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Calabi-Yau Manifolds

e A Calabi-Yau (CY) n-fold is an n-dim’l Kahler manifold w/

@ 2 holomorphic volume form Q, locally f(z)dz A -+ A dz,.
@ a Kahler form w such that

w" = cQ AQ, complex Monge Ampere eq.

where ¢ is a constant only depends on n.

5,34



Calabi-Yau Manifolds

e A Calabi-Yau (CY) n-fold is an n-dim’l Kahler manifold w/

@ 2 holomorphic volume form Q, locally f(z)dz A -+ A dz,.
@ a Kahler form w such that

w" = cQ AQ, complex Monge Ampere eq.

where ¢ is a constant only depends on n.

5,34



Calabi-Yau Manifolds

e A Calabi-Yau (CY) n-fold is an n-dim’l Kahler manifold w/

@ 2 holomorphic volume form Q, locally f(z)dz A -+ A dz,.
@ a Kahler form w such that

w" = cQ AQ, complex Monge Ampere eq.

where ¢ is a constant only depends on n.

e Ex: (Yau '76) Generic degree n+ 1 hypersurface in P".
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K3 Surfaces

@ Compact simply connected CY surfaces called K3 surfaces.
o (Kodaira '64) K3 surfaces are all diffeomorphic.

e Ex: Quartic surfaces in P3.
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Ex: Quartic surfaces in P3.

e K3 surfaces are hyperKahler (HK), i.e.
7 integrable almost complex structure /, J, K satisfying
H=K=—-J,JK=1=—-KJ,KI=J=-IK.
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K3 Surfaces

Compact simply connected CY surfaces called K3 surfaces.

(Kodaira '64) K3 surfaces are all diffeomorphic.

Ex: Quartic surfaces in P3.

e K3 surfaces are hyperKahler (HK), i.e.
7 integrable almost complex structure /, J, K satisfying
H=K=—-J,JK=1=—-KJ,KI=J=-IK.
= (al +bJ+cK)?=—1ifa®+b>+c?>=1.

Ex: Degree (2,4)-hypersurface in P! x P3
Calabi-Yau 3-fold with a K3-fibration
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Special Lagrangian Submanifolds

e L Lagrangian if dimgL = dim¢X and w|; = 0.

e (Harvey-Lawson '82) A Lagrangian submanifold L in a CY is
special Lagrangian (SLAG) if Q|; = e®vol|, for some constant
g e St
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Special Lagrangian Submanifolds

e L Lagrangian if dimgL = dim¢X and w|; = 0.

e (Harvey-Lawson '82) A Lagrangian submanifold L in a CY is
special Lagrangian (SLAG) if Q|; = e®vol|, for some constant
0 € S. Equivalently, Im(e=?Q)|, = 0.

Why Special Lagrangians?

@ Special Lagrangian are calibrated submanifolds, automatically
the area minimizer among their homology classes.

If [L] = [L], then

/volL:/ReQ|L:/ ReQ|,/ g/ volys
L L L L

7/34



Special Lagrangian Submanifolds

Why Special Lagrangians?

@ Special Lagrangians are BPS states in various physics theory.
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Why Special Lagrangians?
@ Special Lagrangians are BPS states in various physics theory.

@ (Strominger-Yau-Zaslow conjecture) Calabi-Yau manifolds
admits special Lagrangian torus fibration and the mirror is
constructed by the dual fibration.

@ SYZ conjecture is the guiding principle of mirror symmetry.
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Special Lagrangian Submanifolds

Why Special Lagrangians?
@ Special Lagrangians are BPS states in various physics theory.

@ (Strominger-Yau-Zaslow conjecture) Calabi-Yau manifolds
admits special Lagrangian torus fibration and the mirror is
constructed by the dual fibration.

@ SYZ conjecture is the guiding principle of mirror symmetry.

@ “Slags conjecturally are stable objects in Fukaya category”.
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Examples of Special Lagrangians I, I

@ Explicit Examples when the Calabi-Yau metric is explicit.

Ex:  [x]?—|yl* = c1,Im(xy) =

is a special Lagrangian in C2.
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@ Explicit Examples when the Calabi-Yau metric is explicit.

Ex: x> =y = a,Im(xy) = e
is a special Lagrangian in C2.

@ Fix loci of an anti-holomorphic, anti-symplectic involution.
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Examples of Special Lagrangians I, I

@ Explicit Examples when the Calabi-Yau metric is explicit.

Ex: x> =y = a,Im(xy) = e
is a special Lagrangian in C2.

@ Fix loci of an anti-holomorphic, anti-symplectic involution.

If *w = —w,*Q = Q and t|p = id, then

wlp = 'wl = —w| = w|L =0.

9/34



Examples of SLAG IlI: HyperKahler Rotation

The hyperKihler triple (w, Q) induces an S2-family of complex
structures on the underlying space of X.

Then holomorphic curves in X < special Lagrangians in Xy.
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A Useful Lemma

Lemma
Let [L] € Ha(K3,Z) w/ [w].[L] = 0 and [L]?> = —2, then [L] is
represented by a special Lagrangian cycle.

This is a consequence of HK rotation and Riemann-Roch theorem
of surfaces.
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Examples of SLAGs IV: LMCF

@ Let L be a graded Lagrangian submanifold in X, i.e.,
3 the phase 8 : L — R is the function such that

Q| = evol, .

L is a special Lagrangian if 6 is a constant.
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Examples of SLAGs IV: LMCF

@ Let L be a graded Lagrangian submanifold in X, i.e.,
3 the phase 8 : L — R is the function such that

Q| = evol, .

L is a special Lagrangian if 6 is a constant.

o The mean curvature H = JV6 and the mean curvature flow is
given by evolving family of immersions F; : L — X with

0

ZF,=H.
ot *

@ (Oh, Smoczyk) Lagrangian condition is preserved under mean
curvature flow in Kahler—Einstein manifolds.

@ Smooth Convergent Limit of LMCF gives Special Lagrangians.
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e (Wang '01) Conjectured that LMCF converges if the
Lagrangian is almost calibrated.

o (Neves '10) 3 Lagrangians arbitrary C%-close to a special
Lagrangian but LMCF develops finite time singularities.

e (Joyce '14) Program of performing surgery before LMCF
singularities arise to construct stability onf Fukaya categories.
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e (Wang '01) Conjectured that LMCF converges if the
Lagrangian is almost calibrated.

o (Neves '10) 3 Lagrangians arbitrary C%-close to a special
Lagrangian but LMCF develops finite time singularities.

e (Joyce '14) Program of performing surgery before LMCF
singularities arise to construct stability onf Fukaya categories.

e (CJL '19) First example of LMCF with smooth convergence
w/o a priori knowing the limiting special Lagrangian exists.
e (CJL '24) Similar result for MCF.
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Examples of SLAGs V: Unobstructed Deformation

Theorem (McLean '82)
Deformation of a special Lagrangian is unobstructed. J

Given ¢ € Q(L), define V =w1¢ and f, : x € L — expx(V(x)).
F: QYL — QL) @ Q3(L)
¢ = (xf51mQ, fiw)

@ The linearization is the Dirac operator d + d*.
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Examples of SLAGs V: Unobstructed Deformation

Theorem (McLean '82)

Deformation of a special Lagrangian is unobstructed. J

Given ¢ € Q(L), define V =w1¢ and f, : x € L — expx(V(x)).

F: QYL — QL) @ Q3(L)
¢ = (xf51mQ, fiw)

@ The linearization is the Dirac operator d + d*.

@ Usually pair with known examples and the quantitative version
of implicit function theorem.

@ (Hein-Sun) CY near a conifold point admits a special
Lagrangian vanishing cycle.
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Motivation from Tropical Geometry

@ Mikhalkin considers the following self-diffeomorphism

((C*)2 i) ((C*)2
X

1
Ylot
X

(X, Y) > (|X]"e

v
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Motivation from Tropical Geometry

@ Mikhalkin considers the following self-diffeomorphism

((C*)2 i) ((C*)2
X

1
Ylot
X

(X, Y) > (|X]"e

v

@ This induces a new complex structure J;.

@ Metrically, this is the spirit of SYZ degeneration.
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Tropical Curves as Collapsing Limits

@ The image of X + Y +1 =0 under Log o H;

converges (in the sense of Gromov-Hausdorff) to a tropical curve.
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Characterization of Tropical Curves

Observation:

@ Each edge is an affine line.
They are gradient flow lines of certain area functionals.
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Characterization of Tropical Curves

Observation:

@ Each edge is an affine line.
They are gradient flow lines of certain area functionals.

e (balancing condition) At each vertex v,
v;: primitive integral vector tangent to the edge adjacent to v.

ZW,‘V,' =0
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New Special Lagrangians
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Geometric Setting

o 71 : X — B=Calabi-Yau 3-fold with K3 fibration and fibration
is Lefschetz.

o [wx], [ws]: Kahler class of X, B
we unique CY metric € [wx]+ i7*[wg], t — 0. adiabatic limit
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Geometric Setting

o 71 : X — B=Calabi-Yau 3-fold with K3 fibration and fibration
is Lefschetz.

o [wx], [ws]: Kahler class of X, B
we unique CY metric € [wx]+ i7*[wg], t — 0. adiabatic limit

o (Tosatti '09) b ¢ A, then w;|x, converges to the unique
Calabi-Yau metric in [wx|x,]-

o (Li '18) Behavior of w;, t — 0 with estimates.

@ Goal: Construction special Lagrangians in X when t — 0.
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Quadratic Differential from the K3-Fibration

e U C B open set and [L] € H2(K3,Z) monodromy invariant
within U (up to signs).
= f[L] Q a holomorphic 1-form on U.
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Quadratic Differential from the K3-Fibration

e U C B open set and [L] € H2(K3,Z) monodromy invariant
within U (up to signs).
= f[L] Q a holomorphic 1-form on U.
~ ¢ = a ® a well-defined holomorphic quadratic differential.
@ ex: [L] = homology of the vanishing 2-spheres.

@ Quadratic differential defines a flat metric s.t.
dist = min, [_ [a/].
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Admissible Paths and Admissible Loops

Input for the theorem:

@ Admissible path: a path connecting two critical points of 7
such that

@ vanishing cycles coincides up to sign via parallel transport.

@ Geodesic respect to the vanishing cycle.

© Vanishing cycles represented by smooth special Lagrangian S2
along the path.

@ Admissible Loop: a loop in the base such that

Q 3[L] € Hx(X,,Z) parallel invariant along the loop.

@ Geodesic with respect to [L].

© Smooth special Lagrangian representing [L] along the loop.

@ ., w; is orthogonal to harmonic 1-forms in special Lagrangian
lifting.
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The Main Theorem

Theorem (Chiu-L '24)

Given an admissible path/loop in Y, 3 smooth special Lagrangian
L; collapsing to the admissible path/loop.
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The Main Theorem

Theorem (Chiu-L '24)

Given an admissible path/loop in Y, 3 smooth special Lagrangian
L; collapsing to the admissible path/loop.
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e We can engineer such admissible paths/loops.

o Near a conifold singularity, the shape of SLag S3 is different
from that of Hein-Sun.
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The Donaldson-Scaduto Conjecture

o (Donaldson-Scaduto '19) Special Lagrangians in (X, w;)
collapse to “gradient cycles”.

25 /34



The Donaldson-Scaduto Conjecture

o (Donaldson-Scaduto '19) Special Lagrangians in (X, w;)
collapse to “gradient cycles”.

@ Gradient cycles are union of geodesics of volume functional of
certain 2-cycles in K3-fibres with “balancing conditions” at
vertices.

e Admissible paths/loops are special cases of gradient cycles.
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\pplication: Smoothing of Special Lagrangians
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Max

Lnsode f Stade

Avgg s s = f\vgi s (s

@ This is related to the Thomas-Yau conjecture.
@ This is the first example of the “smoothing” of two-special
Lagrangians in a compact Calabi-Yau manifolds. 27 /34



Sketch of the Proof
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Behavior of Collapsing CY Metrics

@ Away from the singular fibres, w; is modeled by the
semi-Ricci-flat metric.
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Behavior of Collapsing CY Metrics

@ Away from the singular fibres, w; is modeled by the
semi-Ricci-flat metric.
WSRF = Wx + %73*(:’}\/ + 185¢
w/ wx|x, +i00(¢|x,) CY metric of Xp.

@ Near the singular fibre but away from the nodal point, w; is
modeled by wx, + m*wc, wy, is the orbifold CY metric.

@ Near the nodal point, w; is modeled by wcs after scaling.
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The Non-Trivial Calabi-Yau Metric on C3

@ (Li, Szekelyhidi, Colon-Rochon '17)
Complete, full volume growth CY metric wes but not flat.

e Opposite to C? all complete, maximal volume growth CY
metrics are flat.
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The Non-Trivial Calabi-Yau Metric on C3

(Li, Szekelyhidi, Colon-Rochon '17)
Complete, full volume growth CY metric wes but not flat.

Opposite to C? all complete, maximal volume growth CY
metrics are flat.

Tangent cone is C2/Z,.
t=1/3w; — wes at the scale r < O(t9%) as t — 0.

wgs is asymptotic to fibrewise normalized Stenzel metrics.
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Ansatz Special Lagrangian

@ L is modeled by union of special Lagrangian vanishing cycles
over the geodesic away from the critical values.
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Ansatz Special Lagrangian

@ L is modeled by union of special Lagrangian vanishing cycles
over the geodesic away from the critical values.

1
lwsrrlcll ~ O(y~1t2), ImQ|, = 0.

@ Near the singular point, L is modeled by the real locus of C3,
which projects to a curve tangent to the geodesic.

o The gluing region is at the scale |y| ~ O(t%/?0).

31/34



32/34



Difficulties of the Perturbation

@ The estimates near critical points have only polynomial decay.

e Standard theory of Lockhart-McOwen doesn’t apply and need
to improve the estimates by hand.
e Need to improve original Li's estimates.
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Difficulties of the Perturbation

@ The estimates near critical points have only polynomial decay.

e Standard theory of Lockhart-McOwen doesn’t apply and need
to improve the estimates by hand.
e Need to improve original Li's estimates.

@ The inverse of the linearized operator blows up as well.
o The restriction of Li's weighted norm doesn't work.
© The quadratic terms blows up.

e This is because the diameter blows up when the geometry is
scaled to be bounded.

o Need to slightly change the implicit function theorem.
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THANK YOU!
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