promoted to a TQFT. Cobordisms can be decorated by objects and morphisms of C_0 .
- Distinguished object $\mathcal{F} := \bigoplus_i x_i^{\vee} \otimes x_i$ plays an important role in the construction.

$$\mathcal{Z}_{RT}(\Sigma_g) = \operatorname{Hom}_{\mathcal{C}}(1, \mathcal{F}^{\otimes g}).$$

 In 2015, [BDSPV] classified once extended 3d TQFTs Bord_{3,2,1} → '2Vect' by semisimple MTCs by providing generators and relations for Bord_{3,2,1}.

Towards non-semisimplicity

- Hennings: First to obtain 3-manifold invariants from non-ss data.
- Lyubashenko: Gave a non-semisimple version of the original definition of an MTC, and used it to define 3-manifold invariants and (projective) mapping class group representations of surfaces.
- Kerler-Lyubashenko: 'TQFT-like' construction (double categories, partially defined, only connected surfaces).
- DGGPR TQFT, input is again a potentially non-ss MTC, *C*. Importantly, there is an admissibility condition on the cobordisms. They need to carry projective labels.

Coend Hopf algebra

When C is a non-semisimple MTC, the distinguished object takes the form of a coend:

$$\mathcal{F} := \int^{x \in \mathcal{C}} x^{\vee} \otimes x.$$

In both ss and non-ss cases, it is a Hopf algebra object. In fact, it carries extra structure, that of an integral $\Lambda \colon \mathbb{1} \to \mathcal{F}$ and a cointegral $\Lambda^{co} \colon \mathcal{F} \to \mathbb{1}$.

This data will be central for our construction.

Non-semisimplicity in the extended setting?

Thinking of classification questions:

'Can we define extended 3d TQFTs from non-semisimple MTCs?' However, bearing in mind the classification result of [BDSPV], we should rather ask:

'How to adapt the extended setting to allow for non-semisimplicity?'

Table Of Contents

INTRODUCTION & MOTIVATION

NON-SEMISIMPLICITY IN THE EXTENDED SETTINGNon-semisimplicity and non-compactness

3 Presentation of $Bord_{3,2,1}^{nc}$

4 Results

Non-semisimplicity and non-compactness

- Let $Z: \operatorname{Bord}_{3,2,1} \to \mathcal{D}$ be a once extended 3d TQFT.
- Then, $Z(S^1 \times -)$ is a fully extended 2d TQFT, and therefore $Z(S^1)$ is 2-dualizable.
- However, for all the '2-vector space' candidate targets that were considered by [BDSPV], the 2-dualizable objects are semisimple.

Idea: Relax the 2-dualizability requirement by altering the source and target 2-categories of the TQFT.

Non-semisimplicity and non-compactness

• To alter the source, turn to **Lurie's non-compact TQFT**. Bord^{nc}_{3,2,1} has the same objects and 1-morphisms as Bord_{3,2,1}, but 2-morphisms have incoming boundary in every connected component.

This gets rid of 2-dualizability. (More explicit with generators)

• Choose a **suitable target**, whose 1-dualizable objects are not semisimple:

The symmetric monoidal bicategory **Rex**, with **objects** small linear categories that admit finite colimits, **1-morphisms** right exact functors (finite colimit preserving functors), and

2-morphisms natural transformations.

Intuitively, everything is determined by projectives if \mathcal{C} is finite.

Table Of Contents

INTRODUCTION & MOTIVATION

2 Non-semisimplicity in the extended setting

3 Presentation of $BORD_{3,2,1}^{nc}$

- Generators for Bord_{3,2,1}
- Generators for $Bord_{3,2,1}^{nc}$

4 RESULTS

Generators for Cob_2

 ${\rm Cob}_2$ is the free symmetric monoidal category generated by a commutative Frobenius algebra. Generating object: S^1

Generating morphisms:

They satisfy (co)associativity, (co)unit, Frobenius and commutativity relations.

TQFTs $\operatorname{Cob}_2 \to \mathcal{A}$ are classified by commutative Frobenius algebras in \mathcal{A} .

Invertible 2-morphism generators

Now, passing to 2-morphism generators of $Bord_{3,2,1}$:

Non-invertible 2-morphism generators

Claim [BDPSV]: The presentation above, subject to relations, generates the symmetric monoidal bicategory $Bord_{3,2,1}$.

Theodoros Lagiotis

Non-compact 3d TQFTs

Lisbon TQFT 18/12/2024 14/23

Some relations - Zigzag identities

The following composites are equal to the identity 2-morphism:

Non-invertible 2-morphism generators

Conjecture: The presentation obtained by discarding ν and the relations involving it, generates Bord^{*nc*}_{3,2,1}.

Table Of Contents

INTRODUCTION & MOTIVATION

2 Non-semisimplicity in the extended setting

B) Presentation of $Bord_{3,2,1}^{nc}$

- Non-compact TQFT
- 3-manifold invariants
- Modified trace

Assignment \mathcal{Z}_{nc} on objects and 1-morphisms

Using the data of \mathcal{C} , we define the (for now) assignment \mathcal{Z}_{nc} : Bord^{*nc*}_{3,2,1} \rightarrow Rex:

Generators of $\operatorname{Bord}_{3,2,1}^{nc}$	Data used to define
S^1	C
	$\otimes\colon \mathcal{C}\boxtimes \mathcal{C}\to \mathcal{C}$
~	$\int_{-\infty}^{y\in\mathcal{C}} y^{\vee}\boxtimes y\colon\mathcal{C}\to\mathcal{C}\boxtimes\mathcal{C}$
	$\int -\otimes \mathbb{1} : \operatorname{Vec}_k \to \mathcal{C}$
	$\operatorname{Hom}_{\mathcal{C}}(-,\mathbb{1})^*\colon \mathcal{C}\to \operatorname{Vec}_k$

We already see that $\mathcal{Z}_{nc}(\Sigma_g) = \operatorname{Hom}_{\mathcal{C}}(\mathcal{F}^{\otimes g}, \mathbb{1})^*$.

Assignment \mathcal{Z}_{nc} on 2-morphisms

For the assignments on 2-morphisms we make use of the equivalence $\mathcal{C} \boxtimes \mathcal{C} \cong \mathcal{C}^{\mathcal{F}}$.

Generators of $\operatorname{Bord}_{3,2,1}^{nc}$	Data used to define
ϵ	Counit of \mathcal{F} (evaluation)
η	Coaction (coevaluation)
ϵ^{\dagger}	Integral Λ
η^{\dagger}	Cointegral Λ^{co}, m, S
μ	Involves $\varepsilon_{\mathbb{1}} : P_{\mathbb{1}} \to \mathbb{1}$ and $\eta_{\mathbb{1}} : \mathbb{1} \to P_{\mathbb{1}}$
μ^{\dagger}	Unit of $\operatorname{Hom}_{\mathcal{C}}(-, 1)^* \dashv - \otimes 1$
$ u^{\dagger}$	Counit of $\operatorname{Hom}_{\mathcal{C}}(-, 1)^* \dashv - \otimes 1$

Non-compact TQFT $% \mathcal{T}_{\mathrm{A}}$

Theorem (L.)

The assignment \mathcal{Z}_{nc} is a well defined symmetric monoidal 2-functor.

The proof of this theorem amounts to checking that all the relations of the presentation are preserved by \mathcal{Z}_{nc} .

Theorem (L.)

The (projective) mapping class group representations ρ_{nc} are dual to Lyubashenko's ρ_L .

3-manifold invariants

Given a closed, connected 3-manifold M, we can evaluate the noncompact TQFT on $M \setminus D^3$:

$$\mathcal{Z}_{nc}(M \setminus D^3) \colon \mathcal{Z}_{nc}(S^2) \to k.$$

The vector spaces $\mathcal{Z}_{nc}(S^2)$ and k are isomorphic, but not identical, so this map doesn't quite produce an invariant.

However, there is also the non-zero map $\mathcal{Z}_{nc}(D^3): \mathcal{Z}_{nc}(S^2) \to k$. Both $\mathcal{Z}_{nc}(D^3)$ and $\mathcal{Z}_{nc}(M \setminus D^3)$ are elements of the one dimensional vector space $\mathcal{Z}_{nc}(S^2)^*$.

Theorem (L. - In progress)

The number $\mathcal{Z}_{nc}(M \setminus D^3) / \mathcal{Z}_{nc}(D^3)$ is the Lyubashenko invariant of M.

Modified trace

For an MTC \mathcal{C} , a modified trace on the tensor ideal $\operatorname{Proj}(\mathcal{C})$, is a k-linear map $\int_{-\infty}^{P \in \operatorname{Proj}(\mathcal{C})} \operatorname{Hom}_{\mathcal{C}}(P, P) \to k$, satisfying a nondegeneracy condition and some compatibility with the monoidal product. Modified traces were used in the construction of [DGGPR]. However, the space $\int_{-\infty}^{P \in \operatorname{Proj}(\mathcal{C})} \operatorname{Hom}_{\mathcal{C}}(P, P)$ is canonically isomorphic to $\mathcal{Z}_{nc}(T^2)$.

Theorem (L. - In progress)

The map

$$\int_{-Hom_{\mathcal{C}}(P,P)}^{P\in Proj(\mathcal{C})} \mathcal{Z}_{nc}(P^{2}) \xrightarrow{\mathcal{Z}_{nc}(\nu^{\dagger}\circ\epsilon)} k$$

is a modified trace.

Thank you for your attention!