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Calabi-Yau Manifolds

A Calabi-Yau (CY) n-fold is an n-dim’l Kähler manifold w/
1 a holomorphic volume form Ω, locally f (z)dz1 ∧ · · · ∧ dzn.
2 a Kähler form ω such that

ωn = cΩ ∧ Ω̄, complex Monge Ampere eq.

where c is a constant only depends on n.

Ex: (Yau ’76) Generic degree n + 1 hypersurface in Pn.
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K3 Surfaces

Compact simply connected CY surfaces called K3 surfaces.

(Kodaira ’64) K3 surfaces are all diffeomorphic.

Ex: Quartic surfaces in P3.

K3 surfaces are hyperKähler (HK), i.e.
∃ integrable almost complex structure I , J,K satisfying
IJ = K = −JI , JK = I = −KJ,KI = J = −IK .
⇒ (aI + bJ + cK )2 = −1 if a2 + b2 + c2 = 1.

Ex: Degree (2, 4)-hypersurface in P1 × P3

Calabi-Yau 3-fold with a K3-fibration
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Special Lagrangian Submanifolds

L Lagrangian if dimRL = dimCX and ω|L = 0.

(Harvey-Lawson ’82) A Lagrangian submanifold L in a CY is
special Lagrangian (SLAG) if Ω|L = e iθvolL, for some constant
θ ∈ S1.

Equivalently, Im(e−iθΩ)|L = 0.

Why Special Lagrangians?

Special Lagrangian are calibrated submanifolds, automatically
the area minimizer among their homology classes.

If [L] = [L′], then∫
L
volL =

∫
L
ReΩ|L =

∫
L′
ReΩ|L′ ≤

∫
L′
volL′
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Special Lagrangian Submanifolds

Why Special Lagrangians?

Special Lagrangians are BPS states in various physics theory.

(Strominger-Yau-Zaslow conjecture) Calabi-Yau manifolds
admits special Lagrangian torus fibration and the mirror is
constructed by the dual fibration.

SYZ conjecture is the guiding principle of mirror symmetry.

“SLags conjecturally are stable objects in Fukaya category”.
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Examples of Special Lagrangians I, II

Explicit Examples when the Calabi-Yau metric is explicit.

Ex: |x |2 − |y |2 = c1, Im(xy) = c2

is a special Lagrangian in C2.

Fix loci of an anti-holomorphic, anti-symplectic involution.

If ι∗ω = −ω, ι∗Ω = Ω̄ and ι|L = id , then

ω|L = ι∗ω|L = −ω|L ⇒ ω|L = 0.
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Examples of SLAG III: HyperKähler Rotation

The hyperKähler triple (ω,Ω) induces an S2-family of complex
structures on the underlying space of X .

Then holomorphic curves in X ⇔ special Lagrangians in Xϑ.
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A Useful Lemma

Lemma

Let [L] ∈ H2(K3,Z) w/ [ω].[L] = 0 and [L]2 = −2, then [L] is
represented by a special Lagrangian cycle.

This is a consequence of HK rotation and Riemann-Roch theorem
of surfaces.
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Examples of SLAGs IV: LMCF

Let L be a graded Lagrangian submanifold in X , i.e.,
∃ the phase θ : L → R is the function such that

Ω|L = e iθvolL.

L is a special Lagrangian if θ is a constant.

The mean curvature H⃗ = J∇θ and the mean curvature flow is
given by evolving family of immersions Ft : L → X with

∂

∂t
Ft = H⃗.

(Oh, Smoczyk) Lagrangian condition is preserved under mean
curvature flow in Kähler–Einstein manifolds.

Smooth Convergent Limit of LMCF gives Special Lagrangians.
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LMCF

(Wang ’01) Conjectured that LMCF converges if the
Lagrangian is almost calibrated.

(Neves ’10) ∃ Lagrangians arbitrary C 0-close to a special
Lagrangian but LMCF develops finite time singularities.

(Joyce ’14) Program of performing surgery before LMCF
singularities arise to construct stability onf Fukaya categories.

(CJL ’19) First example of LMCF with smooth convergence
w/o a priori knowing the limiting special Lagrangian exists.

(CJL ’24) Similar result for MCF.
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Examples of SLAGs V: Unobstructed Deformation

Theorem (McLean ’82)

Deformation of a special Lagrangian is unobstructed.

Given ϕ ∈ Ω1(L), define V = ω−1ϕ and fϕ : x ∈ L 7→ expx(V (x)).

F : Ω1(L) 7→ Ω0(L)⊕ Ω2(L)

ϕ 7→ (∗f ∗ϕ ImΩ, f ∗ϕ ω)

The linearization is the Dirac operator d + d∗.

Usually pair with known examples and the quantitative version
of implicit function theorem.

(Hein-Sun) CY near a conifold point admits a special
Lagrangian vanishing cycle.
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Motivation from Tropical Geometry
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Motivation from Tropical Geometry

Mikhalkin considers the following self-diffeomorphism

(C∗)2
Ht−→ (C∗)2

(X ,Y ) 7→ (|X |
1

log t
X

|X |
, |Y |

1
log t

Y

|Y |
)

This induces a new complex structure Jt .

Metrically, this is the spirit of SYZ degeneration.
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Tropical Curves as Collapsing Limits

The image of X + Y + 1 = 0 under Log ◦ Ht

converges (in the sense of Gromov-Hausdorff) to a tropical curve.

17 / 34



Characterization of Tropical Curves

Observation:

Each edge is an affine line.
They are gradient flow lines of certain area functionals.

(balancing condition) At each vertex v ,
vi : primitive integral vector tangent to the edge adjacent to v .

∑
i

wivi = 0
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New Special Lagrangians
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Geometric Setting

π : X → B=Calabi-Yau 3-fold with K3 fibration and fibration
is Lefschetz.

[ωX ], [ωB ]: Kähler class of X ,B

ωt unique CY metric ∈ [ωX ]+
1
t π

∗[ωB ], t → 0. adiabatic limit

(Tosatti ’09) b /∈ ∆, then ωt |Xb
converges to the unique

Calabi-Yau metric in [ωX |Xb
].

(Li ’18) Behavior of ωt , t → 0 with estimates.

Goal: Construction special Lagrangians in X when t → 0.
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Quadratic Differential from the K3-Fibration

U ⊆ B open set and [L] ∈ H2(K3,Z) monodromy invariant
within U (up to signs).

α =
∫
[L]Ω a holomorphic 1-form on U.

⇝ ϕ = α⊗ α well-defined holomorphic quadratic differential.

ex: [L] = homology of the vanishing 2-spheres.

Quadratic differential defines a flat metric s.t.
dist = minγ

∫
γ |α|.
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Admissible Paths and Admissible Loops

Input for the theorem:

Admissible path: a path connecting two critical points of π
such that

1 vanishing cycles coincides up to sign via parallel transport.
2 Geodesic respect to the vanishing cycle.
3 Vanishing cycles represented by smooth special Lagrangian S2

along the path.

Admissible Loop: a loop in the base such that
1 ∃[L] ∈ H2(Xy ,Z) parallel invariant along the loop.
2 Geodesic with respect to [L].
3 Smooth special Lagrangian representing [L] along the loop.
4 ιvωt is orthogonal to harmonic 1-forms in special Lagrangian

lifting.

22 / 34



The Main Theorem

Theorem (Chiu-L ’24)

Given an admissible path/loop in Y , ∃ smooth special Lagrangian
Lt collapsing to the admissible path/loop.

π

Lt ∼= S3

Y

(X , ωt)

Lt ∼= S1 × S2
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We can engineer such admissible paths/loops.

Near a conifold singularity, the shape of SLag S3 is different
from that of Hein-Sun.
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The Donaldson-Scaduto Conjecture

(Donaldson-Scaduto ’19) Special Lagrangians in (X , ωt)
collapse to “gradient cycles”.

Gradient cycles are union of geodesics of volume functional of
certain 2-cycles in K3-fibres with “balancing conditions” at
vertices.

Admissible paths/loops are special cases of gradient cycles.

25 / 34



The Donaldson-Scaduto Conjecture

(Donaldson-Scaduto ’19) Special Lagrangians in (X , ωt)
collapse to “gradient cycles”.

Gradient cycles are union of geodesics of volume functional of
certain 2-cycles in K3-fibres with “balancing conditions” at
vertices.

Admissible paths/loops are special cases of gradient cycles.

25 / 34



Application: Smoothing of Special Lagrangians
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This is related to the Thomas-Yau conjecture.
This is the first example of the “smoothing” of two special
Lagrangians in a compact Calabi-Yau manifolds. 27 / 34



Sketch of the Proof
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Behavior of Collapsing CY Metrics

Away from the singular fibres, ωt is modeled by the
semi-Ricci-flat metric.

ωSRF = ωX + 1
t π

∗ω̃Y + i∂∂̄ϕ
w/ ωX |Xb

+ i∂∂̄(ϕ|Xb
) CY metric of Xb.

Near the singular fibre but away from the nodal point, ωt is
modeled by ωX0 + π∗ωC, ωX0 is the orbifold CY metric.

Near the nodal point, ωt is modeled by ωC3 after scaling.
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The Non-Trivial Calabi-Yau Metric on C3

(Li, Szekelyhidi, Colon-Rochon ’17)
Complete, full volume growth CY metric ωC3 but not flat.

Opposite to C2 all complete, maximal volume growth CY
metrics are flat.

Tangent cone is C2/Z2.

t−1/3ωt → ωC3 at the scale r ≲ O(t9/20) as t → 0.

ωC3 is asymptotic to fibrewise normalized Stenzel metrics.
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Ansatz Special Lagrangian

L is modeled by union of special Lagrangian vanishing cycles
over the geodesic away from the critical values.

∥ωSRF |L∥ ∼ O(y−1t
1
2 ), ImΩ|L = 0.

Near the singular point, L is modeled by the real locus of C3,
which projects to a curve tangent to the geodesic.

The gluing region is at the scale |y | ∼ O(t9/20).
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Difficulties of the Perturbation

1 The estimates near critical points have only polynomial decay.

Standard theory of Lockhart-McOwen doesn’t apply and need
to improve the estimates by hand.
Need to improve original Li’s estimates.

2 The inverse of the linearized operator blows up as well.

The restriction of Li’s weighted norm doesn’t work.

3 The quadratic terms blows up.

This is because the diameter blows up when the geometry is
scaled to be bounded.
Need to slightly change the implicit function theorem.
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THANK YOU!

34 / 34


