On the Donaldson-Scaduto conjecture

Saman Habibi Esfahani (Duke University)

joint with Yang Li (Cambridge)

Geometria em Lisboa Seminar

November 5, 2024

Þ

 $2Q$

◆ ロ ▶ → 何 ▶

• Topic: Calabi-Yau 3-folds and special Lagrangians.

È. 2990

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ .

- Topic: Calabi-Yau 3-folds and special Lagrangians.
- Motivation: differential geometry, Ricci flat.

ヨメ イヨメ

≮ロ ▶ ⊀ 母 ▶ ⊀

重

- Topic: Calabi-Yau 3-folds and special Lagrangians.
- Motivation: differential geometry, Ricci flat.
- Algebraic geometry + symplectic topology: Mirror Symmetry.

 \mathbb{B} is 重

B.K.

≮ロ ▶ ⊀ 伊 ▶ ⊀

- Topic: Calabi-Yau 3-folds and special Lagrangians.
- Motivation: differential geometry, Ricci flat.
- Algebraic geometry + symplectic topology: Mirror Symmetry.
- String theory: $10 = (3 + 1) + 6$.

 298

イロメス 御き スミメスミメン

• Calabi's conjecture/Yau's theorem: the existence of compact Calabi-Yau manifolds.

ラメスラメ

重

 2990

Kロト K 倒 ト K

- Calabi's conjecture/Yau's theorem: the existence of compact Calabi-Yau manifolds.
- Almost all compact examples are non-explicit.

Þ \rightarrow

←ロ ▶ ← 日 ▶

重

- Calabi's conjecture/Yau's theorem: the existence of compact Calabi-Yau manifolds.
- Almost all compact examples are non-explicit.
- There are non-compact explicit examples.

◆ロト ◆母ト

• Complex 3-dimensional manifold (Z, g, ω, Ω) ,

重

 299

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ .

- Complex 3-dimensional manifold (Z, g, ω, Ω) ,
- Riemannian metric *g*, Ricci flat,

重

 298

イロト イ部 トイヨ トイヨト

- Complex 3-dimensional manifold (Z, g, ω, Ω) ,
- Riemannian metric *g*, Ricci flat,
- symplectic (Kähler) structure ω ,

ラメスラメ

≮ロ ▶ ⊀ 母 ▶ ⊀

重

- Complex 3-dimensional manifold (Z, g, ω, Ω) ,
- Riemannian metric *g*, Ricci flat,
- symplectic (Kähler) structure ω ,
- holomorphic volume form Ω , locally = $dz_1 \wedge dz_2 \wedge dz_3$,

 \Rightarrow \rightarrow B

∃ k k

4 ロト 4 母 ト 4

- Complex 3-dimensional manifold (Z, g, ω, Ω) ,
- Riemannian metric *g*, Ricci flat,
- symplectic (Kähler) structure ω ,
- holomorphic volume form Ω , locally = $dz_1 \wedge dz_2 \wedge dz_3$,

 $\omega^3 = \mathsf{const.}\Omega\wedge\bar{\Omega}.$

ラメスラメ

 298

K ロ ▶ K 倒 ▶ K

• Interesting class of submanifolds: special Lagrangian, distinguished class of real *n*-dimensional minimal submanifolds.

ほうえきかい

≮ロ ▶ ⊀ 母 ▶ ⊀

重

- Interesting class of submanifolds: special Lagrangian, distinguished class of real *n*-dimensional minimal submanifolds.
- *L* ⊂ *Z* is a special Lagrangian if

Lagrangian: $\omega_L \equiv 0$, special: $Im(\Omega)_l \equiv 0$.

重

 298

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ...

I. The model Calabi-Yau 3-fold

重

 2990

E

メロメス 倒す スミメス

• Smooth real 4-dimensional manifold (X, g_X, I, J, K) ,

■ QQ

イロメス 御き スミメスきょう

- Smooth real 4-dimensional manifold (X, g_X, I, J, K) ,
- complex structures *I*, *J*, *K* : *TX* \rightarrow *TX* such that $l^2 = J^2 = K^2 = -Id_{TX}$ and $IJ = K$,

 298 目。

イロメス 御き スミメスきょう

- Smooth real 4-dimensional manifold (X, g_X, I, J, K) ,
- complex structures *I*, *J*, *K* : *TX* \rightarrow *TX* such that $l^2 = J^2 = K^2 = -Id_{TX}$ and $IJ = K$,
- $\bullet \;$ symplectic structures $\omega_1,\omega_2,\omega_3\in\Omega^2(X)$, closed non-degenerate 2-forms,

$$
g(u, v) = \omega_1(u, hv), \qquad g(u, v) = \omega_2(u, dv), \qquad g(u, v) = \omega_3(u, Kv).
$$

 $2QQ$ 唐山

イロメ イ部 メイヨメ イヨメー

- Smooth real 4-dimensional manifold (X, g_X, I, J, K) ,
- complex structures *I*, *J*, *K* : *TX* \rightarrow *TX* such that $l^2 = J^2 = K^2 = -Id_{TX}$ and $IJ = K$,
- $\bullet \;$ symplectic structures $\omega_1,\omega_2,\omega_3\in\Omega^2(X)$, closed non-degenerate 2-forms,

$$
g(u, v) = \omega_1(u, hv), \qquad g(u, v) = \omega_2(u, dv), \qquad g(u, v) = \omega_3(u, Kv).
$$

• Kodaira: Any compact hyperkähler 4-manifold is either a K3 surface or a torus \mathbb{T}^4 .

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 트 - K 9 Q @

• Hyperkähler 4-manifold (X, g_X, I, J, K) .

重

 2990

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ .

- Hyperkähler 4-manifold (X, g_X, I, J, K) .
- For any $(a, b, c) \in S^2 \subset \mathbb{R}^3$ with $a^2 + b^2 + c^2 = 1$,

complex structure: $al + bJ + cK$,

symplectic structure: $a\omega_1 + b\omega_2 + c\omega_3$.

÷.

イロト イ押 トイヨ トイヨ トー

 $2QQ$

- Hyperkähler 4-manifold (X, g_X, I, J, K) .
- For any $(a, b, c) \in S^2 \subset \mathbb{R}^3$ with $a^2 + b^2 + c^2 = 1$,

complex structure: $al + bJ + cK$,

symplectic structure: $a\omega_1 + b\omega_2 + c\omega_3$.

• There is a 2-sphere family of complex structures on *X*.

÷.

 $2Q$

イロト イ母 トイラ トイラトー

• Let $X =$ hyperkähler 4-manifold.

重

 299

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

- Let $X =$ hyperkähler 4-manifold.
- Let $Z = X \times \mathbb{R}^2_{(\gamma_1, \gamma_2)}$.

重

 299

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ .

- Let $X =$ hyperkähler 4-manifold.
- Let $Z = X \times \mathbb{R}^2_{(\gamma_1, \gamma_2)}$.
- *Z* is a Calabi-Yau 3-fold.

目

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

- Let $X =$ hyperkähler 4-manifold.
- Let $Z = X \times \mathbb{R}^2_{(\gamma_1, \gamma_2)}$.
- *Z* is a Calabi-Yau 3-fold.
- Product Calabi-Yau structure

$$
g_Z = g_X + g_{\mathbb{R}^2}
$$
, $\omega = \omega_3 + dy_2 \wedge dy_1$, $\Omega = (\omega_1 + i\omega_2) \wedge (dy_2 + idy_1)$.

 2990

メロトメ部 トメミトメミト

- Let $X =$ hyperkähler 4-manifold.
- Let $Z = X \times \mathbb{R}^2_{(\gamma_1, \gamma_2)}$.
- *Z* is a Calabi-Yau 3-fold.
- Product Calabi-Yau structure

$$
g_Z = g_X + g_{\mathbb{R}^2}, \quad \omega = \omega_3 + dy_2 \wedge dy_1, \quad \Omega = (\omega_1 + i\omega_2) \wedge (dy_2 + i dy_1).
$$

• Special interests:

$$
Z=K3\times\mathbb{R}^2.
$$

 \mathbb{B} is 目

De la car

≮ロ ▶ ⊀ 母 ▶ ⊀

• Gibbons-Hawking spaces: non-compact hyperkähler 4-manifolds.

重

 298

イロメス 御き イヨメス ヨメー

- Gibbons-Hawking spaces: non-compact hyperkähler 4-manifolds.
- Let p_1, \ldots, p_n be *n* points in \mathbb{R}^3 .

画

 2990

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ...

- Gibbons-Hawking spaces: non-compact hyperkähler 4-manifolds.
- Let p_1, \ldots, p_n be *n* points in \mathbb{R}^3 .
- S^1 -bundle $\pi: X \to \mathbb{R}^3 \setminus \{p_1, \ldots, p_n\}.$

画

 298

イロメ イ部 メイヨメ イヨメー

- Gibbons-Hawking spaces: non-compact hyperkähler 4-manifolds.
- Let p_1, \ldots, p_n be *n* points in \mathbb{R}^3 .
- S^1 -bundle $\pi: X \to \mathbb{R}^3 \setminus \{p_1, \ldots, p_n\}.$

- Gibbons-Hawking Ansatz: non-compact hyperkähler 4-manifolds.
- Let p_1, \ldots, p_n be *n* points in \mathbb{R}^3 .
- X a S^1 -bundle over $\mathbb{R}^3 \setminus \{p_1, \ldots, p_n\}.$

• Let $\pi: X \to \mathbb{R}^3 \setminus \{p_1, \ldots, p_n\}$ be a S^1 -bundle.

È.

 299

(ロ) (個) (星) (星)

- Let $\pi: X \to \mathbb{R}^3 \setminus \{p_1, \ldots, p_n\}$ be a S^1 -bundle.
- Let $V : \mathbb{R}^3 \setminus \{p_1, p_2, \ldots, p_n\} \to \mathbb{R}$ be the positive harmonic function $V(u_1, u_2, u_3) = A + \sum_{i=1}^n \frac{1}{2|u-p_i|}, \quad u = (u_1, u_2, u_3) \in \mathbb{R}^3, \quad A = \text{constant} \geq 0.$

K ロ ▶ K 個 ▶ K 로 ▶ K 로 ▶ - 트 - K 9 Q @

- Let $\pi: X \to \mathbb{R}^3 \setminus \{p_1, \ldots, p_n\}$ be a S^1 -bundle.
- Let $V : \mathbb{R}^3 \setminus \{p_1, p_2, \ldots, p_n\} \to \mathbb{R}$ be the positive harmonic function $V(u_1, u_2, u_3) = A + \sum_{i=1}^n \frac{1}{2|u-p_i|}, \quad u = (u_1, u_2, u_3) \in \mathbb{R}^3, \quad A = \text{constant} \geq 0.$
- symplectic forms

 $\omega_1 = \theta \wedge du_1 + Vdu_2 \wedge du_3$, $\omega_2 = \theta \wedge du_2 + Vdu_3 \wedge du_1$, $\omega_3 = \theta \wedge du_3 + Vdu_1 \wedge du_2$,

K ロ ▶ K 御 ▶ K 重 ▶ K 重 ▶ 三重 → 約 Q @
- Let $\pi: X \to \mathbb{R}^3 \setminus \{p_1, \ldots, p_n\}$ be a S^1 -bundle.
- Let $V : \mathbb{R}^3 \setminus \{p_1, p_2, \ldots, p_n\} \to \mathbb{R}$ be the positive harmonic function $V(u_1, u_2, u_3) = A + \sum_{i=1}^n \frac{1}{2|u-p_i|}, \quad u = (u_1, u_2, u_3) \in \mathbb{R}^3, \quad A = \text{constant} \geq 0.$
- symplectic forms

 $\omega_1 = \theta \wedge du_1 + Vdu_2 \wedge du_3$, $\omega_2 = \theta \wedge du_2 + Vdu_3 \wedge du_1$, $\omega_3 = \theta \wedge du_3 + Vdu_1 \wedge du_2$,

• The metric is given by $g_X = V^{-1}\theta^2 + V\sum_{i=1}^3 d u_i^2$.

K ロ ▶ K 御 ▶ K 重 ▶ K 重 ▶ 三重 → 約 Q @

- A_2 type ALE hyperkähler manifold X_{A_2} : let $n = 3$ and $V = \sum_{i=1}^{3} \frac{1}{2|u \rho_i|}$.
- \bullet Three 2-sphere $\Sigma_i := \pi^{-1}[p_i, p_{i+1}] \subset X$ is holomorphic.

∢ ロ ▶ ィ 何 ▶ ィ

Þ

II. Donaldson-Scaduto conjecture

唐 2990

メロメメ 倒す メ 君 メメ 君 メー

• Let $\Sigma_1, \Sigma_2, \Sigma_3$ be three holomorphic curves with respect to $v_1, v_2, v_3 \in S^2$.

B.K.

≮ロ ▶ ⊀ 伊 ▶ ⊀

重

- Let $\Sigma_1, \Sigma_2, \Sigma_3$ be three holomorphic curves with respect to $v_1, v_2, v_3 \in S^2$.
- Let \widetilde{v}_i be the (clockwise) 90-degree rotation of v_i in $\mathbb{R}^2_{(y_1, y_2)}$.

B

4 ロト 4 何 ト 4

- Let $\Sigma_1, \Sigma_2, \Sigma_3$ be three holomorphic curves with respect to $v_1, v_2, v_3 \in S^2$.
- Let \widetilde{v}_i be the (clockwise) 90-degree rotation of v_i in $\mathbb{R}^2_{(y_1, y_2)}$.
- \bullet $P_i = Σ_i × (ℝ_+ · χ_i) ⊂ X × ℝ_{(y_1, y_2)}^2$ are half-cylinder special Lagrangians.

 298

イロメイ御メイ君メイ君メー君

- Let $\Sigma_1, \Sigma_2, \Sigma_3$ be three holomorphic curves with respect to $v_1, v_2, v_3 \in S^2$.
- Let \widetilde{v}_i be the (clockwise) 90-degree rotation of v_i in $\mathbb{R}^2_{(y_1, y_2)}$.
- \bullet $P_i = Σ_i × (ℝ_+ · χ_i) ⊂ X × ℝ_{(y_1, y_2)}^2$ are half-cylinder special Lagrangians.

 298

≮ロ ▶ ⊀ 御 ▶ ⊀ 君 ▶ ⊀ 君 ▶ │ 君

Donaldson-Scaduto conjectures

Conjecture (K3 Donaldson-Scaduto)

[...For suitable choices of Σ_1 , Σ_2 , Σ_3 ...], there is an associative submanifold homeomorphic to

a three-holed 3-sphere $P \subset K3 \times \mathbb{R}^2$ with three ends asymptotic to cylinders P_1, P_2 , and P_3 .

4 0 8

Donaldson-Scaduto conjectures

Conjecture (K3 Donaldson-Scaduto)

[...For suitable choices of Σ_1 , Σ_2 , Σ_3 ...], there is an associative submanifold homeomorphic to

a three-holed 3-sphere $P \subset K3 \times \mathbb{R}^2$ with three ends asymptotic to cylinders P_1, P_2 , and P_3 .

*Conjecture (A*² *Donaldson-Scaduto)*

There exists special Lagrangian $P \subset X_{A_2} \times \mathbb{R}^2$ homeomorphic to a three-holed 3-sphere, with

three ends asymptotic to the half cylinders P_1 , P_2 , P_3 .

4 D F

 Ω

Conjecture 1 Let $\alpha_1, \alpha_2, \alpha_3$ be -2 classes on the K3 manifold X with $\alpha_1 + \alpha_2 + \alpha_3 = 0$. Let $\mathbb{R}^3 = H \subset H^2(X)$ be a maximal positive subspace corresponding to a hyperkähler structure and v_i be the projection of α_i to H. Assume that the (α_i, H) are irreducible. Then there is an associative submanifold $\Pi \subset X \times \mathbf{R}^3$ with three ends asymptotic to $\Sigma_i \times \mathbf{R}^+ v_i$ where Σ_i is the complex curve representing α_i , for the complex structure defined by v_i , and Π is unique up to the translations of \mathbb{R}^3 .

∢ □ ▶ ⊣ [□] ▶

 QQ

• Expectation: many Calabi-Yau 3-folds/G₂-manifolds admit K3-fibrations.

É

4 ロ ▶ 4 伊

II

- Expectation: many Calabi-Yau 3-folds/G₂-manifolds admit K3-fibrations.
- K3 \times \mathbb{R}^2 and $X_{A_2} \times \mathbb{R}^2$ are good models for Calabi-Yau 3-folds.

 $\mathbf{A} \quad \mathbf{B} \quad \mathbf{B} \quad \mathbf{A}$

 QQ

- Expectation: many Calabi-Yau 3-folds/G₂-manifolds admit K3-fibrations.
- K3 \times \mathbb{R}^2 and $X_{A_2} \times \mathbb{R}^2$ are good models for Calabi-Yau 3-folds.
- Plumbing joints: building blocks in the gluing construction of special Lagrangians.

4 0 8 4

 $2Q$

• *X* = ALE/ALF GH space with *n* points *p*1, . . . , *pⁿ* ∈ R² ⊂ R³ in the convex poistion.

重

 298

イロメス 御き スミメスきょう

- *X* = ALE/ALF GH space with *n* points *p*1, . . . , *pⁿ* ∈ R² ⊂ R³ in the convex poistion.
- Generalized Donaldson-Scaduto conjecture:

Theorem (E-Li)

There exists an (*n* − 3)-dimensional family of special Lagrangians $P \subset X \times \mathbb{R}^2$ homeomorphic to a

n-holed 3*-sphere, with n ends asymptotic to the half cylinders P*1, . . . , *Pn.*

◂**◻▸ ◂⁄** ▸

 QQ

- *X* = ALE/ALF GH space with *n* points *p*1, . . . , *pⁿ* ∈ R² ⊂ R³ in the convex poistion.
- Generalized Donaldson-Scaduto conjecture:

Theorem (E-Li)

There exists an (*n* − 3)-dimensional family of special Lagrangians $P \subset X \times \mathbb{R}^2$ homeomorphic to a

n-holed 3*-sphere, with n ends asymptotic to the half cylinders P*1, . . . , *Pn.*

• The case $n = 3$, $A = 0$ implies the A_2 Donaldson-Scaduto conjecture.

4 ロト 4 何 ト 4

 $2Q$

III. Proof

 \equiv 990

イロンス個 メスミンス ミン

• Step 1. Write a 'good' PDE.

唐 2990

(ロトイ部)→(唐)→(唐)→

- Step 1. Write a 'good' PDE.
- Step 2. Solve the PDE.

重

 299

(ロトメ部トメ君トメ君)

- Step 1. Write a 'good' PDE.
- Step 2. Solve the PDE.
- Step 3. Show the special Lagraigns are smooth.

금 > K 등 >

≮ロ ▶ ⊀ 母 ▶ ⊀

重

- Step 1. Write a 'good' PDE.
- Step 2. Solve the PDE.
- Step 3. Show the special Lagraigns are smooth.
- Step 4. Show the special Lagrangians satisfy the conjecture: asymptotics + topology.

B

ヨメ イヨメ

≮ロ ▶ ⊀ 伊 ▶ ⊀

• Key observation: $U(1)$ -symmetry of SL cylinders P_1, P_2, P_3 :

■ 2990

イロメス 御き スミメスきょう

- Key observation: $U(1)$ -symmetry of SL cylinders P_1 , P_2 , P_3 :
- $U(1)$ acts on X , which extends to $X \times \mathbb{R}^2$ by $e^{i\theta} \cdot (x, y) = (e^{i\theta} \cdot x, y)$.
	- \bullet The action preserves the symplectic structure ω on *Z*.
	- **2** This action is Hamiltonian with moment maps $u_3 : Z \to \mathbb{R}$.
	- **3** The cylindrers P_1 , P_2 , P_3 are $U(1)$ -invariant and $P_i \subset u_3^{-1}(0)$.

- Key observation: $U(1)$ -symmetry of SL cylinders P_1 , P_2 , P_3 :
- $U(1)$ acts on X , which extends to $X \times \mathbb{R}^2$ by $e^{i\theta} \cdot (x, y) = (e^{i\theta} \cdot x, y)$.
	- \bullet The action preserves the symplectic structure ω on *Z*.
	- **2** This action is Hamiltonian with moment maps $u_3 : Z \to \mathbb{R}$.
	- **3** The cylindrers P_1 , P_2 , P_3 are $U(1)$ -invariant and $P_i \subset u_3^{-1}(0)$.
- The conjectured special Lagrangian $L \subset u_3^{-1}(0)$.

- Key observation: $U(1)$ -symmetry of SL cylinders P_1 , P_2 , P_3 :
- $U(1)$ acts on X , which extends to $X \times \mathbb{R}^2$ by $e^{i\theta} \cdot (x, y) = (e^{i\theta} \cdot x, y)$.
	- *¹* The action preserves the symplectic structure ω on *Z*.
	- **2** This action is Hamiltonian with moment maps $u_3 : Z \to \mathbb{R}$.
	- **3** The cylindrers P_1 , P_2 , P_3 are $U(1)$ -invariant and $P_i \subset u_3^{-1}(0)$.
- The conjectured special Lagrangian $L \subset u_3^{-1}(0)$.
- The symplectic reduction of *Z*,

$$
Z_{\text{red}}=u_3^{-1}(0)/U(1)=\mathbb{R}^4_{(u_1,u_2,y_1,y_2)}.
$$

- Key observation: $U(1)$ -symmetry of SL cylinders P_1, P_2, P_3 :
- $U(1)$ acts on X , which extends to $X \times \mathbb{R}^2$ by $e^{i\theta} \cdot (x, y) = (e^{i\theta} \cdot x, y)$.
	- **1** The action preserves the symplectic structure ω on Z.
	- **2** This action is Hamiltonian with moment maps $u_3 : Z \to \mathbb{R}$.
	- **3** The cylindrers P_1 , P_2 , P_3 are $U(1)$ -invariant and $P_i \subset u_3^{-1}(0)$.
- The conjectured special Lagrangian $L \subset u_3^{-1}(0)$.
- The symplectic reduction of *Z*,

$$
Z_{\rm red} = u_3^{-1}(0)/U(1) = \mathbb{R}^4_{(u_1, u_2, y_1, y_2)}.
$$

• The dimensionally reduced Lagrangian is

$$
L_{\text{red}} := L/U(1) \subset Z_{\text{red}} := u_3^{-1}(0)/U(1).
$$

K □ ▶ K 部 ▶ K 로 ▶ K 로 ▶ 『로 → 9 Q O

• The $U(1)$ -reduction of the cylindrical SL: $P_i = [p_i, p_{i+1}] \times (\mathbb{R} \cdot \tilde{v}_i)$.

唐 2990

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ...

- The $U(1)$ -reduction of the cylindrical SL: $P_i = [p_i, p_{i+1}] \times (\mathbb{R} \cdot \tilde{v}_i)$.
- The SL condition reduces to a degenerate holomorphicity condition:

 $Vdu_1 \wedge du_2 - dy_1 \wedge dy_2 = 0$, and $du_1 \wedge dy_1 + du_2 \wedge dy_2 = 0$.

- The $U(1)$ -reduction of the cylindrical SL: $P_i = [p_i, p_{i+1}] \times (\mathbb{R} \cdot \tilde{v}_i)$.
- The SL condition reduces to a degenerate holomorphicity condition:

 $Vdu_1 \wedge du_2 - dy_1 \wedge dy_2 = 0$, and $du_1 \wedge dy_1 + du_2 \wedge dy_2 = 0$.

 298

目

イロト イ部 トイヨ トイヨト

 \bullet Graph assumption: the conjectured curve $=$ graph of a map $F: U \subset \mathbb{R}^2_{(\nu_1,\nu_2)} \to \mathbb{R}^2_{(\nu_1,\nu_2)}$.

重

Þ

 298

Kロト K 倒 ト K

 \bullet Graph assumption: the conjectured curve $=$ graph of a map $F: U \subset \mathbb{R}^2_{(\nu_1,\nu_2)} \to \mathbb{R}^2_{(\nu_1,\nu_2)}$.

• The (special) condition $du_1 \wedge dy_1 + du_2 \wedge dy_2 = 0$ implies $F = (F_1, F_2)$ satisfies

 $\partial_{u_1}F_2=\partial_{u_2}F_1$, and therefore, $F=\nabla\varphi$, for some $\varphi:U\subset\mathbb{R}^2_{(\mu_1,\mu_2)}\to\mathbb{R}.$

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ≯

 \bullet Graph assumption: the conjectured curve $=$ graph of a map $F: U \subset \mathbb{R}^2_{(\nu_1,\nu_2)} \to \mathbb{R}^2_{(\nu_1,\nu_2)}$.

• The (special) condition $du_1 \wedge dy_1 + du_2 \wedge dy_2 = 0$ implies $F = (F_1, F_2)$ satisfies

 $\partial_{u_1}F_2=\partial_{u_2}F_1$, and therefore, $F=\nabla\varphi$, for some $\varphi:U\subset\mathbb{R}^2_{(\mu_1,\mu_2)}\to\mathbb{R}.$

• The second condition (Lag) implies a degenerate Monge-Ampère equation equation:

$$
\det D^2 \varphi = V = A + \sum_{i=1}^n \frac{1}{2|u - p_i|}.
$$

造

≮ロト ⊀母 ▶ ⊀ 君 ▶ ⊀ 君 ▶

• Solving the Dirichlet problem: an approximation method and a compactness argument.

×

Kロト K倒下

 298

重

• Solving the Dirichlet problem: an approximation method and a compactness argument.

- The interior smoothness of the solution is based on two facts:
	- *O* Caffarelli: The singular set must propagate along some line segment to the boundary.
	- *2* Mooney's partial regularity: The singular set has codimension one Hausdorff measure zero.

 QQ

• Solving the Dirichlet problem: an approximation method and a compactness argument.

- The interior smoothness of the solution is based on two facts:
	- *O* Caffarelli: The singular set must propagate along some line segment to the boundary.
	- *2* Mooney's partial regularity: The singular set has codimension one Hausdorff measure zero.
- This proves the existence of φ and therefore, the cruve.

4 0 8 4

 QQ

Smoothness

• $L^{\circ} = \pi^{-1}(\text{Graph}(F)_U).$

Ε
- $L^{\circ} = \pi^{-1}(\text{Graph}(F)_U).$
- *L* = current of integration of *L*[○]. We should show *L* is smooth.

 \mathbb{B} is

重

- $L^{\circ} = \pi^{-1}(\text{Graph}(F)_U).$
- *L* = current of integration of *L*[○]. We should show *L* is smooth.
- Let *x* be a singular point of *L*.

重

- $L^{\circ} = \pi^{-1}(\text{Graph}(F)_U).$
- *L* = current of integration of *L*[○]. We should show *L* is smooth.
- Let *x* be a singular point of *L*.
- \bullet $\pi_{(\nu_1, \nu_2)}(x)$ cannot be an interior point of U or any point over an open edge.

- $L^{\circ} = \pi^{-1}(\text{Graph}(F)_U).$
- *L* = current of integration of *L*[○]. We should show *L* is smooth.
- Let *x* be a singular point of *L*.
- \bullet $\pi_{(\nu_1, \nu_2)}(x)$ cannot be an interior point of U or any point over an open edge.
- The only possibility $\pi_{(u_1, u_2)}(x) \in \{p_1, \ldots, p_n\}.$

• Method: Geometric measure theory, blow-up analysis, and tangent cones.

唐 $2QQ$

イロメス 御き スミメスきょう

- Method: Geometric measure theory, blow-up analysis, and tangent cones.
- $\bullet \,$ Any tangent cone $\mathcal{N} \subset \mathbb{C}^3$ at x is a $\mathcal{U}(1)$ -invariant tangent cone in $\mathbb{C}^3.$

重

 298

イロメス 御き スミメスミメン

- Method: Geometric measure theory, blow-up analysis, and tangent cones.
- $\bullet \,$ Any tangent cone $\mathcal{N} \subset \mathbb{C}^3$ at x is a $\mathcal{U}(1)$ -invariant tangent cone in $\mathbb{C}^3.$
- Proposition: A point *x* ∈ supp(*L*) is a smooth point if and only if every tangent cone

 $N \subset \mathbb{C}^3$ at *x* is a 3-plane with multiplicity one.

÷.

 298

K ロ ト K 伺 ト K ラ ト K ラ ト

- Method: Geometric measure theory, blow-up analysis, and tangent cones.
- $\bullet \,$ Any tangent cone $\mathcal{N} \subset \mathbb{C}^3$ at x is a $\mathcal{U}(1)$ -invariant tangent cone in $\mathbb{C}^3.$
- Proposition: A point *x* ∈ supp(*L*) is a smooth point if and only if every tangent cone $N \subset \mathbb{C}^3$ at *x* is a 3-plane with multiplicity one.
- There is a classification of $U(1)$ -invariant special Lagrangian cones in \mathbb{C}^3 due to Joyce/Haskins.

イロト イ押 トイヨ トイヨ トー

- Proposition (Joyce/Haskins): Let N be a $U(1)$ -invariant SL cone in \mathbb{C}^3 . Then, exactly one of the following holds:
	- \bullet *N* is a \mathbb{T}^2 -cone.
	- *2 N* is the singular union of two flat 3-planes.
	- *3 N* is SL cone described in terms of Jacobi elliptic functions.
	- *4 <i>N* is a flat 3-plane with multiplicity $m \in \mathbb{Z}$.

 \mathbb{B} is

 299

← ロ ▶ + 母 ▶ +

- Proposition (Joyce/Haskins): Let N be a $U(1)$ -invariant SL cone in \mathbb{C}^3 . Then, exactly one of the following holds:
	- \bullet *N* is a \mathbb{T}^2 -cone.
	- *2 N* is the singular union of two flat 3-planes.
	- *3 N* is SL cone described in terms of Jacobi elliptic functions.
	- *4 <i>N* is a flat 3-plane with multiplicity $m \in \mathbb{Z}$.
- Using properties of the Monge-Ampère equation, we rule out every case but a flat

3-plane with $m = 1$.

 298

正 メイヨメ

4 ロト 4 母 ト 4

 \bullet The projection of \mathbb{T}^2 -cone is surjective.

Þ

←ロ ▶ ← 日 ▶

重

- \bullet The projection of \mathbb{T}^2 -cone is surjective.
- The projection of the union of two planes includes a line.

Þ

◆ロ ▶ → 伊

- \bullet The projection of \mathbb{T}^2 -cone is surjective.
- The projection of the union of two planes includes a line.
- Rulling out the Jacobi elliptic case and flat 3-plane with |*m*| ≥ 1 follows from a variation of Joyce graphicallity argument + some GMT ingrediants.

[Donaldson-Scaduto conjecture](#page-0-0) November 5, 2024 29 / 35

4 0 8

 QQQ

- Asymptotically cylindrical:
	- \bullet Using Legendre transform + quasi-Elliptic property: \mathcal{C}^0 convergence.
	- $\boldsymbol{2}$ Allard's regularity: $C^{1,\,\alpha}$ -decay, and then C^k -decay.
	- *3* Exponential decay: three-annulus lemma or iteration method

$$
F(R) = \int_{\{y_2 \le -R\} \cap L} |\nabla \varphi|^2 \Longrightarrow -CF' \ge F.
$$

目

 298

イロメス 御き スミメスきょう

- Asymptotically cylindrical:
	- \bullet Using Legendre transform + quasi-Elliptic property: \mathcal{C}^0 convergence.
	- $\boldsymbol{2}$ Allard's regularity: $C^{1,\,\alpha}$ -decay, and then C^k -decay.
	- *3* Exponential decay: three-annulus lemma or iteration method

$$
F(R) = \int_{\{y_2 \le -R\} \cap L} |\nabla \varphi|^2 \Longrightarrow -CF' \ge F.
$$

• Topology of *L* = n-holed 3-sphere: computing π₁(*L*)/ constructing a Heegaard splitting.

 $2Q$

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト

- Asymptotically cylindrical:
	- \bullet Using Legendre transform + quasi-Elliptic property: \mathcal{C}^0 convergence.
	- $\boldsymbol{2}$ Allard's regularity: $C^{1,\,\alpha}$ -decay, and then C^k -decay.
	- *3* Exponential decay: three-annulus lemma or iteration method

$$
F(R) = \int_{\{y_2 \le -R\} \cap L} |\nabla \varphi|^2 \Longrightarrow -CF' \ge F.
$$

- Topology of *L* = n-holed 3-sphere: computing π₁(*L*)/ constructing a Heegaard splitting.
- This completes the proof.

 298

4 ロ ト 4 何 ト 4 ヨ ト 4 ヨ ト

IV. Epilogue

 Ξ

 2990

メロトメ団 トメミトメミト

• The Donaldson-Scaduto conjecture is originally stated for associatives in *G*₂-manifolds.

È.

 298

イロメス 御き スミメスミメン

- The Donaldson-Scaduto conjecture is originally stated for associatives in *G*₂-manifolds.
- *G*₂ DS conjecture reduces to CY 3-folds, and therefore, the *G*₂-version is also proven.

∋ x k

目

4 ロト 4 母 ト 4

- The Donaldson-Scaduto conjecture is originally stated for associatives in *G*₂-manifolds.
- *G*₂ DS conjecture reduces to CY 3-folds, and therefore, the *G*₂-version is also proven.
- Donaldson initiated a program to study $G₂$ -manifolds through coassociative K3

fibrations, in the adiabatic limit where the diameters of the K3 fibers shrink to zero.

4 ロト 4 何 ト 4

- The Donaldson-Scaduto conjecture is originally stated for associatives in *G*₂-manifolds.
- *G*₂ DS conjecture reduces to CY 3-folds, and therefore, the *G*₂-version is also proven.
- Donaldson initiated a program to study G₂-manifolds through coassociative K3 fibrations, in the adiabatic limit where the diameters of the K3 fibers shrink to zero.
- Subsequent work of Donaldson and Scaduto provided a conjectural limiting description of associative submanifolds in the adiabatic setting.

4 D F

 QQ

• The constructed SL fits into standard gluing theorems.

唐 2990

(ロ) (個) (星) (星)

- The constructed SL fits into standard gluing theorems.
- Kummer construction of K3 surfaces + deformation theory:

*A*2 conjecture \Rightarrow K3 conjecture for open subset of moduli of hyperkähler K3 surfaces.

÷.

イロト イ押ト イミト イミト

- The constructed SL fits into standard gluing theorems.
- Kummer construction of K3 surfaces + deformation theory:

*A*2 conjecture \Rightarrow K3 conjecture for open subset of moduli of hyperkähler K3 surfaces.

• Therefore, the K3 Donaldson-Scaduto conjecture is proven for infinitely many K3 surfaces, but not all, which is the topic of current research topic.

イロト イ押ト イミト イミト

 $2QQ$

• Donaldson-Segal: counting weighted special Lagrangians could lead to CY3 invariants.

唐 2990

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐 ▶ ...

- Donaldson-Segal: counting weighted special Lagrangians could lead to CY3 invariants.
- Weight (special Lagrangian) = number of solutions to a PDE on the special Lagrangian (Fueter equation).

重 2990

イロメス 御き スミメスきょう

- Donaldson-Segal: counting weighted special Lagrangians could lead to CY3 invariants.
- Weight (special Lagrangian) = number of solutions to a PDE on the special Lagrangian (Fueter equation).
- Taubes (1991): Is the space of solutions to Fueter equation compact?

E.

 298

K ロ ト K 伺 ト K ヨ ト K ヨ ト

- Donaldson-Segal: counting weighted special Lagrangians could lead to CY3 invariants.
- Weight (special Lagrangian) = number of solutions to a PDE on the special Lagrangian (Fueter equation).
- Taubes (1991): Is the space of solutions to Fueter equation compact?
- $\bullet\,$ E-Li: In some cases the answer is negative ($\Sigma_g\times S^1$),

- Donaldson-Segal: counting weighted special Lagrangians could lead to CY3 invariants.
- Weight (special Lagrangian) = number of solutions to a PDE on the special Lagrangian (Fueter equation).
- Taubes (1991): Is the space of solutions to Fueter equation compact?
- $\bullet\,$ E-Li: In some cases the answer is negative ($\Sigma_g\times S^1$), $\,$ in some cases the answer is very negative (*D*² × *S* 1),

- Donaldson-Segal: counting weighted special Lagrangians could lead to CY3 invariants.
- Weight (special Lagrangian) = number of solutions to a PDE on the special Lagrangian (Fueter equation).
- Taubes (1991): Is the space of solutions to Fueter equation compact?
- $\bullet\,$ E-Li: In some cases the answer is negative ($\Sigma_g\times S^1$), $\,$ in some cases the answer is very negative ($D^2\times S^1$),in some cases the answer is positive.

- Donaldson-Segal: counting weighted special Lagrangians could lead to CY3 invariants.
- Weight (special Lagrangian) = number of solutions to a PDE on the special Lagrangian (Fueter equation).
- Taubes (1991): Is the space of solutions to Fueter equation compact?
- $\bullet\,$ E-Li: In some cases the answer is negative ($\Sigma_g\times S^1$), $\,$ in some cases the answer is very negative ($D^2\times S^1$),in some cases the answer is positive. And we can compactify the space of Fueter sections in all of these cases.

Thank you for your attention!

重

メロトメ部 トメミトメミト