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CLASS I: "The Geometry of a Ring"

(A) From Geometry to Rings

David Hilbert. The field C of complex numbers is algebraically closed: for all P ∈ C[x] a

univariate non-constant polynomial, P 6∈ C, there exists a ∈ C a root of P , P (a) = 0. Then

x− a divides P and P factors linearly,

P (x) = c ·
k∏
i=1

(x− ai)mi ,

with c, and ai in C, and mi ≥ 1 the multiplicity of ai as a root of P ,
∑m
i=1mi = degP . The

polynomial
√
P := c

∏k
i=1(x− ai) has the same roots as P , now all simple. We call

√
P the

radical of P .

Several variables, several polynomials: P1, . . . , Pm ∈ C[x1, . . . , xn],

X = VC(P1, . . . , Pm) = {a ∈ Cn, Pi(a) = 0 for all i}.

n = 1: C[x] is a principal ideal domain: there exists a polynomial P =
∑m
i=1QiPi, linear

combination of the Pi, such that 〈P1, ..., Pm〉 = 〈P 〉 as ideals of C[x1, . . . , xn]. This P is

just the greatest common divisor of P1, ..., Pm; it can be computed by Euclidean division.

n ≥ 1: We now have a genuine system of polynomial equations,

P1(x1, . . . , xn) = 0,

P2(x1, . . . , xn) = 0,

· · · · · ·
Pm(x1, . . . , xn) = 0.

Does it have a common solution a ∈ Cn? When is VC(P1, . . . , Pm) 6= ∅ non-empty? An

obvious necessary condition for this to hold is that the equations do not contradict each other:

No linear combination of them gives a non-zero constant in C,∑
Qi · Pi = c ∈ C \ {0}.

Said differently, the ideal I must not contain a non-zero constant c ∈ C, say, there is a strict

inclusion

I = 〈P1, . . . , Pm〉 ( C[x1, . . . , xn].
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The Lemma of Zorn (or: the Noetherianess of the polynomial ring C[x1, ..., xn]) show that

there exists a maximal ideal m ( C[x] which contains I ,

I ⊆ m.

As VC(m) ⊆ VC(I) it will then be sufficient to check whether VC(m) 6= ∅.

Nullstellensatz: In this situation, Hilbert’s Nullstellensatz confirms that the above necessary

condition is also sufficient: If I ( C[x1, ..., xn] is a proper ideal then its zero-set VC(I) in

Cn is not void,

VC(I) 6= ∅.

Moreover: If m ⊆ C[x] is a maximal ideal, then VC(m) = {a} is a unique point a in Cn, and

m is of the form m = ma = 〈xi − ai, i = 1, ..., n〉.

We note that if
√
I denotes the radical of I ,

√
I = {f ∈ C[x], fk ∈ I for some k ∈ I},

then VC(
√
I) = VC(I). And

I ⊆
√
I ⊆

⋂
I⊆m

m,

the intersection ranging over all maximal ideal m containing I (the last inclusion being in

fact an equality, see Class V). Then, Hilbert’s theorem tells us in addition: The ideal IX of

C[x1, ..., xn] of all polynomials P vanishing on X = VC(I) equals the radical IX =
√
I of

I . The inclusion
√
I ⊂ IX is obvious, and the actual equality is deduced from the earlier

statement that VC(I) 6= ∅ if 1 6∈ I .

Bijection: This discussion yields a first basic observation. There is a bijection

Φ : {points a of Cn} = Cn ←→ {maximal ideals m of C[x1, . . . , xn]},

a→ ma = 〈xi − ai, i = 1, ..., n〉.

For X = VC(I) ⊆ Cn an algebraic subset, I =
√
I , this extends to a bijection

ΦX : {points a of X} = X ←→ {maximal ideals m of C[x1, . . . , xn]/I},

a→ ma = 〈xi − ai, i = 1, ..., n〉.

The factor ring C[x1, . . . , xn]/I is called the coordinate ring C[X] of X , and the set

{maximal ideals m of C[x1, . . . , xn]/I} = SpecmaxC[X]

is the spectrum of maximal ideals of C[X].

Topology: For X = VC(I) ⊆ Cn, a subset A ⊆ X is closed if A = VC(J), for some ideal

J of C[X]. Their complements are called open and define the Zariski-topology on X . From

A = VC(J) ∼= {m ⊆ C[X] maximal, J ⊆ m} we get a ring-theoretic description of the

topology. We call X = VC(I) ⊆ Cn equipped with the Zariski-topology a closed complex

affine subvariety of Cn, or just subvariety for short (we do not consider open or locally

closed subvarieties at the moment).

For f ∈ C[X] a polynomial, the set Xf = {m ⊆ C[X] maximal, f 6∈ m}, is called principal

open in X . These sets form a basis of the Zariski-topology of X .
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Morphisms: Let be given algebraic subvarieties X ⊆ Cn, Y ⊆ Cm, Z ⊆ Y (all closed).

A morphism f : X → Y is defined as the restriction to X of a polynomial map F =

(F1, ..., Fm) : Cn → Cm, sending X into Y . Then:

If a ∈ X is a point, its image b = f(a) ∈ Y is again a point;

If b ∈ Y is a point, it pre-image f−1(b) ⊆ X is a subvariety of X;

If Z ⊆ Y is a subvariety, its pre-image f−1(Z) ⊆ X is a subvariety of X .

If V ⊆ X is a subvariety, its image f(V ) ⊆ Y is not necessarily a subvariety (it is only

a constructible subset, i.e., a union of finitely many locally closed subsets, by a theorem

of Chevalley). Take X = V (〈x, y) ∪ V (xz − 1) ⊆ C3, and f : X → Y = C2 the

restriction to X of the projection of C3 to C2 in z-direction, (x, y, z)→ (x, y). The image is

(C2 \ V (y)) ∪ {0}, the xy-plane without x-axis, but augmented by the origin.

In terms of ideals: The map f : X → Y induces a ring homomorphism

αf : C[Y ] = C[y]/J → C[X] = C[x]/I ,

yj → fj(x),

P (y)→ P (f1(x), . . . , fm(x)).

Now, if b = f(a) ∈ Y is the image of some point a ∈ X , we get for the maximal ideals the

equality

mb = α−1
f (ma),

using that the pre-image of ma under α is maximal again (in the present context, not in

general). And if Z = V (G) ⊆ Y is a subvariety, for some ideal G of C[Y ], its pre-image is

given by

f−1(Z) = V (G ◦ f) = V (αf (G)),

say, by the image of G under α (or, more accurately: by the ideal of C[X] generated by

α(G)).

Prime ideals: These correspond to irreducible subvarieties of Cn or of X . They have better

properties than maximal ideals, in particular, their pre-image under ring maps is again prime

(easy check). Recall that p is prime if fg ∈ p implies f ∈ p or g ∈ p. As we will use them a

lot in the sequel, let us get some intuition (in what follows, C[x] = C[x1, . . . , xn]).

Examples: (1) If p ⊆ C[x] is a principal prime ideal (one or several variables), then p = 〈P 〉,
with P an irreducible polynomial.

(2) If I ⊆ C[x] is an ideal generated by irreducible polynomials, it does not follow that I is

prime. Example: I = 〈xy − zw, xy + zw〉 = 〈xy, zw〉.

(3) I =
√
I ⊆ C[x], then I = p1 ∩ ...∩ pk has a unique prime decomposition, corresponding

to the irreducible components of X = VC(I) (see below).

(4) I = 〈x− 3
2 〉 ⊆ Q[x] is a maximal ideal and in particular prime (one variable x). Take the

inclusion map
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α : Z[x] ↪→ Q[x].

Then α−1(I) = I ∩ Z[x] = 〈2(x− 3
2 )〉 = 〈2x− 3〉 ( 〈x, 3〉 ( Z[x] is not prime.

(5) R[x] ↪→ C[x], I = 〈x− i〉 ⊆ C[x], α−1(I) = 〈x2 + 1〉 ⊆ R[x] maximal ideal.

(6) Number theory: prime ideals in Z are the zero ideal 〈0〉, and the maximal ideals Zp = 〈p〉,
p prime. The prime ideals in Z[x] are 〈0〉,〈p〉, p ∈ Z prime, 〈f〉 with f ∈ Z[x] irreducible,

and 〈p, f〉, with p ∈ Z prime and f irreducible modulo p.

(7) Take now the ring of Laurent polynomials C[x, 1
x ] in one variable x. Relate the prime

ideals of C[x, 1
x ] to the prime ideals of C[x].

(B) From Rings to Geometry

Alexander Grothendieck. The preceding considerations may incite one to explore - by

temptation and curiosity - what happens when the finitely generated C-algebras R = C[x]/I

are replaced by arbitrary, commutative rings R with 1 = 1R, and the zero-sets VC(I) ⊆ Cn

isomorphic to the sets SpecmaxR of all maximal ideals of R by the sets SpecR of all prime

ideals of R,

SpecR = {a = [p], p ⊆ R a prime ideal}.

Here, R itself does not count as a prime ideal (by convention), and p = 0 does count if

R is an integral domain. A priori, there are no further assumptions on R. The notation

a = [p] - following Mumford - shall suggest that we consider the prime ideal p as a point of

X = SpecR.

See Class V for some background about the genesis of this definition.

It is by no means plausible to expect that this abstract and completely formal generalization

has a chance to produce an interesting theory with important applications. At first, it will be

just a convenient way to communicate, say, a new language. We call

X = XR = R = (SpecR,R) = SpecR

the affine scheme associated to R. The notation X or SpecR is not unique, the main point

is that all information is contained in the ring R, and that SpecR - when considered just as

a set or a topological space - is only subordinate to the scheme and part of the information.

However, an affine scheme is often just denoted by X = SpecR, for convenience and to

emphasize the geometric viewpoint (indeed,X will immediately be equipped with a topology

and then really deserves the name “geometric object“).

Topology: Let X = SpecR, and declare a subset A ⊆ X to be closed if there exists a subset

or an ideal I ⊆ R such that

A = V (I) = {p ∈ X, I ⊆ p}.

This equips X with a topology, the Zariski-topology, since

∅ = V (1), X = V (0), V (I) ∪ V (J) = V (IJ), and
⋂
V (Ij) = V (

∑
Ij).
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Points. If a = [p] is a point of the affine scheme X = SpecR, we associate to it the factor

ring R/p. As p is prime, this is an integral domain, so that we can consider its quotient field

κa = κp = Quot(R/p),

called the residue field ofX at a. A point a = [p] is closed if and only if p = m is a maximal

ideal: indeed, we have {a} = V (m) in this case, whereas, for p ( m, the closed point b = [m]

belongs to the closure {a} of {a}. For closed points a = [m] we have κa = κm = R/m,

since this is already a field. If R is an integral domain and p = 0 the zero-ideal defining the

generic point ξ = [0] of X , then κξ = κ0 = QuotR.

In contrast, forK an arbitrary field or ring, aK-rational point ofX is a ring mapα : R→ K.

Think of R = R[x1, ..., xn]/〈f〉, with f a polynomial, and K = C, then α : R[x]/〈f〉 → C
is defined by the choice of a complex root a ∈ Cn of f(x1, ..., xn), say, f(a) = 0.

Morphisms: We first note that any ring homomorphism α : S → R induces a well-defined

map

fα : X = SpecR→ Y = SpecS,

p→ q = α−1(p),

associating to a prime ideal p of R its pre-image q = α−1(p) under α. As mentioned earlier,

it is again a prime ideal. We call the pair (α, fα) morphism from X to Y . The induced map

fα : X → Y is continuous with respect to the Zariski-topology. The functor Spec goes from

the category of rings to the category of topological spaces, with arrows reversed.

Examples: (1) R = C[x1, ..., xn], n ≥ 1, AnC = SpecR, then the zero-ideal p = 0 is prime;

the generic point ξ = [0] is dense in X , say {ξ} = X , since every prime ideal p of R

contains 0. In contrast, p = m a maximal ideal defines a closed point, V (m) = {[m]}, and as

m = ma = 〈x1 − a1, ..., xn − an〉 for some a ∈ Cn, we recover Cn as the underlying set of

closed points of Spec(C[x1, ..., xn]).

But there are other points, as e.g. p = 〈f〉, f an irreducible polynomial, corresponding to an

(irreducible) hypersurface in Cn, now considered as a point of SpecR. For n ≥ 2, the point

[p] is not closed, since p is not maximal in C[x1, ..., xn].

(2) R = K a field, SpecR = {[0]}, a single point. Different fields define different points.

(3) R = k[t]/〈t2〉, SpecR = {[〈t〉]}, one-point scheme, but with non-reduced structure (R

contains nilpotent elements). SpecR is sometimes called the disembodied tangent vector

(this is also the reason why the letter t for time is used)

(4) R = Z, ξ = [0] generic point, [〈p〉] closed points, for p ∈ Z prime. R = Z[t] with prime

ideals as described earlier.

(5) R a ring, p ⊆ R prime, f ∈ R, then the localization Rp and the ring R[ 1
f ] define again

affine schemes. If X = SpecR, a = [p] ∈ X , then SpecRp is written as (X, a), called the

germ ofX in a. In another direction, SpecR[ 1
f ] = X\V (f) defines a principal open subset.

It is, by construction, again an affine scheme, since we can define these subsets by rings.
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Exercises Class I. (1) Show that K[x], K a field, x a single variable, is a principal ideal

domain.

(2) Show that Z[x] is not a principal ideal domain.

(3) Try to describe all prime ideals in R[x, y], Z[x], and Z/kZ, k ∈ Z. Hint: You may want

to consult Mumford’s Red Book.

(4) What are the prime ideals of Z× Z?

(5) Show that the inverse image of a prime ideal under a ring homomorphism is again prime.

(6) Show that the closed sets defined on SpecR define indeed a topology.

(7) Determine the prime ideals of R[ 1
f ], for f ∈ R not a zero divisor, in terms of the prime

ideals of R.

(8) Determine the prime ideals of Rp = (R \ p)−1R in terms of the prime ideals of R.

(9) Show that the Zariski-topology on SpecR is in general not Hausdorff.

(10) Construct a ring R with SpecR consisting of 10 closed points.

(11) Determine the residue fields of all points of SpecZ.

(12) What are the residue fields of the points of Spec(R[x]/〈x2+1〉) and Spec(C[x]/〈x2+1〉).

(13) Describe, for R = K[x, y]/〈x2 − y2〉), the localizations Rp, for p ⊆ R prime. What

happens if K has characteristic 2?

(14) Determine the closed points of Spec(K[x, y, 1
x ]/〈y − x2〉).

(15) Show that the continuous map fα : X = SpecR → Y = SpecS associated to a ring

homomorphism α : S → R need not determine α.
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CLASS II: "Constructions with Rings"

Throughout, let R and S be rings, with associated spectra X = SpecR and Y = SpecS of

prime ideals, equipped with the Zariski-topology.

Let α : S → R be a ring homomorphism, with induced map fα : X → Y, [p] → [q], where

the pre-image q = α−1(p) of p under α is again prime and declared as the image of the

prime p (recall that p = R and q = S do not count as prime ideals). We write a = [p] and

b = [q] = [α−1(p)]. Then fα is continuous, and a homeomorphism if α is a ring isomorphism

(but: fα does not determine entirely the ring map α in general).

Lemma 1. If α : S → R is surjective then fα : X → Y is injective with closed image

Z = fα(X) in Y : There is an ideal J in S with Z = V (J), and V (J) = SpecS/J

holds.

Proof. As α is surjective, we get an isomorphism α̃ : S/J → R. So we may assume from

the beginning that R = S/J . Now observe that the correspondence

V (J) = {q ⊆ S prime, J ⊆ q} ←→ {p ⊆ S/J, p prime} = SpecS/J ,

q→ q = q/J ,

p + J ← p,

is in fact a bijection (quick check). Therefore,

Z = {α−1(p), p ⊆ S/J prime} ∼= V (J) ⊆ SpecS,

with V (J) = {q ⊆ S prime, J ⊆ q}. 	

Example: The projection K[x, y] → K[x], x → x, y → 0, induces a closed embedding of

the affine line into the affine plane, A1 = A1 × 0 ⊆ A2, taken there as the horizontal axis.

Lemma 2. If α : S → R is injective then fα : X → Y is dominant, i.e., has dense

image in Y .

Proof. We may assume that S ↪→ R is a subring. Therefore,

Im(fα) = {q ⊆ S prime, q = α−1(p) = p ∩ S, p ⊆ R prime}.

So assume that Im(fα) ⊆ V (J) for some ideal J of S. Then J ⊆ q = p ∩ S for all p ⊆ R

prime. It follows that J ⊆
⋂

p⊆R ∩S, the intersection ranging over all primes in R. But

a short calculation shows that
⋂

p⊆R consists precisely of the nilpotent elements of R, say,

equals the radical
√

0
R

= {f ∈ R, fk = 0 for some k ∈ N} of the zero-ideal 0 of R (also

called the nil-radical). We conclude that J is contained in the nil-radical
√

0
S

of S. As

V (
√

0
S

) = V (0) = Y , we get V (J) = Y so that Im(fα) is dense in Y . 	

Example: The ring extension K[x] ↪→ K[x, 1
x ] induces an open embedding of the punctured

affine line A1 \ {0} = Spec(K[x, 1
x ]) into the affine line A1 = Spec(K[x]).

Lemma 3. Let f ∈ R be an element, and consider the ring of quotients

Rf = R[ 1
f ] = { g

fk , g ∈ R, k ∈ N}.
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(i) If f is nilpotent, fm = 0 for some m > 0, then Rf = 0.

(ii) The map R→ Rf , g → g
1 , is injective if and only if f is not a zero-divisor in R.

(iii) Assume that f is not a zero-divisor in R. Then Spec(Rf ) equals SpecR \ V (f)

and is open dense in SpecR.

Proof. We leave (i) and (ii) to the interested reader. Assertion (iii) follows from R ↪→ Rf

and the bijection

Spec(Rf ) = {q ⊆ Rf prime} ←→ {p ∈ R prime, f 6∈ R},

q→ p = q ∩R,

q = pf = p[ 1
f ] = Rf · p← p ⊆ R.

Then just use the equality

{p ⊆ R prime, f 6∈ R} = {p ∈ R prime} \ {p ∈ R prime, f ∈ R} = SpecR \ V (f).

This gives Spec(Rf ) = SpecR \ V (f) as claimed. That this set is dense in Y follows from

Lemma 2 since R→ Rf is injective. 	

We call in this case Xf = Spec(Rf ) a principal open subset of X = SpecR, and immedi-

ately note that this is again an affine scheme, with ring Rf . So we can also call it open affine

subscheme of X . Finite intersections of principal open subschemes are again principal open

since Xf ∩Xg = Xfg (to see this, use the above bijection and the fact that f, g 6∈ p, for p

prime, implies that fg 6∈ p). Conversely, arbitrary unions of principal open subsets are again

open (but not necessarily affine schemes), since⋃
f∈F Xf =

⋃
f∈F X \ V (f) = X \

⋂
f∈F V (f) = X \ V (F ).

We conclude that the sets Xf , f ∈ R, form a basis of the Zariski-topology on X . And,

indeed, for U = X \ V (I) open in X , we have U = {p ⊆ R prime, I 6⊆ p} =
⋃
f∈I Xf .

Example: Consider the open subset Y = A2 \ {0} = A2 \ V (x, y) in X = A2 =

Spec(K[x, y]), where the origin 0 = [m0] of A2 is defined through the maximal ideal

m0 = 〈x, y〉 ofK[x, y]. Then Y is the union of the two principal open setsXx = A2\V (x) =

A2 \ (0×A1) and Xy = A2 \ V (y) = A2 \ (A1 × 0), but cannot be defined as the spectrum

of a single ring (this has to be proven, it is not completely obvious). Hence it is not an affine

scheme.

Lemma 4. Let F ⊆ R be an arbitrary subset of elements f ∈ R, and set X = SpecR.

(i) The collection {Xf , f ∈ F} forms an open affine covering
⋃
f∈F Xf = X of X if

and only if the ideal 〈F 〉 of R generated by the elements of F contains 1, i.e., is the

whole ring.

(ii) If {Xf , f ∈ F} forms an open covering of X, there exists a finite subset F ′ of F

with
⋃
f∈F ′ Xf = X, i.e., the Zariski-topology of X is quasi-compact.

Proof. From the proof of Lemma 3 we know that
⋃
f∈F Xf = X \V (F ). But V (F ) is empty

if and only if 〈F 〉 = R. This proves (i). As for (ii), just notice that 1 ∈ 〈F 〉 implies that there

are f1, ..., fk ∈ F and g1, ..., gk ∈ R such that 1 =
∑k
i=1 gifi. Then set F ′ = {f1, ..., fk}

and you are done. 	
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Lemma 5. Let p ⊆ R be a prime ideal, and denote by

Rp = (R \ p)−1R = { gf , g ∈ R, f ∈ R \ p}

the localization of R at p, with induced map extp : R→ Rp, f → f
1 .

(i) Rp is a local ring, i.e., has a unique maximal ideal, namely

mp = Rp · p = pp = { gf , g ∈ p, f ∈ R \ p}.

(ii) There is a bijection

{q ⊆ R prime, q ⊆ p} ↔ {r ⊆ Rp prime} = Spec(Rp),

q→ r = Rpq,

q = ext−1
p (r)← r.

(iii) If R is an integral domain, the map extp : R → Rp is injective. Therefore, in

this case, by Lemma 2, the scheme Spec(Rp) is dense in SpecR.

Proof. This should now be a routine for the ambitious reader. It is momentarily omitted. But,

to avoid confusion, note that {q ⊆ R prime, q ⊆ p} 6= V (p) = {q ⊆ R prime, p ⊆ q}. 	

For a = [p] a point of X = SpecR, the scheme Spec(Rp) is denoted by (X, a) and called

the germ (or stalk) of X at a. The underlying topological space is not the topological

germ Xa = lima∈U⊆X U , for U ⊆ X open, of X at a in the sense of classical topology.

Nevertheless, (X, a) shares many nice properties with Xa.

Example. Let X = V (xy) = Spec(K[x, y]/〈xy〉) in A2 = Spec(K[x, y]) be the union of

the two coordinate axes. Let p = m(0,0) = 〈x, y〉 and q = m(0,1) = 〈x, y − 1〉 define the two

closed points a = (0, 0) and b = (0, 1) on X . Then

(X, a) = Spec((K[x, y]/〈xy〉)p) = Spec(K[x, y]〈x,y〉/〈xy〉)

is not an integral domain (since x · y = 0), but

(X, b) = Spec((K[x, y]/〈xy〉)q) = Spec(K[x, y]〈x,y−1〉/〈xy〉 ∼= Spec(K[x]x)

is an integral domain. Use here that localization commutes with taking factor rings, and that

y is invertible in K[x, y]q = K[x, y]〈x,y−1〉.

Lemma 6. If S → R is a finite ring homomorphism, i.e., R is finitely generated as an

S-module, then fα : X = SpecR → Y = SpecS is quasi-finite, i.e., has finite fibers

f−1
α (b), for all b ∈ Y .

Proof. Left out at the moment. 	

If α : S → R is a finite ring homomorphism, one says that fα : X = SpecR→ Y = SpecS

is a finite morphism. Thus finite implies quasi-finite, the converse being wrong in general.

In fact, Zariski’s Main Theorem in the version of Grothendieck says: quasi-finite maps are the

restriction of finite morphisms to open subsets. There is also a theorem of Chevalley saying

that quasi-finite proper morphisms are already finite morphisms.
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Example: LetR = S[x]/〈P 〉, forP a monic polynomial,X = SpecR = V (P ) ⊆ Y ×A1 =

Spec(S[x]), with Y = SpecS. Then fα : X → Y , the restriction to X of the projection

Y × A1 → Y , has finite fibers. Compare this with the Noether Normalization Lemma.

Gluing: Let X = SpecR, Y = SpecS, and U ⊆ X , V ⊆ Y be open. Assume we wish to

glue X and Y along U and V . First, wlog, we may restrict to U = Xf and V = Yg principal

open, Xf = Spec(Rf ) and Yp = Spec(Sg). Hence, to glue, it suffices to prescribe a ring

isomorphism Sg → Rf .

Example. If we wish to glue X = A1 with itself, but called now Y = A1 for clarity, along

the open subsetsU = X \{0} and V = Y \{0}, we have two natural options. WriteU = Xx

and V = Yy with U = Spec(K[x, 1
x ]) and V = Spec(K[y, 1

y ]). Either we take the “identity”

map α = Id : K[x, 1
x ] → K[y, 1

y ], sending x to y and 1
x to 1

y . This produces A1 again,

since, by continuity, 0 in X will be identified with 0 in Y (more precisely, α sends K[x]

isomorphically to K[y]). So this is not so interesting

The second option takes

α : K[x, 1
x ]→ K[y, 1

y ], x→ 1
y ,

1
x → y.

Thinking of K = R the real numbers, we get as a result - geometrically - a circle.

Fiber products. If X and Y are relative affine schemes over Z, i.e., are equipped with

morphisms X → Z and Y → Z, given by rings X = SpecR, Y = SpecS, Z = SpecT

and ring homomorphisms T → R and T → S, the fiber product X ×Z Y of X and Y over

Z is defined as the affine scheme given by the tensor product R⊗T S,

X ×Z Y = Spec(R⊗T S),

together with the two projection maps pX : X×Z Y → X and pY : X×Z Y → Y , which are

induced by the natural homomorphismsR→ R⊗TS, r → r⊗1, andS → R⊗TS, s→ 1⊗s.
To be precise, one should write the fiber product as a triple (X ×Z Y, pX , pY ).

The fiber product of affine schemes satisfies the usual universal property: For all affine

schemes W over Z with morphisms qX : W → X and qY : W → Y over Z there exists

exactly one morphism h : W → X ×Z Y over Z which makes all involved diagrams

commutative. This follows immediately from the universal property of the tensor product of

rings by the inversion of all arrows.

Special cases. In particular, we obtain the schema-theoretic notions of the cartesian product

X × Y of two schemes X = SpecR and Y = SpecS as the fiber product

X × Y := X ×Spec(Z) Y = Spec(R⊗Z S)

over SpecZ (if X and Y are defined over a field K, i.e., R and S are both K-algebras, one

could also take the fiber product over SpecK). Similarly, the intersection V ∩W of two

(closed or principal open) affine subschemes V = SpecS and W = SpecT of X given by

ring maps R→ S and R→ T inducing (closed, respectively open) inclusion maps V ↪→ X

and W ↪→ X , is given by

10



V ∩W := V ×X W = Spec(S ⊗R T ).

Finally, the (schema-theoretic) pre-image XZ = f−1(Z) of a closed or principal open affine

subscheme Z = SpecT of Y under a morphism f : X → Y is defined as the fiber product

with respect to the maps X → Y and Z ↪→ Y and is then given by

XZ = f−1(Z) := X ×Y Z = Spec(R⊗S T ).

It is easy to check that the underlying topological space XZ of XZ is just the set-theoretic

pre-image f−1(Z) ofZ (taken as a topological space). Therefore, the notationXZ = f−1(Z)

is meaningful and appropriate.

These constructions can be expressed by the associated rings as follows: Let X = SpecR

with closed subschemes V = Spec(R/I) ⊆ X andW = Spec(R/J) ⊆ X , and Y = SpecS

with Z = Spec(S/G) ⊆ Y closed in Y ; the ring homomorphism α : S → R, which defines

X → Y , turns R, R/I and R/J into S-modules. Then

V ∩W = Spec(R/I ⊗R R/J) = Spec(R/(I + J)) ⊆ X ,

XZ = Spec(R⊗S S/G) = Spec(R/RG) ⊆ X .

Here RG = Rα(G) denotes the ideal generated by the image of G in R.

If, on the other hand, V = Xf andW = Xg are principal open inX , and Z = Yh is principal

open in Y , with f, g ∈ R and h ∈ S, then

V ∩W = Xf ∩Xg = Spec(Rf ⊗R Rg) = Spec(Rfg) ⊆ X ,

XZ = XYh
= Spec(R⊗S Sh) = Spec(Rα(h)) ⊆ X .

The fiber of a morphism X → Y over a point b of Y can also be defined in this way:

Let first b = [n] ∈ Y be a closed point with residue field κb = S/n (it can thus also be

considered as the closed affine subscheme {b} = Spec(S/n) = Spec(κb) of Y with surjective

homomorphism S → κb), then the scheme-theoretic fiber Xb of f over b is defined by

Xb = Spec(R⊗S κb) = Spec(R⊗S S/n) = Spec(R/Rn) = V (Rn) ⊆ X .

Here Rn = Rα(n) denotes the ideal generated by α(n) in R. Then Xb is a closed subscheme

of X; it will generally not consist of a single point. The underlying topological space of

Xb is just the (set-theoretic) pre-image f−1(b) of b under the continuous map f : X → Y ,

a = [p]→ b = [α−1(p)]. We therefore write f−1(b) or Xb for the fiber of f over b.

11



Exercises Class II. (1) Show that R → Rf , g → g
1 , is injective if and only if f is not a

zero-divisor in R.

(2) Describe X = Spec(K[x, y, z]〈x−y〉).

(3) Let p ⊆ R be prime. Is R → Rp always injective? If not, characterize the cases when it

is injective.

(4) Describe a morphism f : X → Y of affine schemes which is not dominant (image not

dense in Y ).

(5) Show that the radical
√
I of an ideal of R is the intersection of all prime ideals p of R

which contain I (this is an abstract version of Hilbert’s Nullstellensatz).

(6) Prove the assertions of Lemmata 3, 5 and 6.

(7) Show that taking the localization Rp of a ring R commutes with passing to a factor ring

R/I . More explicitly: (R/I)p ∼= Rp/RpI for I ⊆ R an ideal, p ⊆ R prime, p the image of

p in R/I , and RpI the ideal of Rp generated by I .

(8) Try to construct ring-theoretically the projective plane P2 by gluing three affine planes A2

along dense open subsets.

(9) Write down with all details the universal property of the fiber product of affine schemes.

(10) Let X be defined in A2 by the equation y − x2 = 1, and consider f : X → Y = A1,

the restriction of the first projection A2 → A1. What are the pre-images of the closed points

b ∈ Y ? What is the pre-image of the generic point ξ of Y .

(11) Let U ( X , with X as in exercise 10, be principal open. Show that f|U : U → A1 is

quasi-finite but not a finite morphism.

(12) Determine the intersection of the plane curves y − xk with y = 0 scheme-theoretically,

i.e., find for all three schemes the underlying ring.

(13) Let p be prime in R. Show that its residue field κp can be written as

κp = Quot(R/p) = Rp/pRp,

where pRp denotes the ideal of Rp generated by p (more precisely, by the image of p in Rp

under R→ Rp).

(14) Show that Spec(K[x, 1
x ]) is isomorphic to the affine scheme Spec(K[x, y]/〈xy − 1〉).

(15) Show that the intersection of two closed subschemes of an affine scheme X can be

defined as a fibre product.
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CLASS III: "The Geometry of Schemes"

Throughout, let R be a commutative ring with 1 and let X = (R,SpecR) = SpecR be the

associated affine scheme, where SpecR = {a = [p], p ⊆ R prime} is equipped with the

Zariski-topology. Recall the main operations:

I ⊆ R ideal, R/I the factor ring associated to I , V (I) = {a = [p], p ⊆ R prime,

I ⊆ p}, the vanishing or zero-set of I in X , V (I) = Spec(R/I) ⊆ X closed

subset/subscheme.

f ∈ R element, Rf = {1, f, f2, ...}−1R = R[ 1
f ] = { g

fk , g ∈ R, k ∈ N}, the ring of

quotients associated to f , Spec(Rf ) = {a = [p], p ⊆ R prime, f 6∈ p} = X \V (f) ⊆
X , principal open subset/subscheme of X; extf : R → Rf , g → g

1 , the associated

ring map, injective if and only if f not a zero-divisor in R.

p ⊆ R prime ideal, Rp = (R \ p)−1R = { gf , g ∈ R, f 6∈ p}, localization or local

ring of R at p, unique maximal ideal pp = pRp = { gf , g ∈ p, f 6∈ p} ⊆ Rp, residue

field κp = Rp/pp of X at p; Spec(Rp) = (X, a), the germ of X in the point a = [p].

Note the abuse of notation between Rf and Rp.

Important cases. Finitely generated K- or Z-algebras R = K[x1, ..., xn]/I and R =

Z[x1, ..., xn]/I , K a field; Rf = K[x1, ..., xn,
1
f ] = K[x1, ..., xn]f , f a polynomial;

K[x1, ..., xn]〈x1,...,xn〉, the ring of rational functions defined at 0 ∈ An; formal power series

rings R = K[[x1, ..., xn]]/I; the ring OCn,0 of germs of holomorphic functions on Cn at 0.

Irreducible components. A closed subset Y ⊆ X of a topological space X is called

irreducible, if Y is not a proper union of closed subsets ofX (this is a topological definition).

A scheme X = SpecR is integral, if R is an integral domain, i.e., has no zero-divisors (this

is an algebraic definition). AndX is reduced, ifR is a reduced ring, i.e., contains no nilpotent

elements). A closed subscheme Y = Spec(R/I) of X is reduced if and only if I =
√
I is a

radical ideal of R. Stacks project, Tag 01ON: An affine scheme is integral if and only if it is

reduced and irreducible.

A topological space X is Noetherian, if every descending chain X ⊇ X1 ⊇ X2 ⊇ ... of

closed subsets terminates. An affine schemeX = SpecR is Noetherian, ifR is a Noetherian

ring, i.e., every ascending chain I1 ⊆ I2 ⊆ I3 ⊆ ... of ideals terminates, or, equivalently, if

every ideal is finitely generated. The rings mentioned above are all Noetherian. The associated

topological space X = SpecR is then Noetherian with respect to the Zariski-topology.

Theorem. (Emmanuel Lasker 1905, Emmy Noether 1921) Let I =
√
I be a radical ideal

of a Noetherian ring R. Then there exist unique prime ideals p1, ..., pk of R such that

I = p1 ∩ p2 ∩ · · · ∩ pk,

provided that the decomposition is irredundant, say,
⋂
j∈A pj 6⊆ pi, for all A (

{1, ..., k} and i ∈ {1, ..., k}, i 6∈ A.

Geometric version: Every reduced closed subscheme Y of an affine Noetherian scheme

X admits a unique irredundant decomposition
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Y = Y1 ∪ Y2 ∪ · · · ∪ Yk

into closed integral schemes Yi = SpecR/pi, called the irreducible components of Y .

There is also a version of the theorem for arbitrary ideals, say, non reduced closed subschemes,

known as the primary decomposition of an ideal, and yielding the notion of isolated and

embedded irreducible components.

Dimension. The (topological) dimension top.dimX of a topological spaceX is the maximal

length of a descending chain X ⊇ X1 ⊇ X2 ⊇ · · · ⊇ Xk of closed irreducible subsets Xi.

It is finite if and only if X is Noetherian. The (algebraic) Krull dimension dimX = dimR

of an affine scheme X = SpecR is the maximal length of an ascending chain p0 ⊆ p1 ⊆
p2 ⊆ · · · ⊆ pk ⊆ R of prime ideals pi of R. It is finite if R is Noetherian. Equivalently, it

is the maximal length of a chain of surjective ring maps R → R0 → R1 → · · · → Rk with

Ri ∼= R/pi integral domains. The local dimension dimaX of X at a point a = [p] is defined

as the Krull dimension dimRp of the local ring of X at a.

Example. Closed points a = [m] of SpecR have Krull dimension 0, since R/m is a field,

with unique prime ideal p0 = 0. One can show that the dimension of R = K[x1, ..., xn]/I

with K a field is equal to the transcendence degree of R over K. In particular, dimAnK = n.

The inequality ≥ is obvious by choosing a chain of prime ideals, the converse inequality

≤ is considerably harder and requires Krull’s principal ideal theorem. If I is (minimally)

generated by elements f1, ..., fk, then dimX = dimV (I) ≥ n − k (again, by Krull), but

equality need not hold. If equality holds, we say that X is a complete intersection in AnK .

In contrast, Z and Z×Z have Krull dimension 1, and Z[x1, ..., xn] has Krull dimension n+1.

Tangent space. (This section is a bit technical) If X = SpecR is an affine scheme and

a = [p] is a point of X with prime ideal p ⊆ R, associated local ring Rp whose maximal

ideal is denoted by na = n = pRp ⊆ Rp, and residue field κa = κp = Rp/pRp, we consider

the factor ring n/n2 = pRp/p
2Rp as a vector space over κa. We call the κa-vector space

TaX = (n/n2)∗ = Homκa
(n/n2, κa)

of κa-linear maps from n/n2 to κa the Zariski tangent space of X at a. Taking the dual

turns out to be necessary to obtain later a covariant functor. One shows that n/n2 ∼= m/m2 if

p = m is maximal, i.e., a is a closed point (see the lemma below), and thus TaX = (m/m2)∗

in this case. This allows one to compute the tangent space directly from the ideal m of a

without transition through the localization Rm of R.

Lemma 1. In the above situation, and if m is maximal in R, one has n/n2 ∼= m/m2.

Proof. (a lot of writing without too much content) Set M = R \m, N = (R/m2) \ (m/m2)

mutliplicatively closed subsets ofR andR/m2. Then, using that passing to a ring of quotients

commutes with passing to factor rings, we get

n/n2 = mRm/(mRm)2 = mRm/m
2Rm = M−1m/M−1m2 = N−1(m/m2).

It remains to show that N−1(m/m2) = m/m2. Pick g ∈ R \ m, so that m + Rg = R

because m is maximal. Write gh = 1 − k ∈ m for suitable h ∈ R and k ∈ m. If now
f
g ∈M

−1(m/m2) with some f ∈ m and g ∈M , then
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f

g
=
fh

gh
=

fh

1− k
= fh

∞∑
i=0

ki ≡ fh(1 + k) modulo m2.

Here, the the sum
∑∞
i=0 k

i has to be seen heuristically, as we are only interested in it modulo

m2. We obtain from fh(1 + k) ∈ m that fg ∈ m modulo m2, proving the claim. 	

The tangent space is considered as a vector space over κa, and not as a scheme. For schemes

X = SpecR of finite type over an algebraically closed field K (i.e., defined by a finitely

generatedK-algebraR), one can show that the tangent space TaX is canonically isomorphic

to the K-vector space of K-derivations δ : Rm → K. If R is a Noetherian ring, then ma and

thus na are finitely generated ideals, so TaX is then a finite dimensional κa-vector space. Its

vector space dimension dimκa
TaX is called the local embedding dimension of X at a, and

is denoted by emb.dimaX . For non-Noetherian rings, the dimension of TaX can be infinite.

Examples. All this looks complicated, but reveals to be rather easy in concrete situations:

Take R = K[x1, ..., xn], a = 0 = [〈x1, ..., xn〉] the origin of An with residue field κa = K,

then m = 〈x1, ..., xn〉 gives the n-dimensional K-vector space m/m2 of linear homogeneous

polynomials in n variables, hence dimK T0An = n as expected.

Now, if X = SpecR, R = K[x1, ..., xn]/〈f〉, with some non-constant polynomial f , and

taking again a = 0, let f(x) = c+
∑
cixi + (higher order terms) be the Taylor expansion

of f at 0. Then ci = ∂xi
f(0), and T0X is isomorphic to the linear subspace of Kn defined

by the equation
∑
citi = 0 (here, ti denote variables in Kn). And, more generally, for an

arbitrary closed point a ∈ X (and K algebraically closed), we get that TaX is isomorphic to

the subspace of Kn defined by
∑
∂xif(a)ti = 0. It has dimension n− 1 if and only at least

one partial derivative ∂xi
f of f does not vanish at a, and dimension n otherwise.

IfX ⊆ AnK is a closed subscheme,K algebraically closed, with defining equations f1, ..., fk ∈
K[x1, ..., xn], and if a ∈ X is a closed point, then TaX is defined as a linear subspace of

TaAnK ∼= Kn by the system of equations∑n
i=1 ∂xifj(a) · ti = 0,

for j = 1, ..., k and variables t1, ..., tn on Kn.

Tangent maps. We now define tangent maps. The notation is cumbersome, the substance

being though simple, since everything is functorial. Every ring homomorphism α : S → R

induces, for p ⊆ R and q ⊆ S prime, with α−1(p) = q, a local ring homomorphism

αp : Sq → Rp (which in particular interprets Rp as an Sq-module), sending nb = nq = qSq

into na = np = pRp and q2Sq into p2Rp. The residue fields are κb = κq = Sq/nq and

κa = κp = Rp/np. One thus obtains a κq-linear map

αp : nb/n
2
b = qSq/q

2Sq → na/n
2
a = pRp/p

2Rp,

where pRp/p
2Rp is understood via αp as a κq-vector space. Let fα : X = SpecR →

Y = SpecS be the map induced by α and let a = [p] ∈ X , b = fα(a) = [q] ∈ Y be the

corresponding points of the spectra. Then α induces, by dualizing αp, a κb-linear map

Tafα : TaX → TbY ,
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the tangent map of fα at a. It is defined by Tafα(v) = w, where for v : ma/m
2
a → κa the

image w : mb/m
2
b → κb is given by w(y) = v(αp(y)), for all y ∈ mb/m

2
b .

Example. If α : K[y1, ..., ym] → K[x1, ..., xn] is given by m polynomials P1, ..., Pm

without constant term, and if a = 0 is the origin of AnK , then T0fα : T0AnK → T0AmK is

given by the multiplication T0P : Kn → Km : v → v · DP (0) of vectors v ∈ Kn with

the Jacobian matrix DP (0) = (∂xi
Pj)ij(0) of the vector P = (P1, ..., Pm) at 0. In DP we

write the components of P horizontally, the derivatives according to the variables vertically.

The chain rule, i.e., functoriality, is as always: TaIdX = IdTaX and Ta(f◦g) = Tg(a)f◦Tag.

Regularity and Singularities. In this part, X = SpecR is always a Noetherian affine

scheme, say, R is a Noetherian ring. It is not too hard to see that, for a = [m] a closed point

of X , the dimension dimκa
m/m2 equals the minimal number of generators of m (this is

done with Nakayama’s Lemma). We say that a local ring R of Krull dimension dimR = d

is regular if its maximal ideal m = mR can be generated by d elements, or, equivalently, if

its tangent space TaX has dimension d. An arbitrary (Noetherian) ring is regular if all its

localizations Rp at prime ideals p are regular local rings.

Geometrically speaking, X is regular if all its germs (X, a) (defined by Rp with a = [p]) are

regular. And a point a ∈ X is singular, if its local ring Rp is not regular.

This somewhat abstract definition boils down to the classical Jacobian criterion for manifolds

whenever R is a finitely generated K-algebra over an algebraically closed field K (perfect

suffices). So let R = K[x1, ..., xn]/I with K = K, and I = 〈f1, ..., fk〉 an ideal of

K[x1, ..., xn]. Let a ∈ X = SpecR and d = dim(X, a) the local Krull dimension of R (i.e.,

the dimension of the ring Rp, for a = [p]). Then a is a regular point of X if and only if the

rank of the evaluationDf(a) of the Jacobian matrixDf = (∂xi
fj) at a equals n−d. Here, if

a ∈ Kn is a closed point, p = m maximal, the evaluation is understood in the usual sense. For

arbitary points, the evaluation is defined by taking the entries of the Jacobian matrix modulo

p, getting a value in the residue field κp.

We immediately obtain

Lemma 2. Let X = Spec(K[x1, ..., xn]/I) be integral with K = K (or: K perfect).

Then SingX = {a ∈ X, a singular in X}, the singular locus of X, is a closed sub-

scheme of X, defined by the vanishing of the respective minors of the Jacobian matrix.

It is a proper subset of X if I =
√
I, i.e., if X is a reduced scheme. 	

Zariski has shown that, for non-perfect fields K, the Jacobian criterion, defining the smooth-

ness of X , is weaker than regularity. Over perfect fields, regularity and smoothness are used

equivalently.

Examples. The surface defined by f = x2 + y2− z3 has an isolated singularity at 0, whereas

the one defined by g = x2−y2z has the whole z-axis as its singular locus. The surface defined

by h = (x2 − y3)2 − (x2 − z2)3 has two singular plane curves as its singular locus, and they

meet at 0 in A3. The scheme X defined by K[x]/〈x2〉 is non-reduced and SingX = X .
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Corollary. Let G be an algebraic subgroup of GLn(C), i.e., a subgroup cut out by

polynomial equations (e.g., SLn(C), Un(C)). Then G is smooth at all its points.

Proof. Indeed, as G is considered as a reduced closed subscheme of the affine scheme

GLn(C) = An2 \ V (det) = Spec(C[xij ]det) (which is principal open in An2

), it has at

least one smooth point, say s ∈ G. But multiplication by an arbitrary element t of G is an

isomorphism (in the sense of affine schemes), and thus also ts is a smooth point. This proves

the claim.

Étale Morphisms. We have seen that localization allows us to zoom in into an affine scheme

at a chosen point. For instance, the localization of X = V (x2 − y2) in A2 at a = (0, 0)

shows again the two irreducible components (the two diagonals), whereas the localization

at the point b = (1, 1) shows only one component (the first diagonal): To make it clear,

K[x, y]/〈x2 − y2〉)〈x,y〉 = (K[x, y]〈x,y〉)/〈x2 − y2〉) with zero divisors x− y and x+ y. In

contrast, (K[x, y]/〈x2 − y2〉)〈x−1,y−1〉 = (K[x, y]/〈x − y〉)〈x−1,y−1〉 since x + y is now

invertible in this ring (it belongs to K[x, y] \ 〈x− 1, y − 1〉).

More involved is the integral scheme X = V (x2 + x3 − y2), defined by an irreducible

polynomial (the alpha-curve or the node). Localization at a = (0, 0) gives again an integral

domain (not hard to show), so we miss the two analytic branches of X at 0. Here, the

language of schemes comes in handy: If R is the defining ring, and Rp its localization at p,

with maximal ideal n = np = pRp, we may pass to the completion of this local ring, defined

as the inverse limit and denoted by

R̂ = limk→∞Rp/n
k.

In case of R a finitely generated K-algebra and m = 〈x1, ..., xn〉, we obtain a ring of

formal power series K[[x1, ..., xn]]. And, indeed, in the example of the node, the completion

shows clearly the two components, since x2 + x3 − y2 is reducible in K[[x, y]], namely

x2 + x3 − y2 = (x
√

1 + x− y)(x
√

1 + x+ y).

Passing to the completion allowed Grothendieck to define étale morphisms and the étale

topology, a convenient framework for schemes where the inverse function theorem holds.
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Exercises Class III. (1) Determine the irreducible components of V (xz, yz).

(2) Same for V (yz(x2 + y − z)). Determine then the pairwise intersections, as well as the

triple intersections of the three components, both, set- and scheme-theoretically.

(3) Show that Xg ⊆ Xf if and only if g ∈
√
〈f〉.

(4) Describe the localizations ZZp, for p prime. Compute the residue fields of SpecZ at all

its points.

(5) Show that in a Noetherian ring, every descending chain of prime ideals terminates.

(6) Find a ring of infinite Krull dimension.

(7) Show that localization (passage to a ring of quotients) commutes with taking factor rings.

(8) Compute the tangent space of X = SpecZ[x, y, z]/〈xyz〉 at all its points.

(9) Show that f : A2 → A2, (x, y) → (x, y − h(x)), is an invertible morphism for all

polynomials h ∈ K[x]. Compute the tangent map at a = (0, 0) and b = (1, 1). What

happens, if h also depends on y?

(10) Determine the geometry of the real surface VR(x2 − y2z) in A3
R by slicing it with planes

parallel to the three coordinate planes.

(11) Compute the Krull dimension of K[x, y]/〈xy〉 at a = (0, 0) and a = (1, 0), and of the

local rings K[x, y]〈x,y〉, K[x, y]〈x〉, K[x, y]0.

(12) Let X be the circle over the field F3 with three elements, X = Spec(F3[x, y]/〈x2 +

y2 − 1〉). Show that it is irreducible (wrt the Zariski-topology).

(13) Determine the singular points of V (x2 − y2z) and of V ((x2 − y3)2 − (x2 − z2)3).

(14) Let X = Spec(Z[x, y]/〈27x2y〉). Which points are singular?

(15) Show that multiplication and inversion in an algebraic subgroup of GLn(C) can be

interpreted as morphisms in the sense of schemes. How do you define the group laws and the

unit element 1 scheme-theoretically (giving rise to the notion of group-schemes)?
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CLASS IV: "Sheaves and General Schemes"

The following two statements are essential for the later construction of sheaves from rings

and for gluing affine schemes. Denote again by extf : R → Rf , g → g
1 , the canonical map

of a ring into the ring of quotients defined by f . If f is not a zero divisor in R, then extf is

injective. In addition, associate to every g ∈ R a map

X = Spec(R)→
⋃
a∈X κa, a→ g(a) = ga,

where κa = κp = Quot(R/p) for a = [p] ∈ X is the residue field of a and ga denotes the

residue class of g in κa (taking the union of residue fields may seem strange, but does no

harm).

Lemma 1 Algebraic version: Let F be a collection of elements f in R whose ideal 〈F 〉
gives whole R. If g ∈ R is an element whose images extf (g) in Rf are zero for all

f ∈ F , then g = 0 in R.

Geometric version: Let X =
⋃
f∈F Xf be a covering of X = Spec(R) by principal

open sets Xf . If the restriction of g : X →
⋃
a∈X κa to Xf is zero for all f , then f

is already zero on X.

Proof. Choose a finite representation 1 =
∑
f∈F cf ·f , with cf ∈ R, cf = 0 for almost all f .

We can thus assume F to be finite. Now choose k ∈ N such that extf (g) = 0 can be written

in Rf as extf (g) = g
1 = 0

fk , for all f ∈ F . Thus, by definition of the ring of quotients, there

exists an m ∈ N with fm · (g · fk − 1 · 0) = 0, i.e., fm+k · g = 0, for all f ∈ F . If ` is

sufficiently large, 1 = (
∑
f∈F cf · f)` lies in the ideal generated by all fm+k. From this now

follows g = 1 · g = 0 in R. 	

Lemma 2. Algebraically: Let F be a collection of elements f in R that generate whole

R. For each f ∈ F , let an element gf ∈ Rf be given. Assume that extf ′(gf ) =

extf (gf ′) in Rff ′ holds for all f, f ′ ∈ F . Then there exists (exactly) one element g

in R whose images extf (g) in Rf are equal to gf for all f ∈ F .

Geometrically: Let X =
⋃
f∈F Xf be a covering of X = Spec(R) by principal open

sets Xf . If for each f maps gf : Xf →
⋃
a∈Xf

κa are given that match on all pairwise

intersections Xf ∩Xf ′ , then there exists (exactly) one map g : X →
⋃
a∈X κa on X,

whose restrictions to Xf coincide with gf for all f ∈ F .

Proof. The uniqueness of g is given by Lemma 1. Again, we can assume that F is finite. So

write gf = hf/f
k with hf ∈ R and k ∈ N, for all f ∈ F . Because of extf ′(gf ) = extf (gf ′)

in Rff ′ for f, f ′ ∈ R it follows that

(ff ′)m · (hf · f ′k − hf ′ · fk) = 0

for a common m ∈ N and all f, f ′ ∈ F . Write gf = h̃f/f
` with ` = k + m and

h̃f = hf · f `−k ∈ R. We get

h̃f · f ′` = hf · f `−k · f ′` = hf · fm · f ′k+m

and, symmetrically,
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h̃f ′ · f ` = hf ′ · f ` · f ′`−k = hf ′ · fk+m · f ′m,

thus, because of extf ′(gf ) = extf (gf ′),

h̃f · f ′` = h̃f ′ · f `.

Further we may decompose 1 =
∑
f ′∈F cf ′ · f ′` for suitable cf ′ ∈ R. This is possible

because the powers f ′`, f ′ ∈ F , also generate R. Now set g :=
∑
f ′∈F cf ′ · h̃f ′ ∈ R. We

claim that this g satisfies extf (g) = gf for all f . In fact, gf =
hf

fk =
h̃f

f` = g
1 holds in Rf if

and only if fn · (h̃f · 1− f ` · g) = 0 for an n ∈ N, i.e., if

fn ·
(
h̃f · (

∑
f ′∈F cf ′ · f ′`)− f ` · (

∑
f ′∈F cf ′ · h̃f ′)

)
= 0.

This follows from the previous identity h̃f · f ′` = h̃f ′ · f `. 	

Sheaves. The letters F and G are dominant here because of the French school of the fifties

(Bourbaki, ...), calling them Faisceaux. A sheaf F (of sets, rings, ideals, ...) on a topological

space X is a collection F(U) (of sets, rings, ideals, ...), for all U ⊆ X open, together with

restriction maps ρU,V : F(U)→ F(V ) for all open V ⊆ U ⊆ X such that ρU,U = IdF(U)

and ρU,V ◦ ρV,W = ρU,W holds for all W ⊆ V ⊆ U ⊆ X open and for which the following

sheaf condition is satisfied (combination of Lemma 1 and 2):

If U ⊆ X is open with open covering U =
⋃
i∈I Ui, and if elements fi ∈ F(Ui) are

given whose restrictions (given by ρ) coincide on the intersections Ui ∩Uj , then there

is exactly one f ∈ F(U) whose restrictions to Ui are equal to fi for all i.

Usually, for f ∈ F(U) and V ⊆ U open, one writes f|V instead of ρU,V (f). The elements

of F(U) are called the sections of F on U (there is some reason for this name).

Examples. If X and Y are topological spaces, then the continuous maps f : U ⊆ X → Y

on open subsets U define a sheaf of sets on X . The holomorphic functions f : U ⊂ Cn → C
on open subsets U of Cn define a sheaf OCn of rings on Cn. If K is a field and U ⊆ Kn is

open with respect to the Zariski topology, then the regular functions on U , given by rational

functions f = P
Q ∈ K(x1, ..., xn) with polynomials P,Q ∈ K[x1, ..., xn] such that Q does

not vanish on U , define a sheaf of K-algebras on Kn.

If F and G are two sheaves on X , then a sheaf morphism α : F → G is a collection of maps

α(U) : F(U) → G(U), for U ⊆ X open, which is compatible with the restriction maps,

ρGU,V ◦ α(U) = α(V ) ◦ ρFU,V , for V ⊆ U open. If F and G have the algebraic structure of a

ring, module, etc., then all α(U) should be compatible with these structures.

If a basis Ui, i ∈ I , of the topology of X is given, then the F(Ui) already determine F : the

elements of F(U), for U ⊆ X open, are uniquely prescribed by their restrictions to the sets

Ui which are contained in U , due to the sheaf condition.

One can push the story a bit further (if one wants): If U =
⋃
i∈I Ui is an open cover of an

open subset U of X , then F(U) = lim←i∈I F(Ui) can be interpreted as the inverse limit

of all F(Ui), where {F(Ui)}i∈I is considered as a direct system via the restriction maps

ρij : F(Ui)→ F(Ui ∩ Uj). The elements of F(U) are thus understood as tuples (si)i∈I of

elements si ∈ F(Ui) whose restrictions (si)|Ui∩Uj
and (sj)|Ui∩Uj

match for all i and j in I .
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Conversely, for an open cover {Ui}i∈I of X , let sheaves Fi on Ui be given together with

isomorphisms ϕij : (Fi)|Ui∩Uj
→ (Fj)|Ui∩Uj

, which are compatible on triple intersections

Ui ∩Uj ∩Uk and equal to the identity IdFi
for i = j. Here, (Fi)|Ui∩Uj

denotes the sheaf on

Ui ∩ Uj defined by (Fi)|Ui∩Uj
(V ) = Fi(V ), V ⊆ Ui ∩ Uj open. Then there exists exactly

one sheaf F on X whose restrictions F|Ui
on Ui are isomorphic to Fi via isomorphisms that

are compatible with the ϕij .

Stalks. Let a be a point of X . The sets F(U), U ⊆ X open neighborhood of a, form a

direct system: For neighborhoods U , V we obtain with W = U ∩ V the restriction maps

F(U)→ F(W ) and F(V )→ F(W ). We set

Fa = lim→ F(U),

where the limit runs over all open neighborhoods U of a. So

Fa =
∐
U F(U)/ ∼

is the disjoint union of all F(U) modulo the following equivalence relation: f ∈ F(U) is

equivalent to g ∈ F(V ) if and only if there exists an open neighborhood W of a in U ∩ V
such that f|W = g|W in F(W ). Then Fa is called the stalk of F at a, and its elements are

germs at a. The natural map F(U) → Fa, a ∈ U , is denoted by f → fa. If s ∈ Fa, then

every f ∈ F(U) with fa = s, for U an open neighborhood of a, is called a representative of

s on U . Two representatives of s always agree on a sufficiently small neighborhood of a.

Structure sheaf of an affine scheme. LetR be a ring andX = SpecR the associated affine

scheme, with underlying topological space X (note the double notation). We construct from

R a sheaf of ringsOX onX , the structure sheaf of the schemeX . According to the remarks

above, it is sufficient to specify OX(U) for a choice of basis {U} of the topology on X . For

this purpose, we choose the principal open subsetsXf , f ∈ R, as the basis. If U = Xf ⊆ X ,

then set

OX(U) = OX(Xf ) = Rf = R[ 1
f ],

the ring of quotients with denominators fk. For inclusions V = Xg ⊆ U = Xf , one has

g ∈
√

(f), i.e., gm = a · f for an a ∈ R and an m ∈ N. This induces the restriction maps

ρU,V : OX(U)→ OX(V ), given by

Rf → Rg,
h
fk = akh

(af)k
→ akh

gmk .

In Lemmata 1 and 2 above it was shown that the rings Rf , f ∈ R, fulfill the sheaf condition.

This means that the construction of the sheaf OX on X is guaranteed. It is completely

determined by the ring R. We obtain, for a = [p] ∈ X , because of Rp = lim
→ f∈R\p

Rf , that

the stalks of OX in a are the localizations

OX,a = (Rf )p = Rp,

where f ∈ R was chosen so that a ∈ Xf and therefore f 6∈ p. Note that
⋂

pRp = R holds,

i.e., the ring R is the intersection of all local rings OX,a. Seeing the ring as the intersection

of its localizations was the starting point in Chevalley’s lecture entitled "Schemes" at the
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Séminaire Cartan-Chevalley from 1955/56. For all a ∈ Xf , the germ fa ∈ OX,a is invertible,

since f (more precisely: extf (f)) is invertible in Rf .

For every open subset U the rings OX(U) are given by

OX(U) = lim←Xf⊆U OX(Xf ) = lim←Xf⊆U Rf .

Using the same reasoning as above, OX(U) =
⋂
a∈U OX,a.

Construction of general schemes by gluing rings. As an alternative to the classical def-

inition of general schemes via sheaves as locally ringed spaces locally isomorphic to affine

schemes we briefly sketch the construction of schemes by gluing affine schemes. This is

in perfect analogy with the two definitions of differentiable manifolds, either as topological

spaces equipped with an atlas, or as a collection of open subsets of Rn together with transition

functions between them (defining the gluing).

Let {Ri}i∈Λ be a collection of rings with associated affine schemes Xi = SpecRi. For each

pair (i, j) of indices in Λ, let a ring map

Ri → Rij = (Ri)fij

be given, with fij ∈ Ri, together with ring isomorphisms

αij : Rji → Rij ,

for which αji = α−1
ij and αik = αij ◦ αjk on the rings Rijk = (Ri)fijfik . Then the

specification of Ri, Rij and αij defines a (general) scheme X with underlying topological

space

X =
∐
Xi/ ∼,

where a ∈ Xi is aquivalent to b ∈ Xj if and only if a ∈ Uij = SpecRij , b ∈ Uji = SpecRji,

and the equality ϕij(a) = b holds for the homeomorphism ϕij : Uij → Uji induced by αij .

Morphisms f : X → Y are defined by the existence of open affine covers X =
⋃
Xi

and Y =
⋃
Yj with principal open subsets Xij of Xi and Yji of Yj and by morphisms

fij : Xij → Yji, which are compatible with all restriction maps. We leave out the (tedious

but straightforward) details

General schemes as locally ringed spaces. We now give the usual definition of schemes,

starting from a topological space X , equipped with a sheaf. The reader will see that other

readers might be repelled by the notational and semantic complexity. A locally ringed space

is a pair X = (T,F) consisting of a topological space T together with a sheaf F on T whose

stalks Fa are local rings at all points a ∈ T . A morphism (T,F)→ (S,G) of locally ringed

spaces is a continuous mapping f : T → S together with a collection of ring homomorphisms

αV : G(V )→ F(f−1(V )), V ⊆ S open, which are compatible with the restriction maps and

satisfy the following property: For every a ∈ f−1(V ) and every h ∈ G(V ) with h(f(a)) = 0,

one has αV (h)(a) = 0. Here, h ∈ G(V ) is again regarded as a map to V as before. It is

also said that (T,F) and (S,G) are isomorphic via f : T → S. We obtain local ring

homomorphisms αa : Gb → Fa, for all a ∈ T and b = f(a) ∈ S.
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A (general) scheme is a pair X = (T,O) = (TX ,OX) consisting of a topological space

T and a sheaf O = OX of rings on T that admits an open covering T =
⋃
i∈I Ui for

which each pair (Ui,O|Ui
) is isomorphic (as a locally ringed space) to an affine scheme

Xi = (SpecRi,OXi
), whereOXi

denotes the structure sheaf defined byRi onXi = SpecRi.

In particular, Ui = Spec(O(Ui)) ∼= Xi = Spec(Ri). In contrast to the situation with affine

schemes, the topological space T is now also given and not an object derived from a ring.

Nevertheless, we will again write T = X , i.e., X = (X,OX). The open subsets Ui are

identified with the schemes Xi and are called open affine cover of X . Grothendieck in

EGA also requires that X is separated, i.e., that the diagonal ∆X : X → X ×X is a closed

embedding.

Using the concepts of sheaf theory, we then obtain the entire category of schemata and

their basic constructions, i.e., in particular morphisms, open and closed subschemata and

fiber products. These concepts can often be defined on affine charts, in which case the

independence of the choice of charts must be shown.

Within the category of general schemes, we can now characterize the affine ones as follows

Let X = (T,F) be a topological space together with a sheaf F of rings. For h ∈ R = F(T )

set Th = {a ∈ T, h invertible in Fa}. Then X is an affine scheme if and only if: (i)

F(Th) = Rh for all h, (ii) the stalks Fa are local rings for all a, (iii) the induced map

f : T → SpecR, given by a→ pa, where pa is the pre-image underR→ Fa of the maximal

ideal ma of Fa in R, is a homeomorphism. Clearly, the structure sheaf of an affine scheme

fulfills these conditions. Conversely, for a pair (T,F) with (i) to (iii), set R = F(T ) and

denote byOX the structure sheaf associated toR onX = SpecR. Then check that the ringed

spaces (T,F) and (X,OX) are isomorphic via f .
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Exercises Class IV. (1) Glue V (xy) with V (xy) along the y-axis, sending points close to

zero to points close to infinity.

(2) Show that the intersection of all localizations Rp, p a prime of R, coincides with R.

(3) Describe An × Pm ring theoretically.

(4) Let R◦i denote the ring of elements P
Q of K[x0, x1, ..., xn,

1
xi

] with homogeneous polyno-

mials P and Q of the same degree. Show that R◦i is isomorphic to

K[y0, y1, ..., yi−1, 1, yi+1, ..., yn].

(5) Find a better proof for Lemma 2.

(6) Give explicitly the chart maps for P2.

(7) Find a reference where the two definition of sheaves, one through sections on open subsets,

one through the collection of stalks, are explained and shown to be equivalent.

(8) Show that an open subset of an affine scheme has a natural structure of a general scheme.

(9) Do this for A3 \ {0}.

(10) Express the definition of a sheaf on a topological space X as a functor on the category

of open subsets of X , with morphisms the inclusions.

(11) Are the Möbius transformations of P1 also scheme morphisms?

(12) Why and how do we want to see the elements of a ring R as functions on the associated

topological space X = SpecR. Think of R = K[x1, ..., xn]/I . It is quite clear what the

image of a closed point should be if K = K, but for non-closed points one has to take into

account residue fields.

(13) Define three embeddings of P1 into P2.

(14) How would you define the fiber product of general schemes? And how would you

construct them?

(15) Consider a scheme X defined by R = Z[x1, ..., xn]/I for some ideal I . The inclusion

map Z → R gives a morphism X → SpecZ. What are its fibers? Illustrate this in the

example I = 〈y2 − x3 − x〉 of an elliptic curve.
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CLASS V: "The Origin of Schemes & Examples"

Let us go back some 70 years and acompany the Bourbaki group in France in the year 1955.

A first Bourbaki meeting of part of the “tribu” took place end of February, beginning of

March, in Southern France at La Ciotat, a touristic place in the Calanques not too far from

Marseille. The group was small (Cartan, Dixmier, Koszul, Samuel, Serre) and discussed the

forthcoming plan of how to prepare a treatise on Algebraic Geometry. There exist “Notes”

of this meeting, here it is “La Ciotat-Tribu, nr. 35”, and the prospective chapters were: I

Algebraic Varieties, II the rest of chaper I, III Divisors, IV Intersections.

Three months later, end of May 1955, another meeting was held, this time in Chicago at

the University there, where André Weil was working in that period. The unique topic was

Algebraic Geometry, and the proposal of the La Ciotat meeting was largely ignored (or even

rejected) by the participants, which aside from Samuel, were disjoint from those who were at

the earlier meeting. The new plan was: I Schemes, II Theory of multiplicities for schemes, III

Varieties, IV Calculation of Cycles, V Divisors, VI Projective Geometry, etc. The members

present at that meeting were Dieudonné, Weil, Chevalley, Samuel, Borel, Lang.

On page 3 of the Notes of this meeting it reads:

Ou l’on explique ce que c’est qu’un schéma.

The geometric objects composing a scheme were called in the “Notes” of the Chicago meeting

tâches, in english, spots. These are local rings, obtained by localizing a given ring R at a

prime ideal p (R was called affine algebra and of the form A[x1, ..., xn], the elements xi
not necessarily being algebraically independent, but requiring that A[x1, ..., xn] is an integral

domain). And then, an affine scheme was defined as the collection of tâches which could be

associated to a single affine algebra, having the same field of fractions.

It is interesting to observe here the psychological predisposition these mathematicians had: It

was still mandatory to define everything within a given “universe”, say, on a solid fundament,

in this case, finitely generated A-algebras, A a Dedekind ring (A Noetherian integral domain

of Krull dimension ≤ 1, as e.g. fields K or the rings Z and K[t]) and prescribing a common

field of fractions. As such, the local rings had to be integral domains.

This viewpoint is confirmed by Chevalley’s lectures in his joint seminar with Henri Cartan

at École Normale Supérieure from fall 1955. On December 12th, exposé 5, Chevalley

(re)-defines schemes (now publicly), with a slight modification. Citation: Fix a finite field

extension K ⊆ L. An affine algebra is a finitely generated K-subalgebra of L. A locality

(in French: localité) of L is any ring which is the localization of an affine algebra at a prime

ideal. So this corresponds, in modern language, and given an affine scheme X = SpecR, to

the local rings Rp, for p prime in R, say, the germs (X, a) of X at points a = [p].

Chevalley then proceeds to define “dominance” (corresponding to injective ring homomor-

phisms, see our first class), then “apparentment” of two localities, meaning that they are

dominated both by a third locality, and finally “specialization”: This term is also used now-

adays and just concerns an inclusion of prime ideals p ⊆ q, yielding R, Rp and Rq. Then Rq
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is called a specialization ofRp. Geometrically, p defines an irreducible subscheme Y = V (p)

inside X = SpecR, and Z = V (q) ⊆ is closed in Y . Thinking of germs, with a = [p] and

b = [q], we have (X, b) being a specialization of (X, a). Think of X = A2, p = 〈x − y〉,
q = 〈x, y〉, then (X, a) is the germ of A2 along the diagonal Y = V (x− y), and (X, b) is the

germ of A2 at the origin {0} = V (x, y), or, if you wish, the germ of (X, a) at b.

The next items of Chevalley’s exposé are the definition of the dimension of a locality (using

transcendence degree) and of the height of a locality (using chains of prime ideals - already

used and studied by Krull some 25 years earlier). He also gives a characterization of height

in terms of minimal systems of generators of a primary ideal.

In section 2, affine schemes are defined as the collection of all localities of an affine algebra

R. And Chevalley immediately remarks that the localities determine R, since R =
⋂

pRp,

for p varying over all primes of R (one may even just take maximal ideals). This description

actually holds for arbitrary rings.

Lemma. Let R be a (commutative) ring. Then R =
⋂

p⊂RRp =
⋂

m⊂RRm, seeing Rp

as a subring of the ring of quotients QuotR = M−1R, where M =
⋃

p(R \ p) is the

set of non-zero divisors of R.

Proof. Let g ∈
⋂

m⊂RRm. There then exists for every maximal ideal m an h ∈ R \ m with

g = f
h for some f ∈ R. Hence gh = f ∈ R. Consider the ideal J of R of those elements

g ∈ R with gh ∈ R. It follows from the above that J is not contained in any maximal ideal

of R. Zorn’s Lemma implies that J = R. We finish with g = g · 1 ∈ R. 	

Observe here that one can only define the intersection
⋂

p⊂RRp if all the localities Rp are

included in a common field (or ring), in Chevalley’s case the extension L of K. Knowing

this, one can indeed recover R from the localities (which, apparently, was important for the

algebraic geometers from that time).

In our days, we see it from the opposite side, first comes the ring R and then, from it, all

its localizations, respectively, prime ideals are extracted. And, suddenly, the hypothesis of

a common a priori universe becomes redundant. This step - to pass to arbitrary rings first

and to associate to them a geometric object - was carried out by Grothendieck himself, used

already in his talk 1958 at the ICM in Edinburgh (see the bottom of page 105) and worked out

systematically (together with Dieudonné) in 1960 in EGA 1 (Cartier’s lecture on schemes from

2015 at IHP provides more details). All this was strongly influenced by Serre’s “Faisceaux

Algébriques Cohérents” from 1955, as well as Nagata’s paper from 1956.

The next step in Chevalley’s exposition is the introduction of the Zariski-topology on the set of

localities (see again Cartier), and to show that the closure of a locality is the collection of all its

specializations (Prop. 5). Section 3 is devoted to the definition of general schemes (as a union

of affine schemes) and of projective space Pn. And section 4 introduces “completeness” of

schemes, showing that projective schemes are complete (analog of compactness in topology).

The reader may now be curious to look her- or himself at Chevalley’s notes, and also at his

second talk, Exposé 6 (where, among other things, the universal property of the Cartesian

product of two schemes is described). After this, go directly to EGA 1, chap. 1.
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Examples. To round up these notes, we will look at two instances where the language of

schemes comes in handy. The first concerns the use of generic points and is very simple.

Proposition. Let Z ⊆ X be closed and irreducible, and f : X → Y a morphism of

(affine) schemes. Then the (closure of the) image f(Z) of Z is irreducible.

Proof. As Z is closed and irreducible, it is the closure of a point a = [p] of X = SpecR,

say Z = {a}. Clearly, the image of a point under a morphism is again a point, hence

f(a) = b = [q] with q prime in S, for Y = SpecS. We get, by continuity, f(Z) = f({a}) =

{f(a)} = {b}, and this is irreducible since equal to V (q). 	

It follows from the proposition that the image of X = A1 under any non-constant morphism

A1 → Y = V (xy) ⊆ A2 is contained in only one component of Y , either the x- or the y-axis.

(2) We consider only Noetherian schemes here, so all dimensions are finite. The next example

will be an instance where universal properties are used to define objects (here: blowups), and

then used again to prove statements about blowups, but now using also the universal property

of fiber products and of the Zariski-closure of a subset of a scheme.

A Cartier divisor of a scheme X is a closed subscheme Z of X of codimension 1 which, on

a suitable open affine cover X =
⋃
Xi of X , can be defined in each chart Xi = SpecRi, by

a non-zero divisor of Ri, say Z ∩Xi = V (fi). If X is smooth and irreducible, codimension

1 alone suffices, but for singular schemes the notion is more subtle, see the author’s notes

“Blowups and Resolution” for examples. The complement of a Cartier divisor is dense in X .

Let X be a scheme and Z an arbitrary closed subscheme. A blowup of X with center Z

is a morphism π : X̃ → X whose exceptional divisor E = π−1(Z) is a Cartier divisor

in X̃ , and which is minimal in the following sense: If τ : X̃ ′ → X is another morphism

whose exceptional divisorE′ = π−1(Z) is Cartier in X̃ ′, then there exists a unique morphism

σ : X̃ ′ → X̃ such that τ = π ◦ σ.

F ↪→ X̃ ′ 99Kσ X̃ ←↩ E

↘ τ↘ ↓ π ↓

Z ↪→ X ←↩ Z

There exists an explicit construction of the blowup of X with center Z: If Z = V (I) ⊆ X ,

with I ⊆ R the defining ideal of Z, where R = SpecR, then

X̃ = Proj
(⊕∞

k=0(It)k
)
,

where the Rees algebraR(X,Z) =
⊕∞

k=0(It)k is understood as a graded ring, the k-th piece

being (It)k (t is here a dummy variable to distinguish between Ik and (It)k). We stipulate here

that (It)0 = R, so the elements ofR have degree 0. This somewhat monstruous definition has

a simple interpretation whenX = An is affine space andZ = Ak = Ak×0n−k is a coordinate

subspace. Then X̃ is obtained by gluing (suitably) k copies of the rings K[x1, ..., xn] along

their ring extensions K[x1, ..., xn,
1
xj

], for j = 1, ..., k. Geometrically, k copies of An are

glued along the principal open subschemes An \ V (xj).
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Now, ifX = SpecR is a closed subscheme of An, things seem to be more complicated, since

the ring R = K[x1, ..., xn]/I is no longer generated by algebraically independent elements.

Here, the base change property of blowups is a wonderful tool to overcome the difficulty. In

all generality, it goes as follows.

Proposition. Let π : X̃ → X be the blowup of X along the closed subscheme Z, and

let ϕ : Y → X be a morphism, the base change. Denote by p : X̃ ×X Y → Y the

projection from the fiber product to the second factor. Let S = ϕ−1(Z) ⊆ Y be the

pre-image of Z under ϕ, and let Ỹ be the Zariski-closure of the pre-image p−1(Y \S)

of Y \ S in X̃ ×X Y . Then the restriction τ : Ỹ → Y of p to Ỹ equals the blowup of

Y along S (Fig. 1, replacing there X̃ ×X Y by Y ×X X̃).

Figure 1: Constructing the blowup τ of Y along S from the blowup π of X along Z.

Proof. The assertion is most elegantly proven by combining the universal property of blowups

with the universal property of fiber products. To show that F = τ−1(S) is a Cartier divisor

in Ỹ , consider the projection q : Y ×X X̃ → X̃ onto the second factor. The diagram

q : Y ×X X̃ −→ X̃

↓ p ↓ π

ϕ : Y −→ X

commutes. This implies that F = p−1(S) ∩ Ỹ , where

p−1(S) = S ×Z X̃ = p−1 ◦ ϕ−1(Z) = q−1 ◦ π−1(Z) = q−1(E).

AsE is a Cartier divisor in X̃ there exists an open affine coverX =
⋃
X̃i, with X̃i = Spec R̃i,

such that E ∩ X̃i can be defined by a principal ideal of R̃i generated by a non-zero divisor.

It follows that F is also locally defined in Ỹ by a principal ideal, namely, by the pull-back

of these principal ideals of R̃i by the ring maps associated to q. To show that F is Cartier, it

remains to check that these pull-backs are generated by non-zero divisors of wtRi.

Note first that p−1(S) = S ×Z E ⊆ Y ×X X̃ . As Ỹ is the Zariski-closure of p−1(Y \ S) =

(Y \ S) ×X X̃ , the irreducible components of Ỹ are the Zariski-closures of the irreducible

components of (Y \ S) ×X X̃ . Hence, if F = p−1(S) ∩ Ỹ would be defined locally in Ỹ

by a zero divisor, its intersection with (Y \ S) ×X X̃ would be a union of components of

(Y \ S) ×X X̃ . But F equals p−1(S) ∩ Ỹ = (S ×Z X̃) ∩ Ỹ where (S ×Z X̃) has empty

intersection with (Y \ S) ×X X̃ = ∅, so this is not possible. Hence F is locally defined by

non-zero divisors. This proves that F is Cartier in Ỹ .

To show that τ : Ỹ → Y fulfills the universal property, let ψ : Y ′ → Y be a morphism such

that ψ−1(S) is a Cartier divisor in Y ′. Since ψ−1(S) = ψ−1(ϕ−1(Z)) = (ϕ ◦ ψ)−1(Z),

there exists by the universal property of the blowup π : X̃ → X a unique map ρ : Y ′ → X̃
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such that ϕ ◦ ψ = π ◦ ρ. By the universal property of fiber products, there exists a unique

map σ : Y ′ → X̃ ×X Y such that q ◦ σ = ρ and p ◦ σ = ψ.

The argument is depicted in the following diagram (Fig. 2).

Figure 2: The use of the universal properties of blowups and fiber products.

It remains to show that σ(Y ′) lies in Ỹ , the Zariski-closure of p−1(Y \S) in X̃ ×X Y . Since

ψ−1(S) is a Cartier divisor in Y ′, its complement Y ′ \ ψ−1(S) is dense in Y ′. From

Y ′ \ ψ−1(S) = ψ−1(Y \ S) = (p ◦ σ)−1(Y \ S) = σ−1(p−1(Y \ S))

it follows that σ(Y ′ \ψ−1(S)) ⊆ p−1(Y \S). But Ỹ is the closure of p−1(Y \S) in X̃×X Y ,

so that, by the density of Y ′ \ψ−1(S) in Y ′ and the continuity of σ, the inclusion σ(Y ′) ⊆ Ỹ
holds as required. 	

Special cases. Base changes and fiber products facilitate various operations with morphisms.

(a) Let π : X ′ → X be the blowup ofX along a subvarietyZ, and let Y be a closed subvariety

of X . Denote by Y ′ the Zariski closure of π−1(Y \Z) in X ′, i.e., the strict transform of Y

under π. The restriction τ : Y ′ → Y of π to Y ′ is the blowup of Y along Y ∩Z. In particular,

if Z ⊆ Y , then τ is the blowup Ỹ of Y along Z.

(b) Let U ⊂ X be an open subvariety, and let Z ⊆ X be a closed subvariety, so that U ∩Z is

closed in U . Let π : X ′ → X be the blowup of X along Z. The blowup of U along U ∩ Z
equals the restriction of π to U ′ = π−1(U). Thus blowups can be defined locally.

(c) Let a ∈ X be a point. Write (X, a) for the germ of X at a, and (X̂, a) = Spec R̂p for the

formal neighbourhood. There are natural maps

(X, a)→ X and (X̂, a)→ X

corresponding to the localization and completion homomorphisms OX → OX,a → ÔX,a.

Take a point a′ above a in the blowup X ′ of X along a subvariety Z containing a. This gives

local blowups of germs and formal neighborhoods

πa′ : (X ′, a′)→ (X, a), π̂a′ : (X̂ ′, a′)→ (X̂, a).

(d) IfX1 → X is an isomorphism between varieties sending a subvariety Z1 to Z, the blowup

X ′1 of X1 along Z1 is canonically isomorphic to the blowup X ′ of X along Z. This also

holds for local isomorphisms.

(e) If X = Z × Y is a cartesian product of two varieties, and a is a given point of Y ,

the blowup π : X ′ → X of X along Z × {a} is isomorphic to the cartesian product

IdZ × τ : Z × Y ′ → Z × Y of the identity on Z with the blowup τ : Y ′ → Y of Y in a.
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Links

Grothendieck Audio 1973: www.youtube.com/watch?v=yysW-egOCR4

Dieudonné Video 1972: www.youtube.com/watch?v=qhkPtQWR−oY

Deligne Video 1996: www.youtube.com/watch?v=PeMAyPGjL68

Cartier Video 2015: www.youtube.com/watch?v=etdvnswIhMw

Neverendingbooks Birth of Schemes: www.neverendingbooks.org/the-birthplace-of-schemes

Bourbaki meeting March 1955: https://archives-bourbaki.ahp-numerique.fr/files/original/

fe0a74e7fa0906cce661b9f2a96895e2.pdf

Bourbaki meeting May 1955: https://archives-bourbaki.ahp-numerique.fr/items/show/866#?

c=0& m=0& s=0& cv=0
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Epilogue. This concludes our brief exposition of “A Gentle Approach to the Theory of

Schemes”. It is not aimed at giving a full understanding, but it should convince the reader

that even for a non-expert it is possible, without too much effort, to become familiar with the

main definitions and constructions. If this could be achieved, this note has done its job. A

much more extensive introduction to schemes by the author is forthcoming.

At that point we would like to thank the people from the Mathematics Departement of Instituto

Superior Técnico, especially José Mourão and João Pimentel, for their hospitality and support

during the author’s stay at Lisbon. The interest and feedback of the audience - both students

and researchers - wer instrumental to make this course a very enjoyable endeavour.
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