The twistor transform and the ADHM construction

Augusto Pereira

November 27, 2018

Summary

(1) Magnetic monopole

- Introduction
- The Hopf bundle
- Principal bundles
(2) Twistor correspondence
(3) ADHM construction

4 References

Spoilers

- Magnetic monopole as a prototype of a gauge theory with group $U(1)$, seen as the Hopf fibration.
- Generalize it to $S U(2)$ gauge theory, habitat of instantons.
- ADHM construction of instantons via twistor correspondence.

Electric charge

A point electric charge q located at the origin of an inertial frame determines an electric field \mathbf{E} given by Coulomb's Law (written here in spherical coordinates ρ, ϕ, θ):

$$
\mathbf{E}=\frac{q}{\rho^{2}} \mathbf{e}_{\rho} .
$$

The magnetic field associated to the charge q, in this frame, is given by $\mathbf{B}=0$.

Maxwell's equations

E and B satisfy the static, source-free Maxwell equations on $\mathbb{R}^{3} \backslash\{0\}$:

$$
\begin{aligned}
\operatorname{div} \mathbf{E} & =0 \\
\operatorname{div} \mathbf{B} & =0 \\
\operatorname{cur} \mathbf{E} & =0 \\
\operatorname{curl} \mathbf{B} & =0 .
\end{aligned}
$$

Magnetic charge

Suppose that Coloumb's Law also holds for a "magnetic point charge" (which has never been observed in nature). Thus we would have, by analogy,

$$
\begin{aligned}
\mathbf{E} & =0 \\
\mathbf{B} & =\frac{g}{\rho^{2}} \mathbf{e}_{\rho},
\end{aligned}
$$

where the constant g is the strength ("magnetic charge") of this magnetic monopole.

Maxwell's equations

- E and B clearly satisfy the static, source-free Maxwell equations on $\mathbb{R}^{3} \backslash\{0\}$. In particular,

$$
\begin{align*}
\operatorname{div} \mathbf{B} & =0 \text { on } \mathbb{R}^{3} \backslash\{0\} \\
\operatorname{curl} \mathbf{B} & =0 \text { on } \mathbb{R}^{3} \backslash\{0\} \tag{1}
\end{align*}
$$

- (1) + simple-connectedness of $\mathbb{R}^{3} \backslash\{0\} \Longrightarrow$ existence of scalar potential for B.
- Want: vector potential for \mathbf{B} : vector field \mathbf{A} such that $\mathbf{B}=\operatorname{curl} \mathbf{A}$ for physical reasons.

Potentials

- $\operatorname{div} \mathbf{B}=0$ is necessary for the existence of a vector potential (div curl $=0$), but not sufficient.
- Stokes' theorem tells us that there is no vector potential for B on $\mathbb{R}^{3} \backslash\{0\}$.

Simple-connectedness

- Simple-connectedness + vanishing curl \Longrightarrow existence of scalar potential.
- Topological condition: vanishing of "fundamental group" $\pi_{1}\left(\mathbb{R}^{3} \backslash\{0\}\right)=0$.
- Fundamental group encodes classes of loops (maps from the circle S^{1} to the space) deformable to one another.
- Also called 1-connectedness.

2-connectedness

- 2-connectedness: classes of maps from S^{2} to a space U which form a group $\pi_{2}(U)$.
- Intuitively, if U is 1 -connected, $\pi_{2}(U)=0$ means that any copy of S^{2} in U encloses only points of U.
- $\pi_{2}\left(\mathbb{R}^{3} \backslash\{0\}\right) \neq 0$; take any sphere around the origin.

Existence of vector potential

Proposition

$U \subset \mathbb{R}^{3}$ open 1 -connected, \mathbf{F} smooth vector field on U. If $\operatorname{div} \mathbf{F}=0$ and $\pi_{2}(U)=0$, then there exists a smooth vector field A on U such that $\mathbf{F}=\operatorname{curl} \mathbf{A}$.

Example

- Let $Z_{-}=\left\{(0,0, z) \in \mathbb{R}^{3} \mid z \leq 0\right\}$, $Z_{+}=\left\{(0,0, z) \in \mathbb{R}^{3} \mid z \geq 0\right\}$.
- The complements $U_{\mp}=\mathbb{R}^{3} \backslash Z_{ \pm}$are simply-connected and 2-connected $\Longrightarrow \exists$ vector potentials $\mathbf{A}_{ \pm}$for \mathbf{B} on $U_{ \pm}$.
- If $\mathbf{B}=\left(g / \rho^{2}\right) \mathbf{e}_{\rho}$, then we can calculate

$$
\mathbf{A}_{+}=\frac{g}{\rho \sin \phi}(1-\cos \phi) \mathbf{e}_{\theta}, \quad \mathbf{A}_{-}=-\frac{g}{\rho \sin \phi}(1+\cos \phi) \mathbf{e}_{\theta}
$$

Example

- Note that $U_{+} \cup U_{-}=\mathbb{R}^{3} \backslash\{0\}$.
- On the overlap $U_{+} \cap U_{-}=\mathbb{R}^{3} \backslash\{z$ axis $\}$, we have

$$
\mathbf{A}_{+}-\mathbf{A}_{-}=\frac{2 g}{\rho \sin \phi} \mathbf{e}_{\theta}=\nabla(2 g \theta)
$$

i.e. they differ by a gradient, which means

$$
\operatorname{curl} \mathbf{A}_{+}=\operatorname{curl} \mathbf{A}_{-},
$$

and so \mathbf{B} is well-defined on the overlap.

Physical significance of potentials

Consider now that, apart from the magnetic monopole at the origin of an inertial frame, we have an electric charge q free to move in space.

- Classically, the dynamics of the charge are determined by the Lorentz Force Law and Newton's second law.
- In quantum mechanics, the dynamical variable is the wavefunction and it is determined by Schrödinger's equation.

Physical significance of potentials

- In classical theory, the motion of the charge is unchanged by a transformation $\mathbf{A} \rightarrow \mathbf{A}+\nabla \Omega$ of the potential. Thus, it has no physical significance, only the field.
- In the quantum picture, Schrödinger's equation tells us that replacing $\mathbf{A} \rightarrow \mathbf{A}+\nabla \Omega$ transforms the wavefunction as

$$
\psi \rightarrow e^{i q \Omega} \psi
$$

changing only the amplitude (phase change) of the wavefunction.

Magnetic monopole

The Aharonov-Bohm effect

Bundles

- Lack of global potential introduces phase differences.
- How to keep track of the phase of a particle as it travels through space?

Bundles

- Associated to each point x in space, we have a circle (line segment with ends identified) of possible phase values.
- These circles ("fibers") are "bundled" together.
- A phase change corresponds to an action of S^{1} on each fiber.

Bundles

- Keeping track of the charge's phase is a "lifting problem": given the trajectory of the charge in space and a value of the phase at some given point, specify a curve through the total bundle space.
- The phase should vary continuously, so the fibers S^{1} need to be bundled together topologically.

Differential forms

Let $U \subset \mathbb{R}^{3}$ be an open set.

- O-forms on U are by definition real-valued functions on U.
- 1-forms on $U: f_{1} d x+f_{2} d y+f_{3} d z$
- 2-forms on $U: g_{1} d y \wedge d z+g_{2} d z \wedge d x+g_{3} d x \wedge d y$.
- Both correspond to a vector field on U with components $\left(f_{1}, f_{2}, f_{3}\right)$ and $\left(g_{1}, g_{2}, g_{3}\right)$, respectively.
- 3-forms on $U: f d x \wedge d y \wedge d z$.
- A p-form eats p vectors (skew-symmetric when exchange order) and spits out a number.

Differential forms

Let f be a 0 -form, ω a 1 -form and F a 2 -form.

- Exterior differentiation takes a p-form to a $(p+1)$-form.
- $f \rightarrow d f$ corresponds to ∇f.
- $\omega \rightarrow d \omega$ corresponds to curl ω
- $F \rightarrow d F$ corresponds to $\operatorname{div} F$.

Bundles over S^{2}

- The monopole field $\mathbf{B}=\left(g / \rho^{2}\right) \mathbf{e}_{\rho}$ has a corresponding 2-form F, and the vector potential can now be thought of as a 1 -form A such that $F=d A$.
- The vector potentials \mathbf{A}_{+}and \mathbf{A}_{-}correspond to the 1 -forms

$$
A_{+}=g(1-\cos \phi) d \theta, \quad A_{-}=-g(1+\cos \phi) d \theta
$$

- Independence of $\rho \Longrightarrow$ phase is constant in radial direction. Thus, only need to consider bundles over S^{2}.

The Hopf bundle

- Define S^{3} as the set of $\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}$ with $\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1$.
- Use polar coordinates in each entry: $z_{1}=\cos (\phi / 2) e^{i \xi_{1}}$, $z_{2}=\sin (\phi / 2) e^{i \xi_{2}}$ for $\phi \in[0, \pi]$ and $\xi_{1}, \xi_{2} \in \mathbb{R}$.
- Let $T \subset S^{3}$ be given by $\left|z_{1}\right|=\left|z_{2}\right|$, i.e. all the points $\left(z_{1}, z_{2}\right)=(1 / \sqrt{2})\left(e^{i \xi_{1}}, e^{i \xi_{2}}\right)$, clearly a torus (product of two circles).

The Hopf bundle

- Let $K_{1} \subset S^{3}$ be given by $\left|z_{1}\right| \leq\left|z_{2}\right|$, i.e. $\cos (\phi / 2) \leq \sin (\phi / 2) \Longrightarrow \pi / 4 \leq \phi / 2 \leq \pi / 2$.
- $\phi / 2=\pi / 4$ gives us $T ; \phi / 2=\pi / 2$ means $z_{1}=0$ and so we have $\{0\} \times S^{1}$, a circle.

The Hopf bundle

- Let $K_{2} \subset S^{3}$ be given by $\left|z_{1}\right| \geq\left|z_{2}\right|$. Similarly, we have $0 \leq \phi / 2 \leq \pi / 4$.
- Also a solid torus bounded by T, degenerating into a circle (here seen as a line through infinity).

The Hopf bundle

- Action of $U(1)$ (more traditional in gauge theory instead of S^{1}) on S^{3} :

$$
\left(z_{1}, z_{2}\right) \cdot g=\left(z_{1} g, z_{2} g\right)
$$

- Each orbit of the action corresponds to a point in S^{2} : if $\left(z_{1}, z_{2}\right) \sim\left(w_{1}, w_{2}\right)$, then $z_{1} / z_{2}=w_{1} / w_{2}$, so it suffices to take one point of the orbit and take its ratio, which is a complex number (possibly ∞).

The Hopf bundle

Consider the map $\pi: S^{3} \rightarrow S^{2}$ given by

$$
\pi\left(z_{1}, z_{2}\right)=\varphi_{S}^{-1}\left(\frac{z_{1}}{z_{2}}\right)
$$

where φ_{S} is stereographic projection from the north pole onto the extended complex plane.

The Hopf bundle

- In terms of the parameters ϕ, ξ_{1}, ξ_{2} given by
$\left(z_{1}, z_{2}\right)=\left(\cos (\phi / 2) e^{i \xi_{1}}, \sin (\phi / 2) e^{i \xi_{2}}\right)$, we can write

$$
\pi\left(\phi, \xi_{1}, \xi_{2}\right)=(\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi)
$$

where $\theta=\xi_{1}-\xi_{2}$.

- π maps S^{3} onto S^{2} and for any $x \in S^{2}$, the fiber $\pi^{-1}(x)$ is the orbit of any $\left(z_{1}, z_{2}\right)$ above x, i.e. such that $\pi\left(z_{1}, z_{2}\right)=x$.

The Hopf bundle

Conclusion:

- $\pi: S^{3} \rightarrow S^{2}$ identifies each orbit in S^{3} (a copy of S^{1}) with a point in S^{2}.

Definition

Let M be a manifold (e.g. S^{2}) and G a Lie group (e.g. $U(1)$). A principal bundle over M (the base space) with structure group G consists of

- A manifold P (e.g. S^{3}), called total space,
- A map $\pi: P \rightarrow M$, called projection,
- An action of G on P.

Definition

Moreover, we require that
(1) The action of G on P leave the fibers invariant, i.e. $\pi(p \cdot g)=\pi(p)$.
(2) (Local triviality) For each $x \in M$ there exists an open set $U \ni x$ and a diffeo $\psi: \pi^{-1}(U) \rightarrow U \times G$ of the form $\Psi(p)=(\pi(p), \psi(p))$, where $\psi: \pi^{-1}(U) \rightarrow G$ satisfies

$$
\psi(p \cdot g)=\psi(p) g \text { for all } p \in \pi^{-1}(U) \text { and } g \in G
$$

Local triviality

- The Hopf map $\pi: S^{3} \rightarrow S^{2}$ is similar to the natural projection $S^{2} \times U(1) \rightarrow S^{2}$.
- Both slice the total space into a disjoint union of circles hovering above each point of S^{2}.
- The fibers are glued together differently when viewed globally, but can "untwist" them locally so as to be the same:

Local triviality of the Hopf bundle

- Cover the sphere with $U_{S} \cup U_{N}=S^{2}$.
- Can trivialize the Hopf bundle $\pi: S^{3} \rightarrow S^{2}$ on each open set of the cover

$$
\begin{aligned}
\Psi_{S}: \pi^{-1}\left(U_{S}\right) & \rightarrow S^{2} \times U(1) \\
\left(z_{1}, z_{2}\right) & \mapsto\left(\pi\left(z_{1}, z_{2}\right), \frac{z_{2}}{\left|z_{2}\right|}\right), \\
\Psi_{N}: \pi^{-1}\left(U_{N}\right) & \rightarrow S^{2} \times U(1) \\
\left(z_{1}, z_{2}\right) & \mapsto\left(\pi\left(z_{1}, z_{2}\right), \frac{z_{1}}{\left|z_{1}\right|}\right) .
\end{aligned}
$$

Transition functions for the Hopf bundle

- If $x \in U_{S} \cap U_{N}$, then Ψ_{S} and Ψ_{N} identify $\pi^{-1}(x)$ with $U(1)$ differently. Let $\psi_{S, x}, \psi_{N, x}: \pi^{-1}(x) \rightarrow U(1)$ be the restriction to the fiber. We have

$$
\begin{aligned}
& \psi_{S, x} \circ \psi_{N, x}^{-1}(g)=\left(\frac{z_{2} /\left|z_{2}\right|}{z_{1} /\left|z_{1}\right|}\right) g \\
& \psi_{N, x} \circ \psi_{S, x}^{-1}(g)=\left(\frac{z_{1} /\left|z_{1}\right|}{z_{2} /\left|z_{2}\right|}\right) g
\end{aligned}
$$

for any $\left(z_{1}, z_{2}\right) \in \pi^{-1}(x)$.

Transition functions for the Hopf bundle

- Get functions

$$
g_{S N}: U_{S} \cap U_{N} \rightarrow U(1), \quad g_{N S}: U_{S} \cap U_{N} \rightarrow U(1)
$$

called transition functions, defined by

$$
\psi_{S, x} \circ \psi_{N, x}^{-1}(g)=g_{S N}(x) g, \quad \psi_{N, x} \circ \psi_{S, x}^{-1}(g)=g_{N S}(x) g
$$

- In terms of the parameters ϕ, ξ_{1}, ξ_{2}, with $\theta=\xi_{1}-\xi_{2}$, we have
$g_{S N}(\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi)=e^{-i \theta}$,
$g_{N S}(\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi)=e^{i \theta}$.

Connections on principal bundles

Consider again $A_{+}=g(1-\cos \phi) d \theta, A_{-}=-g(1+\cos \phi) d \theta$ for $g=1 / 2$ (physical reasons).

- Correspond to potential 1-forms on $U_{S}, U_{N} \subset S^{2}$.

$$
A_{N}=\frac{1}{2}(1-\cos \phi) d \theta, \quad A_{S}=\frac{1}{2}(1+\cos \phi) d \theta
$$

- $A_{N}=A_{S}+d \theta$ on $U_{S} \cap U_{N}$.
- Replace $A_{N} \rightarrow-i A_{N}$ and $A_{S} \rightarrow-i A_{S}$, can write above equation as

$$
\begin{aligned}
A_{N} & =e^{i \theta} A_{S} e^{-i \theta}+e^{i \theta} d e^{-i \theta} \\
& =g_{S N}^{-1} A_{S} g_{S N}+g_{S N}^{-1} d g_{S N}
\end{aligned}
$$

Lie algebra-valued 1-forms

- Locally defined 1-forms A_{1}, A_{2} cannot be spliced together into a globally-defined form unless they agree on the intersection.
- Lie algebra-valued 1 -forms can, if they satisfy the consistency condition

$$
A_{2}=g_{12}^{-1} A_{1} g_{12}+g_{12}^{-1} d g_{12}
$$

be spliced together into a globally-defined Lie algebra-valued form on the principal bundle.

Wrapping up

- Lie algebra of $U(1)$ is $T_{1} U(1) \cong \operatorname{Im} \mathbb{C}$. Rotating the circle identifies $T_{\theta} U(1) \cong T_{1} U(1) \cong \operatorname{Im} \mathbb{C}$.
- Each $p \in S^{3}$ has through it a $U(1)$ fiber \Longrightarrow each $T_{p} S^{3}$ has $T_{1} U(1) \cong \operatorname{Im} \mathbb{C}$ as subspace.
- A Lie algebra-valued 1 -form ω on S^{3} is a correspondence $p \mapsto \omega_{p}: T_{p} S^{3} \rightarrow \operatorname{Im} \mathbb{C} \subset T_{p} S^{3}$ (like a projection).
- The collection ker ω_{p} as p varies in S^{3} determine a 2-dim. distribution and the derivative of $\pi: S^{3} \rightarrow S^{2}$ restricts to an isomorphism ker $\omega_{p} \cong T_{\pi(p)} S^{2}$ for each p.

Wrapping up

- Each velocity vector along a curve in S^{2} lifts to a unique vector in the tangent space of S^{3} via the isomorphisms.
- Given an initial condition, i.e. an initial phase, the lifted vectors can be fitted with a unique integral curve lifting the original curve in S^{2}.

Nomenclature

- These Lie algebra-valued 1-forms ω are called connections on the principal bundle.
- The exterior derivative $\Omega=d \omega$ is called the curvature of the connection.
- In the Hopf bundle, the connection replaces the potential and its curvature corresponds to the field of the magnetic monopole.

Instantons

- Analogous Hopf bundle replacing \mathbb{C} by quaternions $\mathbb{H} \cong \mathbb{R}^{4}$.
- $S^{7} \subset \mathbb{H}^{2}$ as pairs of quaternions $\left(q_{1}, q_{2}\right)$ with $\left|q_{1}\right|^{2}+\left|q_{2}\right|^{2}=1$.
- S^{3} can be identified with unit quaternions, so there is action on S^{7}.
- Identify orbits of this action with points in S^{4} via stereographic projection.
- Principal bundle over S^{4} with structure group $S U(2) \cong S^{3}$.

Instantons

- Models particles with isotopic spin.
- Interesting connections satisfy the Yang-Mills equations (restricts to Maxwell's equations for $G=U(1)$):

$$
\begin{aligned}
d_{A} F_{A} & =0 \\
d_{A} * F_{A} & =0
\end{aligned}
$$

with the first being an identity (Bianchi's identity; holds for every curvature 2 -form).

(Anti-)Self-duality

- Hodge star: operator on oriented Riemannian manifolds. Spits out the remaining form for the volume form with sign respecting orientation:

$$
\begin{aligned}
*\left(d x_{1} \wedge d x_{2}\right) & =d x_{3} \wedge d x_{4} \\
*\left(d x_{1} \wedge d x_{4} \wedge d x_{3}\right) & =-d x_{2} .
\end{aligned}
$$

- In dimension 4, * takes 2-forms into 2-forms and $*^{2}=$ Id \Longrightarrow eigenvalues ± 1. We can then decompose the space of 2 -forms as

$$
\Omega^{2}=\Omega_{+} \oplus \Omega_{-},
$$

self-dual and anti-self-dual parts.

(Anti-)Self-duality

- If a curvature 2-form F is SD or ASD, i.e. $* F= \pm F$, then Yang-Mills equation $d_{A} * F_{A}=0$ follows trivially from Bianchi's identity $d_{A} F_{A}=0$.
- (Anti-)-self-dual solutions to the Yang-Mills equations are called instantons.
- Basic instanton is given by

$$
A(x)=\operatorname{lm}\left(\frac{x d \bar{x}}{1+|x|^{2}}\right)
$$

(Lie algebra of $S U(2)$ can be identified with imaginary quaternions).

Vector bundles

- $\pi: E \rightarrow M$ projection from total space to base space.
- Each fiber $E_{X}=\pi^{-1}(x)$ is now a vector space.
- Trivializations are linear when restricted to each fiber.
- Operations on vector spaces carry on to bundles (fiberwise): $E^{*}, E \oplus F, E \otimes F, \Lambda^{r} E, E / F$, etc.
- Arise from principal bundles by choosing a representation of the structure group.

Idea

- Any conformal transformation of S^{4} will give a new instanton, since the Hodge star is conformally invariant.

Problem: exhibit all instantons.

- The twistor correspondence gives a 1-1 correspondence between instanton bundles over S^{4} and holomorphic bundles over \mathbb{P}^{3}, called the twistor space.
- The ADHM construction is a recipe to build such holomorphic bundles over \mathbb{P}^{3} and it can be proven that it exhausts all instantons.

Complex manifolds

- Transition functions between open sets of \mathbb{C}^{n} are holomorphic.
- Introduce complex structure on TM, i.e. J : TM \rightarrow TM with $J^{2}=-1$.
- Action of \mathbb{C} on each tangent space: $i \cdot v:=J(v)$.
- Complexify each tangent space $\Longrightarrow J$ has eigenvalues $\pm i$.
- $T M=T^{1,0} M \oplus T^{0,1} M$ splits into holomorphic and anti-holomorphic parts.
- Decomposition carries over to $T^{*} M$ and its exterior powers: (p, q) forms.

Holomorphic bundles

- Defined over complex manifolds; admits holomorphic trivialization maps.
- Complex vector spaces as fibers.

Proposition

Given a hermitian metric on each fiber, there is a unique connection such that its Lie algebra-valued 1-form A satisfies
(1) $A^{*}=-A$ under unitary trivializations,
(2) A is of type $(1,0)$ under holomorphic trivializations, called the Chern connection.

Twistor fibration

- In complex projective space \mathbb{P}^{3}, every $\ell \in \mathbb{P}^{3}$ is a (complex) line passing through the origin in $\mathbb{C}^{4} \cong \mathbb{H}^{2}$.
- Associate to each $\ell \in \mathbb{P}^{3}$ the quaternionic line $\mathbb{H} \ell$ passing through the origin in \mathbb{H}^{2}, which gives us a map $\pi: \mathbb{P}^{3} \rightarrow \mathbb{H} \mathbb{P}^{1}$.
- Each quaternionic line $L \in \mathbb{H P} \mathbb{P}^{1}$ is a copy of \mathbb{C}^{2}, and thus the fiber $\pi^{-1}(L)$ is the set of lines through the origin in this \mathbb{C}^{2}, i.e. $\pi^{-1}(L) \cong \mathbb{P}^{1}$.
- Identifying $S^{4} \cong \mathbb{H} \mathbb{P}^{1}$, we have a map $\pi: \mathbb{P}^{3} \rightarrow S^{4}$ whose fibers are $\pi^{-1}(L) \cong \mathbb{P}^{1}$. This map is called the twistor fibration.

Twistor fibration

- Can identify $\mathbb{C}^{4} \cong \mathbb{H}^{2}$ via

$$
\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \mapsto\left(z_{1}+z_{2} j, z_{3}+z_{4} j\right) .
$$

- $\left(z_{1}+z_{2} j, z_{3}+z_{4} j\right) \in \mathbb{H}^{2}$ left multiplied by j corresponds to $\left(-\bar{z}_{2}, \bar{z}_{1},-\bar{z}_{4}, \bar{z}_{3}\right) \in \mathbb{C}^{4}$.
- Have map $\sigma: \mathbb{P}^{3} \rightarrow \mathbb{P}^{3}$ given by

$$
\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \mapsto\left(-\overline{z_{2}}, \overline{z_{1}},-\overline{z_{4}}, \overline{z_{3}}\right)
$$

in homogeneous coordinates.

- σ has invariant lines \mathbb{P}^{1} which are precisely the fibers of the twistor fibration.

ASD and complex structures

Lemma

A 2-form on S^{4} is ASD if and only if its lift (pullback via π) to twistor space is of type $(1,1)$.

Applying this result to the curvature 2-form:

Proposition

A $U(n)$-bundle with a metric-compatible connection on S^{4} has ASD curvature iff the lifted bundle on twistor space has curvature of type $(1,1)$.

Instantons and holomorphic bundles

- The lifted bundle has a natural holomorphic structure: let $E \rightarrow X$ be a Hermitian vector bundle over a complex manifold, equipped with a connection ∇ such that $F_{\nabla} \in \Omega^{1,1}(E)$.

Proposition

E has a natural holomorphic structure such that ∇ is the Chern connection of E.

- As a pullback bundle, each fiber $\tilde{E}_{z}=E_{\pi(z)} \Longrightarrow$ topologically trivial on the \mathbb{P}^{1} fibers, can show they are holomorphically trivial on the fibers.

Instantons and holomorphic bundles

Theorem

Let $E \rightarrow S^{4}$ be an Hermitian vector bundle with an ASD connection and let $F=\pi^{*} E$ be the lifted bundle, where $\pi: \mathbb{P}^{3} \rightarrow S^{4}$ is the twistor fibration. Then
(1) F is holomorphic.
(2) F restricts to a holomorphic trivial bundle over each fiber $P_{x}:=\pi^{-1}(x)$.
(3) There is a holomorphic isomorphism $\tau: \sigma^{*} \bar{F} \rightarrow F^{*}$ such that τ induces an Hermitian inner product on $H^{0}\left(P_{x}, F\right)$.
Conversely, every such bundle $F \rightarrow \mathbb{P}^{3}$ is given by $F=\pi^{*} E$ for some bundle $E \rightarrow S^{4}$ with ASD connection.

ADHM construction

- There is a non-degenerate skew-form on \mathbb{C}^{4} defined by $\omega(u, j v)=\langle u, v\rangle$.
- Let $L_{z} \subset \mathbb{C}^{4}$ be the line corresponding to the point $[z] \in \mathbb{P}^{3}$.
- Consider the complement wrt this skew-form L_{z}^{ω} which has dimension 3.
- The collection of $E_{z}=L_{z}^{\omega} / L_{z}$ with [z] varying over \mathbb{P}^{3} defines a vector bundle E over \mathbb{P}^{3} with fiber \mathbb{C}^{2}.

ADHM construction

- E is holomorphic because it is the quotient of two holomorphic vector bundles.
- The definition of the skew-form ω implies that $L_{z}^{\omega}=L_{j z}^{\perp}$. Have orthogonal decomposition

$$
\mathbb{C}^{4}=L_{z} \oplus R_{x} \oplus L_{j z}
$$

with $R_{x}=L_{z}^{\omega} \cap L_{j z}^{\omega}$ depending only on the fiber, i.e. on the point of $S^{4} \Longrightarrow E$ is trivial on the fibers of the twistor fibration.

- Corresponds to $S U(2)$-instanton bundle via twistor correspondence.

References

- Gregory L. Naber. Topology, Geometry and Gauge fields: Foundations. Springer, 2010.
- M. F. Atiyah. Geometry of Yang-Mills fields. Pisa, 1979.
- M. F. Atiyah, N. J. Hitchin and I. M. Singer. Self-duality in four-dimensional Riemannian geometry. 1978.

