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Let γ0, γ1 be two piecewise differentiable curves in R2 and
SO(2) = SO(2)⋉R2 be the group of orientation-preserving
isometries in R2.

Question: Letting γ0 be fixed and letting γ1 traverse in the
plane, how much do γ0 and γ1 intersect?

That is, we want to compute∫
SO(2)

#(γ0 ∩ gγ1)dµ(g)

for a suitable measure µ.
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A natural condition for µ is right-invariance, that is, for all
h ∈ SO(2),∫

SO(2)
#(γ0 ∩ ghγ1)dµ(g) =

∫
SO(2)

#(γ0 ∩ gγ1)dµ(g).

As SO(2) is a locally compact Hausdorff topological group, we
require µ to be a right Haar measure. It can be computed
explicitely through differential forms:

µ(A) =

∫
A
|da ∧ db ∧ dϕ|,

where (a, b, ϕ) are local coordinates for SO(2).
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Poincaré’s Formula∫
SO(2)

#(γ0 ∩ gγ1)dµ(g) = 4|γ0||γ1|,

where |γi | is the length of γi .

Similarly, for the space of lines in R2, Gr1(R2), we can ask how
much does a curve γ intersect Gr1(R2).
A line is defined by their distance to the origin p and the angle ϕ
its outward normal vector makes with the x-axis.
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The measure

µ1(A) =

∫
A
|dp ∧ dϕ|

is SO(2)-invariant, and we can obtain

Crofton’s Formula ∫
Gr1

#(γ ∩ E )dµ1(E ) = 2|γ|.

Can these formulas be generalized to Rn?
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Convex bodies

Let Kn be the set of convex bodies (non-empty, compact convex
sets) in Rn. How do we measure how similar two sets K , L ∈ Kn

are?

Hausdorff metric

Let Bn be the unit ball. The function δ : Kn ×Kn → R given by

δ(K , L) := max

{
max
x∈K

min
y∈L

∥x − y∥,max
x∈L

min
y∈K

∥x − y∥
}

= min {ε ≥ 0 : K ⊂ L+ εBn, L ⊂ K + εBn}
.

is called the Hausdorff metric.

Notice that K + εBn = {x ∈ Rn : d(K , x) ≤ ε}.
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Convex Bodies

Polytope

A polytope P ⊂ Rn is a bounded set that can be represented as
the intersection of finitely many closed halfspaces ( ⇐⇒ P is the
convex hull of a finite subset of Rn).

Polytopes are dense in Kn

Let K ∈ Kn and ε > 0. Then there is a polytope P ∈ Kn with
P ⊂ K ⊂ P + εBn, hence δ(K ,P) ≤ ε.

In fact, we can cover K by finitely many balls of radius ε and
centers pi ∈ K . Then P = conv({p1, . . . , pn}) is the required
polytope.
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ε-thickening of a polytope in R2

P

ε

λ2(P + εBn) = λ2(P) + ε× perimeter of P+πε2
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Steiner’s Formula

Let Vn = λn be the Lebesgue measure in Rn. For every convex
body K and ρ ≥ 0, we have

Vn (K + ρBn) =
n∑

i=0

ρn−iκn−iVi (K ),

where κj :=
π

n
2

Γ(1+ n
2 )

is the volume of B j

Idea of proof: Prove the formula first when K = P is a polytope.
Replacing ρ by 1, 2, . . . , n + 1, we get a system of n + 1 linear
equations. Invert the system to write each Vi (P) as a linear
combination of Vn(P + tBn), t = 1, 2, . . . , n + 1. Show that
K 7→ Vn(K + tBn) is continuous and extend the Vi by density.
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Remark

For polytopes, we have the explicit formula

Vi (P) =
∑

F∈Fi (P)

γ(P,F )λi (F )

where Fm(P) are the m-dimensional faces of P and

γ(P,F ) :=
λn−i (N(P,F ) ∩ Bn)

κn−i
,

where N(P,F ) is the set of outward normal vectors to F .

In general, V0 ≡ 1 and Vn−1 is half of the (n − 1)-dimensional
surface area.
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The Vi : Kn 7→ R are O(n)-invariant and i-homogeneous.
Furthermore, their value is independent of the ambient space, and
Vk ≡ λk when restricted to k-dimensional convex bodies. Hence,
they are called intrinsic volumes.

Example

Let K be the n-dimensional rectangle with side lengths x1, . . . , xn.
Then Vi (K ) is the i-th elementary symmetric polynomial on the
variables x1, . . . , xn:

V0(K ) = 1;

V1(K ) = x1 + x2 + · · ·+ xn;

V2(K ) = x1x2 + x1x3 + · · ·+ xn−1xn;

Vi (K ) =
∑

1≤j1<j2<···<ji≤n xj1 · · · xji ;
Vn(K ) = x1x2 . . . xn.
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More generally, a functional φ : Kn → R is called a valuation if

φ(K ∪ L) + φ(K ∩ L) = φ(K ) + φ(L)

whenever K , L,K ∪ L ∈ Kn. Let Val denote the space of
translation-invariant continuous valuations and

ValG := {φ ∈ Val | φ(gK ) = φ(K ) ∀g ∈ G}.

Hadwiger’s Characterization Theorem

Let φ ∈ ValSO(n). Then there are constants c0, . . . , cn ∈ R such
that

φ(K ) =
n∑

i=0

ciVi (K )

for all K ∈ Kn, that is, ValSO(n) is a finite dimensional real vector
space.
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Invariant measures

SO(n) has a Haar probability measure ν.

On SO(n), there is a Haar measure µ with
µ(γ ([0, 1]n × SOn)) = 1.

Let Grq the set of all q-dimensional linear subspaces of Rn, and
Grq the set of all q-dimensional affine subspaces of Rn.

There exists a SO(n)-invariant probability measure νq on Grq.

There exists a SO(n)-invariant measure µq on Grq. It is unique up
to a constant factor.
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Hadwiger’s General Integral Geometric Theorem

If φ ∈ ValSO(n), then∫
SO(n)

φ(K ∩ gM)dµ(g) =
n∑

k=0

φn−k(K )Vk(M)

for K ,M ∈ Kn, where the coefficients φn−k(K ) are given by

φn−k(K ) =

∫
Grk

φ(K ∩ E )dµk(E )

Proof idea: show that M 7→
∫
SO(n) φ(K ∩ gM)dµ(g) ∈ ValSO(n)

and apply Hadwiger’s Characterization Theorem.
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If φ = Vj , one can also show that φn−k ∈ ValSO(n), so we obtain

Principal Kinematic Formula

∫
SO(n)

Vj(K ∩ gM)dµ(g) =
n∑

k=j

αnjkVn+j−k(K )Vk(M)

Crofton’s Formula∫
Grk

Vj(K ∩ E )dµk(E ) = αnjkVn+j−k(K )

Here, αnjk =
Γ( k+1

2 )Γ( n+j−k+1
2 )

Γ( j+1
2 )Γ( n+1

2 )
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Applications

Let K ,K0 ∈ Kn such that K ⊂ K0 and consider the Xk ∈ Grk such
that K0 ∩ Xk ̸= ∅

EVi (K ∩ Xk) =

∫
Grk

Vi (K ∩ E )dµk(E )∫
Grk

V0 (K0 ∩ E ) dµk(E )

=
αnikVn+i−k(K )

αn0kVn−k (K0)
.

If K0 is assumed to be known and Vi (K ∩ Xk) is observable, then

αn0kVn−k (K0)

αnik
Vi (K ∩ Xk)

is an unbiased estimator of Vn+i−k(K ).
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What about for GL(n,R)? Trying to follow the proof of SO(n)
verbatim wouldn’t work, since there is no Hadwiger’s
Characterization Theorem for GL(n,R). Solution: use polar
decomposition!
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Polar Decomposition

Every g ∈ GL(n,R) can be written uniquely as

g = ϑS ,

where ϑ ∈ O(n) and S ∈ SPD(n). Furthermore, this
decomposition is unique.

The exponential map

exp : Sym(n) → SPD(n)

is a diffeomorphism.
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In Sym(n), we define the Gaussian measure

γn(A) =

(
1√
2π

) n(n+1)
2

∫
A
e−

1
2
∥X∥2F dρ(X ),

where ρ(X ) is a Lebesgue measure in Sym(n) with respect to the
Frobenius inner product ⟨X ,Y ⟩F = tr(XTY ). It is
O(n)-conjugation invariant.
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Hadwiger’s General Integral Geometric Theorem for GL(n,R)

Let GL(n,R) := GL(n,R)⋉Rn and µGL(n,R) := ν × γn × λn. Then∫
GL(n,R)

φ(K ∩ gM)dµGL(n,R) (g) = 2
n∑

k=0

ckφn−k(K )Vk(M),

where φn−k is the same as above and

ck =

∫
Sym(n) Vk(e

XBn)dγn(X )(n
k

)
κn

κn−k

.
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Remark

It is possible to compute
∫
Sym(n) Vk(e

XBn)dγn(X ) explicitely:

X = ϑD(X )ϑT ∈ Sym(n) is diagonalizable, so

Vk(e
XBn) = Vk(e

ϑD(X )ϑT
Bn) = Vk(ϑe

D(X )ϑTBn) = Vk(e
D(X )Bn).

In other words, X 7→ Vk(e
XBn) is O(n)-conjugation invariant.

Using a Weyl Integration Formula, it is enough to know the
intrinsic volumes of ellipsoids. The latter was done recently by
Gusakova, Spodarev and Zaporozhetsby in 2022.
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In the 2000’s, breakthroughs were made in regards to kinematic
formulas in Cn.

McMullen’s Decomposition, 1977

Let V be a real n-dimensional vector space and

Valk(V ) = {φ ∈ Val(V ) | φ(tK ) = tkφ(K ) t ≥ 0}.

Then

Val(V ) =
n⊕

k=0

Valk(V ).

Alesker, 2001

dimVal
U(n)
k = min

{⌊
k

2

⌋
,

⌊
2n − k

2

⌋}
+ 1.
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Alesker, 2002

For non-negative integers p and k such that 2p ≤ k ≤ 2n, let

Uk,p(K ) =

∫
Gr

C
n−p

Vk−2p(K ∩ E )dµC
n−p(E ).

Then the Uk,p, for 0 ≤ p ≤ min
{⌊

k
2

⌋
,
⌊
2n−k
2

⌋}
+ 1, form a basis

of Val
U(n)
k (Cn).
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Alesker, 2002

For K ,M ∈ K(Cn), we have∫
U(n)

Uk,p (K ∩ gM) dµC(g) =

∑
k1+k2=2n

min{k1,k2}
2∑

p1=0

min{k1,k2}
2∑

p2=0

γk,pk1,k2,p1,p2
Uk1,p1 (K )Uk2,p2 (M) ,

for some constants γk,pk1,k2,p1,p2
.
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We have a symplectic polar decomposition

Sp(2n,R) ≃ U(n)× Sp(2n,R) ∩ SPD(2n),

and the exponential map is a diffeomorphism between
sp(2n) ∩ Sym(2n) and Sp(2n,R) ∩ SPD(2n). The former is a real
n(n + 1)-dimensional vector space, and we can define a Gaussian
measure

γCn (A) =

(
1√
2π

)n(n+1) ∫
A
e−

1
2
∥X∥2F dρ(X ),
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Let K ,M ∈ K(Cn) and µSp(2n,R) := λ2n × γC × νC. We have that∫
Sp(2n,R)

Uk,p(K ∩ gM)dµSp(2n,R) =

∑
k1+k2=2n

min{k1,k2}
2∑

p1=0

min{k1,k2}
2∑

p2=0

min
{⌊

k2
2

⌋
,
⌊
2n−k2

2

⌋}
+1∑

p3=0

γk,pk1,k2,p1,p2
βk2,p2,p3Uk1,p1 (K )Uk2,p3(M),

for some constants γk,pk1,k2,p1,p2
, βk2,p2,p3 .
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