Special Lagrangians in Calabi-Yau 3-Folds with a K3-Fibration

Yu-Shen Lin (Boston University) joint work with Shih-Kai Chiu

Lisbon Geometry Webnar Nov 12, 2024

イロト イヨト イヨト

1/34

Outline of the Talk

• Calabi-Yau Manifolds and Special Lagrangians

2/34

- Motivation from Tropical Geometry
- Geometric Setup and the Main Theorems
- "Smoothings" of Special Lagrangians
- Sketch of the Proof

Calabi-Yau Manifolds and Special Lagrangians

<ロト イクト イミト イミト ミークへの 3 / 34

< ■ ► ■ ∽ < ⊂ 4 / 34

- A Calabi-Yau (CY) n-fold is an n-dim'l Kähler manifold w/
 - **1** a holomorphic volume form Ω , locally $f(z)dz_1 \wedge \cdots \wedge dz_n$.
 - 2) a Kähler form ω such that

 $\omega^n = c\Omega \wedge \overline{\Omega}$, complex Monge Ampere eq.

イロト イヨト イヨト イヨト 三日

5/34

where c is a constant only depends on n.

- A Calabi-Yau (CY) n-fold is an n-dim'l Kähler manifold w/
 - **1** a holomorphic volume form Ω , locally $f(z)dz_1 \wedge \cdots \wedge dz_n$.
 - 2) a Kähler form ω such that

 $\omega^n = c\Omega \wedge \overline{\Omega}$, complex Monge Ampere eq.

イロト イヨト イヨト イヨト 三日

5/34

where c is a constant only depends on n.

- A Calabi-Yau (CY) n-fold is an n-dim'l Kähler manifold w/
 - **1** a holomorphic volume form Ω , locally $f(z)dz_1 \wedge \cdots \wedge dz_n$.
 - 2) a Kähler form ω such that

 $\omega^n = c\Omega \wedge \overline{\Omega}$, complex Monge Ampere eq.

イロト イロト イヨト イヨト 三日

5/34

where c is a constant only depends on n.

• Ex: (Yau '76) Generic degree n + 1 hypersurface in \mathbb{P}^n .

K3 Surfaces

- Compact simply connected CY surfaces called K3 surfaces.
- (Kodaira '64) K3 surfaces are all diffeomorphic.
- Ex: Quartic surfaces in \mathbb{P}^3 .

K3 Surfaces

- Compact simply connected CY surfaces called K3 surfaces.
- (Kodaira '64) K3 surfaces are all diffeomorphic.
- Ex: Quartic surfaces in \mathbb{P}^3 .
- K3 surfaces are hyperKähler (HK), i.e.
 ∃ integrable almost complex structure *I*, *J*, *K* satisfying *IJ* = *K* = −*JI*, *JK* = *I* = −*KJ*, *KI* = *J* = −*IK*.
 ⇒ (*aI* + *bJ* + *cK*)² = −1 if *a*² + *b*² + *c*² = 1.

イロト イポト イヨト イヨト 三日

K3 Surfaces

- Compact simply connected CY surfaces called K3 surfaces.
- (Kodaira '64) K3 surfaces are all diffeomorphic.
- Ex: Quartic surfaces in \mathbb{P}^3 .
- K3 surfaces are hyperKähler (HK), i.e.
 ∃ integrable almost complex structure *I*, *J*, *K* satisfying *IJ* = *K* = −*JI*, *JK* = *I* = −*KJ*, *KI* = *J* = −*IK*.
 ⇒ (*aI* + *bJ* + *cK*)² = −1 if *a*² + *b*² + *c*² = 1.
- Ex: Degree (2,4)-hypersurface in P¹ × P³ Calabi-Yau 3-fold with a K3-fibration

- L Lagrangian if dim_{\mathbb{R}}L = dim_{\mathbb{C}}X and $\omega|_L = 0$.
- (Harvey-Lawson '82) A Lagrangian submanifold L in a CY is special Lagrangian (SLAG) if Ω|_L = e^{iθ}vol_L, for some constant θ ∈ S¹.

- L Lagrangian if dim_{\mathbb{R}}L = dim_{\mathbb{C}}X and $\omega|_L = 0$.
- (Harvey-Lawson '82) A Lagrangian submanifold L in a CY is special Lagrangian (SLAG) if Ω|_L = e^{iθ}vol_L, for some constant θ ∈ S¹. Equivalently, Im(e^{-iθ}Ω)|_L = 0.

• L Lagrangian if dim_{\mathbb{R}}L = dim_{\mathbb{C}}X and $\omega|_L = 0$.

(Harvey-Lawson '82) A Lagrangian submanifold L in a CY is special Lagrangian (SLAG) if Ω|_L = e^{iθ}vol_L, for some constant θ ∈ S¹. Equivalently, Im(e^{-iθ}Ω)|_L = 0.

Why Special Lagrangians?

- L Lagrangian if dim_{\mathbb{R}}L = dim_{\mathbb{C}}X and $\omega|_L = 0$.
- (Harvey-Lawson '82) A Lagrangian submanifold L in a CY is special Lagrangian (SLAG) if Ω|_L = e^{iθ}vol_L, for some constant θ ∈ S¹. Equivalently, Im(e^{-iθ}Ω)|_L = 0.

Why Special Lagrangians?

 Special Lagrangian are calibrated submanifolds, automatically the area minimizer among their homology classes.

- L Lagrangian if dim_{\mathbb{R}}L = dim_{\mathbb{C}}X and $\omega|_L = 0$.
- (Harvey-Lawson '82) A Lagrangian submanifold L in a CY is special Lagrangian (SLAG) if Ω|_L = e^{iθ}vol_L, for some constant θ ∈ S¹. Equivalently, Im(e^{-iθ}Ω)|_L = 0.

Why Special Lagrangians?

 Special Lagrangian are calibrated submanifolds, automatically the area minimizer among their homology classes.
 If [L] = [L'], then

$$\int_{L} \textit{vol}_{\textit{L}} = \int_{L} \mathsf{Re}\Omega|_{\textit{L}} = \int_{L'} \mathsf{Re}\Omega|_{\textit{L}'} \leq \int_{L'} \textit{vol}_{\textit{L}'}$$

 Why Special Lagrangians?

• Special Lagrangians are BPS states in various physics theory.

Why Special Lagrangians?

- Special Lagrangians are BPS states in various physics theory.
- (Strominger-Yau-Zaslow conjecture) Calabi-Yau manifolds admits special Lagrangian torus fibration and the mirror is constructed by the dual fibration.
- SYZ conjecture is the guiding principle of mirror symmetry.

Why Special Lagrangians?

- Special Lagrangians are BPS states in various physics theory.
- (Strominger-Yau-Zaslow conjecture) Calabi-Yau manifolds admits special Lagrangian torus fibration and the mirror is constructed by the dual fibration.
- SYZ conjecture is the guiding principle of mirror symmetry.
- "SLags conjecturally are stable objects in Fukaya category".

Examples of Special Lagrangians I, II

• Explicit Examples when the Calabi-Yau metric is explicit.

Ex:
$$|x|^2 - |y|^2 = c_1$$
, Im $(xy) = c_2$

9/34

is a special Lagrangian in \mathbb{C}^2 .

Examples of Special Lagrangians I, II

• Explicit Examples when the Calabi-Yau metric is explicit.

Ex:
$$|x|^2 - |y|^2 = c_1$$
, Im $(xy) = c_2$

9/34

is a special Lagrangian in \mathbb{C}^2 .

• Fix loci of an anti-holomorphic, anti-symplectic involution.

Examples of Special Lagrangians I, II

Explicit Examples when the Calabi-Yau metric is explicit.

Ex:
$$|x|^2 - |y|^2 = c_1$$
, Im $(xy) = c_2$

is a special Lagrangian in \mathbb{C}^2 .

• Fix loci of an anti-holomorphic, anti-symplectic involution.

If
$$\iota^*\omega = -\omega, \iota^*\Omega = \overline{\Omega}$$
 and $\iota|_L = id$, then

$$\omega|_L = \iota^* \omega|_L = -\omega|_L \Rightarrow \omega|_L = 0.$$

Examples of SLAG III: HyperKähler Rotation

The hyperKähler triple (ω, Ω) induces an S²-family of complex structures on the underlying space of X.

Then holomorphic curves in $X \Leftrightarrow$ special Lagrangians in X_{ϑ} .

10 / 34

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

A Useful Lemma

Lemma

Let $[L] \in H_2(K3, \mathbb{Z})$ w/ $[\omega]$.[L] = 0 and $[L]^2 = -2$, then [L] is represented by a special Lagrangian cycle.

This is a consequence of HK rotation and Riemann-Roch theorem of surfaces.

• Let *L* be a graded Lagrangian submanifold in *X*, i.e., \exists the phase $\theta : L \to \mathbb{R}$ is the function such that

$$\Omega|_L = e^{i\theta} vol_L.$$

L is a special Lagrangian if θ is a constant.

Let L be a graded Lagrangian submanifold in X, i.e.,
 ∃ the phase θ : L → ℝ is the function such that

$$\Omega|_L = e^{i\theta} vol_L.$$

L is a special Lagrangian if θ is a constant.

• The mean curvature $\vec{H} = J\nabla\theta$ and the mean curvature flow is given by evolving family of immersions $F_t : L \to X$ with

$$\frac{\partial}{\partial t}F_t=\vec{H}.$$

- (Oh, Smoczyk) Lagrangian condition is preserved under mean curvature flow in Kähler-Einstein manifolds.
- Smooth Convergent Limit of LMCF gives Special Lagrangians.

LMCF

- (Wang '01) Conjectured that LMCF converges if the Lagrangian is almost calibrated.
- (Neves '10) ∃ Lagrangians arbitrary C⁰-close to a special Lagrangian but LMCF develops finite time singularities.
- (Joyce '14) Program of performing surgery before LMCF singularities arise to construct stability onf Fukaya categories.

LMCF

- (Wang '01) Conjectured that LMCF converges if the Lagrangian is almost calibrated.
- (Neves '10) ∃ Lagrangians arbitrary C⁰-close to a special Lagrangian but LMCF develops finite time singularities.
- (Joyce '14) Program of performing surgery before LMCF singularities arise to construct stability onf Fukaya categories.
- (CJL '19) First example of LMCF with smooth convergence w/o a priori knowing the limiting special Lagrangian exists.
- (CJL '24) Similar result for MCF.

Examples of SLAGs V: Unobstructed Deformation

Theorem (McLean '82)

Deformation of a special Lagrangian is unobstructed.

Given $\phi \in \Omega^1(L)$, define $V = \omega^{-1}\phi$ and $f_\phi : x \in L \mapsto exp_x(V(x))$.

$$\mathfrak{F}: \Omega^1(\mathcal{L}) \mapsto \Omega^0(\mathcal{L}) \oplus \Omega^2(\mathcal{L}) \ \phi \mapsto (*f_\phi^* \mathrm{Im}\Omega, f_\phi^* \omega)$$

14/34

• The linearization is the Dirac operator $d + d^*$.

Examples of SLAGs V: Unobstructed Deformation

Theorem (McLean '82)

Deformation of a special Lagrangian is unobstructed.

Given $\phi \in \Omega^1(L)$, define $V = \omega^{-1}\phi$ and $f_\phi : x \in L \mapsto exp_x(V(x))$.

$$\mathfrak{F}: \Omega^1(\mathcal{L}) \mapsto \Omega^0(\mathcal{L}) \oplus \Omega^2(\mathcal{L}) \ \phi \mapsto (*f_\phi^* \mathrm{Im}\Omega, f_\phi^* \omega)$$

- The linearization is the Dirac operator $d + d^*$.
- Usually pair with known examples and the quantitative version of implicit function theorem.

Examples of SLAGs V: Unobstructed Deformation

Theorem (McLean '82)

Deformation of a special Lagrangian is unobstructed.

Given $\phi \in \Omega^1(L)$, define $V = \omega^{-1}\phi$ and $f_\phi : x \in L \mapsto exp_x(V(x))$.

$$\mathfrak{F}: \Omega^1(\mathcal{L}) \mapsto \Omega^0(\mathcal{L}) \oplus \Omega^2(\mathcal{L}) \ \phi \mapsto (*f_\phi^* \mathrm{Im}\Omega, f_\phi^* \omega)$$

- The linearization is the Dirac operator $d + d^*$.
- Usually pair with known examples and the quantitative version of implicit function theorem.

14/34

• (Hein-Sun) CY near a conifold point admits a special Lagrangian vanishing cycle.

Motivation from Tropical Geometry

15/34

• Mikhalkin considers the following self-diffeomorphism

$$(\mathbb{C}^*)^2 \xrightarrow{H_t} (\mathbb{C}^*)^2$$
$$(X, Y) \mapsto (|X|^{\frac{1}{\log t}} \frac{X}{|X|}, |Y|^{\frac{1}{\log t}} \frac{Y}{|Y|})$$

 Mikhalkin considers the following self-diffeomorphism

$$(\mathbb{C}^*)^2 \xrightarrow{H_t} (\mathbb{C}^*)^2$$
$$(X, Y) \mapsto (|X|^{\frac{1}{\log t}} \frac{X}{|X|}, |Y|^{\frac{1}{\log t}} \frac{Y}{|Y|})$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

16/34

• This induces a new complex structure J_t .

Mikhalkin considers the following self-diffeomorphism

$$(\mathbb{C}^*)^2 \xrightarrow{H_t} (\mathbb{C}^*)^2$$
$$(X, Y) \mapsto (|X|^{\frac{1}{\log t}} \frac{X}{|X|}, |Y|^{\frac{1}{\log t}} \frac{Y}{|Y|})$$

16/34

- This induces a new complex structure J_t .
- Metrically, this is the spirit of SYZ degeneration.

Tropical Curves as Collapsing Limits

• The image of X + Y + 1 = 0 under $Log \circ H_t$

converges (in the sense of Gromov-Hausdorff) to a tropical curve.

<ロト イクト イミト イミト ミ つへで 17 / 34 Observation:

• Each edge is an affine line.

They are gradient flow lines of certain area functionals.

<ロ> (四) (四) (三) (三) (三) (三)

18/34

Observation:

- Each edge is an affine line. They are gradient flow lines of certain area functionals.
- (balancing condition) At each vertex v,
 - v_i : primitive integral vector tangent to the edge adjacent to v.

$$\sum_{i} w_i v_i = 0$$

18/34

New Special Lagrangians

<ロト < 回ト < 目ト < 目ト < 目ト < 目 > 目 の Q () 19 / 34

Geometric Setting

- $\pi: X \to B=$ Calabi-Yau 3-fold with K3 fibration and fibration is Lefschetz.
- [ω_X], [ω_B]: Kähler class of X, B
 ω_t unique CY metric ∈ [ω_X] + ¹/_tπ^{*}[ω_B], t → 0. adiabatic limit

Geometric Setting

- π : X → B=Calabi-Yau 3-fold with K3 fibration and fibration is Lefschetz.
- [ω_X], [ω_B]: Kähler class of X, B
 ω_t unique CY metric ∈ [ω_X] + ¹/_tπ^{*}[ω_B], t → 0. adiabatic limit
- (Tosatti '09) b ∉ Δ, then ω_t|_{X_b} converges to the unique Calabi-Yau metric in [ω_X|_{X_b}].
- (Li '18) Behavior of ω_t , $t \to 0$ with estimates.
- Goal: Construction special Lagrangians in X when $t \rightarrow 0$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Quadratic Differential from the K3-Fibration

U ⊆ B open set and [L] ∈ H₂(K3, Z) monodromy invariant within U (up to signs).

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

21/34

•
$$\alpha = \int_{[L]} \Omega$$
 a holomorphic 1-form on U .

Quadratic Differential from the K3-Fibration

U ⊆ B open set and [L] ∈ H₂(K3, Z) monodromy invariant within U (up to signs).

•
$$\alpha = \int_{[L]} \Omega$$
 a holomorphic 1-form on U .

 $\rightsquigarrow \phi = \alpha \otimes \alpha$ well-defined holomorphic quadratic differential.

21/34

- ex: [L] = homology of the vanishing 2-spheres.
- Quadratic differential defines a flat metric s.t. dist = $\min_{\gamma} \int_{\gamma} |\alpha|$.

Admissible Paths and Admissible Loops

Input for the theorem:

- \bullet Admissible path: a path connecting two critical points of π such that
 - vanishing cycles coincides up to sign via parallel transport.
 - 2 Geodesic respect to the vanishing cycle.
 - Vanishing cycles represented by smooth special Lagrangian S² along the path.
- Admissible Loop: a loop in the base such that
 - **①** $\exists [L] \in H_2(X_y, \mathbb{Z})$ parallel invariant along the loop.
 - Geodesic with respect to [L].
 - Smooth special Lagrangian representing [L] along the loop.
 - $\iota_v \omega_t$ is orthogonal to harmonic 1-forms in special Lagrangian lifting.

Theorem (Chiu-L '24)

Given an admissible path/loop in Y, \exists smooth special Lagrangian L_t collapsing to the admissible path/loop.

Theorem (Chiu-L '24)

Given an admissible path/loop in Y, \exists smooth special Lagrangian L_t collapsing to the admissible path/loop.

- We can engineer such admissible paths/loops.
- Near a conifold singularity, the shape of SLag S³ is different from that of Hein-Sun.

(Donaldson-Scaduto '19) Special Lagrangians in (X, ω_t) collapse to "gradient cycles".

- (Donaldson-Scaduto '19) Special Lagrangians in (X, ω_t) collapse to "gradient cycles".
- Gradient cycles are union of geodesics of volume functional of certain 2-cycles in K3-fibres with "balancing conditions" at vertices.

イロト イポト イヨト イヨト 三日

25 / 34

• Admissible paths/loops are special cases of gradient cycles.

Application: Smoothing of Special Lagrangians

▲口 > ▲母 > ▲目 > ▲目 > ▲目 > ● ● ●

26 / 34

- This is related to the Thomas-Yau conjecture.
- This is the first example of the "smoothing" of two special Lagrangians in a compact Calabi-Yau manifolds. 27/34

Sketch of the Proof

• Away from the singular fibres, ω_t is modeled by the semi-Ricci-flat metric.

 Away from the singular fibres, ω_t is modeled by the semi-Ricci-flat metric.

$$\begin{split} \omega_{SRF} &= \omega_X + \frac{1}{t} \pi^* \tilde{\omega}_Y + i \partial \bar{\partial} \phi \\ w / \omega_X |_{X_b} + i \partial \bar{\partial} (\phi |_{X_b}) \text{ CY metric of } X_b. \end{split}$$

 Near the singular fibre but away from the nodal point, ω_t is modeled by ω_{X0} + π^{*}ω_C, ω_{X0} is the orbifold CY metric.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

29/34

• Near the nodal point, ω_t is modeled by $\omega_{\mathbb{C}^3}$ after scaling.

The Non-Trivial Calabi-Yau Metric on \mathbb{C}^3

- (Li, Szekelyhidi, Colon-Rochon '17)
 Complete, full volume growth CY metric ω_{C³} but not flat.
- Opposite to C² all complete, maximal volume growth CY metrics are flat.

- (Li, Szekelyhidi, Colon-Rochon '17)
 Complete, full volume growth CY metric ω_{C3} but not flat.
- Opposite to \mathbb{C}^2 all complete, maximal volume growth CY metrics are flat.
- Tangent cone is C²/Z₂.
- $t^{-1/3}\omega_t o \omega_{\mathbb{C}^3}$ at the scale $r \lesssim O(t^{9/20})$ as t o 0.
- $\omega_{\mathbb{C}^3}$ is asymptotic to fibrewise normalized Stenzel metrics.

30 / 34

 $\|\omega_{SRF}|_L\|\sim O(y^{-1}t^{\frac{1}{2}}), \quad \mathrm{Im}\Omega|_L=0.$

 $\|\omega_{SRF}|_L\|\sim O(y^{-1}t^{\frac{1}{2}}), \quad \mathrm{Im}\Omega|_L=0.$

• Near the singular point, *L* is modeled by the real locus of \mathbb{C}^3 , which projects to a curve tangent to the geodesic.

▲□▶▲□▶▲□▶▲□▶ = のへの

31/34

 $\|\omega_{SRF}|_L\| \sim O(y^{-1}t^{\frac{1}{2}}), \quad \mathrm{Im}\Omega|_L = 0.$

• Near the singular point, *L* is modeled by the real locus of \mathbb{C}^3 , which projects to a curve tangent to the geodesic.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

31 / 34

• The gluing region is at the scale $|y| \sim O(t^{9/20})$.

The estimates near critical points have only polynomial decay.

- Standard theory of Lockhart-McOwen doesn't apply and need to improve the estimates by hand.
- Need to improve original Li's estimates.

Difficulties of the Perturbation

The estimates near critical points have only polynomial decay.

- Standard theory of Lockhart-McOwen doesn't apply and need to improve the estimates by hand.
- Need to improve original Li's estimates.
- In the inverse of the linearized operator blows up as well.
 - The restriction of Li's weighted norm doesn't work.

Difficulties of the Perturbation

The estimates near critical points have only polynomial decay.

- Standard theory of Lockhart-McOwen doesn't apply and need to improve the estimates by hand.
- Need to improve original Li's estimates.
- In the inverse of the linearized operator blows up as well.
 - The restriction of Li's weighted norm doesn't work.
- The quadratic terms blows up.
 - This is because the diameter blows up when the geometry is scaled to be bounded.

33 / 34

• Need to slightly change the implicit function theorem.

THANK YOU!