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Spoilers

@ Magnetic monopole as a prototype of a gauge theory with
group U(1), seen as the Hopf fibration.

@ Generalize it to SU(2) gauge theory, habitat of instantons.

@ ADHM construction of instantons via twistor
correspondence.
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Electric charge

A point electric charge q located at the origin of an inertial
frame determines an electric field E given by Coulomb’s Law
(written here in spherical coordinates p, ¢, 6):

q
E — ?ep
The magnetic field associated to the charge q, in this frame, is
given by B = 0.
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Maxwell’'s equations

E and B satisfy the static, source-free Maxwell equations on

R3\ {0}:

divE=0
divB=0
curlE=0
curlB = 0.
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Magnetic charge

Suppose that Coloumb’s Law also holds for a “magnetic point
charge” (which has never been observed in nature). Thus we
would have, by analogy,

0
9
2

E
B e,

B

where the constant g is the strength (“magnetic charge”) of this
magnetic monopole.
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Maxwell’'s equations

@ E and B clearly satisfy the static, source-free Maxwell
equations on R3\ {0}. In particular,

divB =0 on R3\ {0},
curlB =0 on R\ {0}. (1)

@ (1) + simple-connectedness of R3\ {0} — existence of
scalar potential for B.

@ Want: vector potential for B: vector field A such that
B = curl A for physical reasons.
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Potentials

@ divB = 0 is necessary for the existence of a vector
potential (div curl = 0), but not sufficient.

@ Stokes’ theorem tells us that there is no vector potential for
B on R3\ {0}.
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Simple-connectedness

@ Simple-connectedness + vanishing curl — existence of
scalar potential.

@ Topological condition: vanishing of “fundamental group”
m1(R®\ {0}) = 0.

@ Fundamental group encodes classes of loops (maps from
the circle S to the space) deformable to one another.

@ Also called 1-connectedness.
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2-connectedness

@ 2-connectedness: classes of maps from S? to a space U
which form a group w2 (U).

@ Intuitively, if U is 1-connected, mo(U) = 0 means that any
copy of S?in U encloses only points of U.

e m(R3\ {0}) # 0; take any sphere around the origin.

10/56
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Existence of vector potential

Proposition

U c R3 open 1-connected, F smooth vector field on U. If

divF = 0 and m>(U) = 0, then there exists a smooth vector field
A on U such that F = curl A.
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Example

e LetZ ={(0,0,2) cR®|z<0},
Z, ={(0,0,2) ¢ R®| z > 0}.

@ The complements Uz = R®\ Z, are simply-connected and
2-connected — 3 vector potentials A for B on U..

e If B = (g/p?)e,, then we can calculate

__9
psin¢

(1—cos ¢)ey, A_= g (1+cos ¢)ey.

 psing

A,
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Example

@ Note that U, U U_ = R3\ {0}.
@ On the overlap U; N U_ = R®\ {z axis}, we have

_ 29 . _
A+ —A_= pSin¢e9 = V(ZQQ),

i.e. they differ by a gradient, which means

curlAy =curlA_,

and so B is well-defined on the overlap.

13/56
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Physical significance of potentials

Consider now that, apart from the magnetic monopole at the
origin of an inertial frame, we have an electric charge q free to
move in space.

@ Classically, the dynamics of the charge are determined by
the Lorentz Force Law and Newton’s second law.

@ In quantum mechanics, the dynamical variable is the
wavefunction and it is determined by Schrédinger’s
equation.

14/56
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Physical significance of potentials

@ In classical theory, the motion of the charge is unchanged
by a transformation A — A + VQ of the potential. Thus, it
has no physical significance, only the field.

@ In the quantum picture, Schrédinger’s equation tells us that
replacing A — A + VQ transforms the wavefunction as

P — 9%,

changing only the amplitude (phase change) of the
wavefunction.
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The Aharonov-Bohm effect

electrons
/
path one};’f \\ path two

,u" {interference)

observation plane/screen

16/56



Magnetic monopole T,

The Hopf bundle
Principal bundles

Bundles

@ Lack of global potential introduces phase differences.

@ How to keep track of the phase of a particle as it travels
through space?

17/56
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Bundles

@ Associated to each point x in space, we have a circle (line
segment with ends identified) of possible phase values.

@ These circles (“fibers”) are “bundled” together.

@ A phase change corresponds to an action of S' on each
fiber.

18/56
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Bundles

@ Keeping track of the charge’s phase is a “lifting problem”:
given the trajectory of the charge in space and a value of
the phase at some given point, specify a curve through the
total bundle space.

@ The phase should vary continuously, so the fibers S need
to be bundled together topologically.

19/56
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Differential forms

Let U c R be an open set.
@ O-forms on U are by definition real-valued functions on U.
@ 1-forms on U: fidx + hdy + f3dz
@ 2-formson U: gidy A dz + g-dz A dx + gsdx A dy.
@ Both correspond to a vector field on U with components
(fi, 6, %) and (g1, 92, 93), respectively.
@ 3-forms on U: fdx A dy A dz.

@ A p-form eats p vectors (skew-symmetric when exchange
order) and spits out a number.

20/56
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Differential forms

Let f be a 0-form, w a 1-form and F a 2-form.
@ Exterior differentiation takes a p-formto a (p + 1)-form.
@ f — df corresponds to Vf.
@ w — dw corresponds to curlw
@ F — dF corresponds to div F.

21/56



Magnetic monopole T,

The Hopf bundle
Principal bundles

Bundles over S?

@ The monopole field B = (g/p?)e, has a corresponding
2-form F, and the vector potential can now be thought of
as a 1-form A such that F = dA.

@ The vector potentials A and A_ correspond to the 1-forms
A; =g(1 —cos¢)do, A_ = —g(1+cos¢)db.

@ Independence of p = phase is constant in radial
direction. Thus, only need to consider bundles over S?.

22/56
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The Hopf bundle

@ Define S2 as the set of (21, 2z5) € C? with |22 + |2]2 = 1.

@ Use polar coordinates in each entry: z; = cos(¢p/2)e’,
2, = sin(¢/2)e'%2 for ¢ € [0, 7] and &;,& € R.

@ Let T C S® be given by |z1| = ||, i.e. all the points
(z1,20) = (1/V/2)(€'1, €2), clearly a torus (product of two
circles).

23/56
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The Hopf bundle

@ Let Ky c S®be given by |z¢| < |z, i.e.
cos(¢/2) <sin(¢/2) = /4 < ¢p/2 <7 /2.

@ ¢/2=m/4givesus T; ¢/2 = /2 means z; = 0 and so we
have {0} x S', a circle.

24/56
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The Hopf bundle

@ Let K> C S® be given by |z4| > |z|. Similarly, we have
0<¢/2<m/4.

@ Also a solid torus bounded by T, degenerating into a circle
(here seen as a line through infinity).
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The Hopf bundle

@ Action of U(1) (more traditional in gauge theory instead of
S') on S8:

(z1,22) - 9 = (219, 229).

@ Each orbit of the action corresponds to a point in S2: if
(21, 20) ~ (wy, W), then zy/zo = wy /we, so it suffices to
take one point of the orbit and take its ratio, which is a
complex number (possibly o).
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The Hopf bundle

Consider the map 7 : S® — S? given by

where pg is stereographic projection from the north pole onto
the extended complex plane.
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The Hopf bundle

@ Interms of the parameters ¢, {1, &2 given by
(z1,22) = (cos(¢/2)e’, sin(p/2)e'%2), we can write

(¢, &1,&2) = (Sin g cos b, sin ¢ sin b, cos ¢),

where 6 = & — &.

e 7 maps S® onto S? and for any x € S?, the fiber n='(x) is
the orbit of any (z;, z») above x, i.e. such that
(21, 22) = x.

28/56
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The Hopf bundle

Conclusion:

e 7 : S® — S?identifies each orbit in S® (a copy of S') with a
point in S2.

29/56



Magnetic monopole Introduction

The Hopf bundle
Principal bundles

Definition

Let M be a manifold (e.g. S?) and G a Lie group (e.g. U(1)). A
principal bundle over M (the base space) with structure group
G consists of

@ A manifold P (e.g. S®), called total space,
@ Amap 7 : P — M, called projection,
@ An action of G on P.
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Definition

Moreover, we require that
@ The action of G on P leave the fibers invariant, i.e.
m(p - g) = 7(p)-
© (Local triviality) For each x € M there exists an open set
U > x and a diffeo W : 7= (U) — U x G of the form
V(p) = (7(p), ¥ (p)), where + : 7~ (U) — G satisfies

Y(p-g)=y(p)gforallpen~'(U)and g € G.

31/56
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Local triviality

@ The Hopf map 7 : S® — S? is similar to the natural
projection S2 x U(1) — S2.

@ Both slice the total space into a disjoint union of circles
hovering above each point of S2.

@ The fibers are glued together differently when viewed
globally, but can “untwist” them locallly so as to be the
same:

32/56
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Local triviality of the Hopf bundle

@ Cover the sphere with Us U Uy = S?.

@ Can trivialize the Hopf bundle 7 : S® — S? on each open
set of the cover

Vg N(Ug) — S% x U(1)
) - o2 25

Wy (Uy) = S% x U(1)
(z1,22) — <7T 21, 2p), ;)

33/56
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Transition functions for the Hopf bundle

@ If x € Us N Uy, then W and Wy identify 7= (x) with U(1)
differently. Let ¢s x, ¥nx : 7 1(x) — U(1) be the restriction
to the fiber. We have

([ Z/|z|
vscouti = (2] o

_ (#/1A]
U V5sd —<22/|22|>g,

for any (21, z) € 7 1(x).
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Transition functions for the Hopf bundle

@ Get functions
gsn:UsnUnv— U(1),  gns:UsnUv— UQ1)
called transition functions, defined by
g x © wﬁ,‘x(g) = gsn(X)g, YN x © ¢§71X(Q) = gns(X)g-

@ In terms of the parameters ¢, &4, &o, with 6 = & — &, we
have
gsn(singcos b, sinpsinf, cos ¢) = e
gns(singcos b, sin¢gsiné,cos ¢) = e’
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Connections on principal bundles

Consider again A, = g(1 —cos¢)dd, A_ = —g(1 + cos ¢)db
for g = 1/2 (physical reasons).
@ Correspond to potential 1-forms on Ug, Uy C S2.

AN = %(1 — Ccos ¢)do, As = %(1 + cos ¢)dob.

@ Ay = As+ db on UsnN Uy.
@ Replace Ay — —iAy and As — —iAg, can write above
equation as

AN — eiGASe—iG + eiQde—iG

= gonAssn + Jgyadsn-

36/56
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Lie algebra-valued 1-forms

@ Locally defined 1-forms A+, A> cannot be spliced together
into a globally-defined form unless they agree on the
intersection.

@ Lie algebra-valued 1-forms can, if they satisfy the
consistency condition

Ax = g Argiz + 975 dgia,

be spliced together into a globally-defined Lie
algebra-valued form on the principal bundle.

37/56
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Wrapping up

@ Lie algebra of U(1) is T{U(1) = Im C. Rotating the circle
identifies ToU(1) = T{U(1) = Im C.

@ Each p € S® has through it a U(1) fiber = each T,S3
has T;U(1) = Im C as subspace.

@ A Lie algebra-valued 1-form w on S® is a correspondence
p— wp: TpS® — Im C C T,S? (like a projection).

@ The collection kerw,, as p varies in S® determine a 2-dim.
distribution and the derivative of 7 : S® — S? restricts to an
isomorphism kerwp = T () S? for each p.
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Wrapping up

@ Each velocity vector along a curve in S? lifts to a unique
vector in the tangent space of S® via the isomorphisms.

@ Given an initial condition, i.e. an initial phase, the lifted
vectors can be fitted with a unique integral curve lifting the
original curve in S2.

39/56
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Nomenclature

@ These Lie algebra-valued 1-forms w are called connections
on the principal bundle.

@ The exterior derivative 2 = dw is called the curvature of
the connection.

@ In the Hopf bundle, the connection replaces the potential
and its curvature corresponds to the field of the magnetic
monopole.
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Instantons

@ Analogous Hopf bundle replacing C by quaternions
H = R4,

@ S’ C H? as pairs of quaternions (gy, g») with
9112 + |ge|® = 1.

@ S8 can be identified with unit quaternions, so there is
action on S7.

@ Identify orbits of this action with points in S* via
stereographic projection.

@ Principal bundle over S* with structure group SU(2) = S8.

41/56
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Instantons

@ Models particles with isotopic spin.

@ Interesting connections satisfy the Yang-Mills equations
(restricts to Maxwell’s equations for G = U(1)):

daFp=0
dax Fp=0,

with the first being an identity (Bianchi’s identity; holds for
every curvature 2-form).

42/56
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(Anti-)Self-duality

@ Hodge star: operator on oriented Riemannian manifolds.
Spits out the remaining form for the volume form with sign
respecting orientation:

*(dX1 A ng) =dxs A dxy
x(dxy A dxq A\ dXz) = —dxo.
@ In dimension 4, x takes 2-forms into 2-forms and %2 = Id

— eigenvalues +1. We can then decompose the space

of 2-forms as
P =0, 0,

self-dual and anti-self-dual parts.

43/56
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(Anti-)Self-duality

@ If a curvature 2-form F is SD or ASD, i.e. *F = £F, then
Yang-Mills equation da * F4 = 0 follows trivially from
Bianchi’s identity dafFa = 0.

@ (Anti-)-self-dual solutions to the Yang-Mills equations are
called instantons.

@ Basic instanton is given by

A(x) = Im (1?";'2)

(Lie algebra of SU(2) can be identified with imaginary
quaternions).
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Vector bundles

@ 7w : E — M projection from total space to base space.
@ Each fiber E, = 7—1(x) is now a vector space.
@ Trivializations are linear when restricted to each fiber.

@ Operations on vector spaces carry on to bundles
(fiberwise): E*, E® F, E® F, N'E, E/F, etc.

@ Arise from principal bundles by choosing a representation
of the structure group.
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Twistor correspondence

@ Any conformal transformation of S* will give a new
instanton, since the Hodge star is conformally invariant.

Problem: exhibit all instantons.

@ The twistor correspondence gives a 1-1 correspondence
between instanton bundles over S* and holomorphic
bundles over P2, called the twistor space.

@ The ADHM construction is a recipe to build such
holomorphic bundles over P® and it can be proven that it
exhausts all instantons.
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Twistor correspondence

Complex manifolds

@ Transition functions between open sets of C" are
holomorphic.

@ Introduce complex structure on TM, i.e. J : TM — TM with
J2 =1

@ Action of C on each tangent space: i - v := J(v).

@ Complexify each tangent space — J has eigenvalues
+i.

o TM = T'"9M @ T%'M splits into holomorphic and
anti-holomorphic parts.

@ Decomposition carries over to T*M and its exterior powers:
(p, q) forms.
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Twistor correspondence

Holomorphic bundles

@ Defined over complex manifolds; admits holomorphic
trivialization maps.
@ Complex vector spaces as fibers.

Proposition
Given a hermitian metric on each fiber, there is a unique
connection such that its Lie algebra-valued 1-form A satisfies

@ A* = —Aunder unitary trivializations,
@ Ais of type (1,0) under holomorphic trivializations,
called the Chern connection.
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Twistor correspondence

Twistor fibration

@ In complex projective space P2, every ¢ € P2 is a (complex)
line passing through the origin in C* = H?,

@ Associate to each ¢ € P3 the quaternionic line H¢ passing
through the origin in H?, which gives us a map
7 P® — HP',

@ Each quaternionic line L € HP' is a copy of C2, and thus
the fiber 7='(L) is the set of lines through the origin in this
C2,ie. (L) = P,

@ Identifying S* =~ HP', we have a map 7 : P> — S* whose
fibers are 7—1(L) = P'. This map is called the twistor
fibration.
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Twistor fibration

@ Can identify C* = H? via
(21,22, 23, 24) — (21 + Zof, Z3 + Z4f).

@ (zy + 2of, z3 + z4j) € H? left multiplied by j corresponds to
(—Z_g, 2 , —Z_4, 2_3) S CA.
@ Have map o : P® — P3 given by

(21 , 22, 23, 24) = (_2_27 2_1 s _2_47 2_3)

in homogeneous coordinates.

@ ¢ has invariant lines P! which are precisely the fibers of the
twistor fibration.
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ASD and complex structures

A 2-form on S* is ASD if and only if its lift (pullback via =) to
twistor space is of type (1,1).

Applying this result to the curvature 2-form:

Proposition

A U(n)-bundle with a metric-compatible connection on S* has
ASD curvature iff the lifted bundle on twistor space has
curvature of type (1,1).
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Twistor correspondence

Instantons and holomorphic bundles

@ The lifted bundle has a natural holomorphic structure: let
E — X be a Hermitian vector bundle over a complex
manifold, equipped with a connection V such that
Fy € Q1’1(E).

Proposition

E has a natural holomorphic structure such that V is the Chern
connection of E.

@ As a pullback bundle, each fiber E, = E ;) =
topologically trivial on the P! fibers, can show they are
holomorphically trivial on the fibers.
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Twistor correspondence

Instantons and holomorphic bundles

Theorem

Let E — S* be an Hermitian vector bundle with an ASD
connection and let F = 7*E be the lifted bundle, where
7 : P — S*is the twistor fibration. Then
@ F is holomorphic.
© F restricts to a holomorphic trivial bundle over each fiber
PX = ’7['_1 (X)
© There is a holomorphic isomorphism 7 : o*F — F* such
that 7 induces an Hermitian inner product on HO(Py, F).

Conversely, every such bundle F — P3 is given by F = 7*E for
some bundle E — S* with ASD connection.
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ADHM construction

ADHM construction

@ There is a non-degenerate skew-form on C* defined by
w(u, jv) = (U, v).
@ Let L, C C* be the line corresponding to the point [z] € P.

@ Consider the complement wrt this skew-form LY which has
dimension 3.

@ The collection of E; = L% /L, with [z] varying over P3
defines a vector bundle E over P3 with fiber C2.
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ADHM construction

ADHM construction

@ E is holomorphic because it is the quotient of two
holomorphic vector bundles.

@ The definition of the skew-form w implies that L = ij
Have orthogonal decomposition

C*=L, ® Ry D Ly,

with Ry = LY N ng depending only on the fiber, i.e. on the
point of S* — E is trivial on the fibers of the twistor
fibration.

@ Corresponds to SU(2)-instanton bundle via twistor
correspondence.
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