The twistor transform and the ADHM construction

Augusto Pereira

November 27, 2018

1/56

Magnetic monopole

- Introduction
- The Hopf bundle
- Principal bundles
- 2 Twistor correspondence
- 3 ADHM construction

4 References

Introduction The Hopf bundle Principal bundles

Spoilers

- Magnetic monopole as a prototype of a gauge theory with group *U*(1), seen as the Hopf fibration.
- Generalize it to SU(2) gauge theory, habitat of instantons.
- ADHM construction of instantons via twistor correspondence.

Introduction The Hopf bundle Principal bundles

Electric charge

A point electric charge q located at the origin of an inertial frame determines an electric field **E** given by Coulomb's Law (written here in spherical coordinates ρ , ϕ , θ):

$$\mathsf{E} = rac{q}{
ho^2} \mathsf{e}_{
ho}$$

The magnetic field associated to the charge q, in this frame, is given by **B** = 0.

Introduction The Hopf bundle Principal bundles

5/56

Maxwell's equations

 ${\boldsymbol E}$ and ${\boldsymbol B}$ satisfy the static, source-free Maxwell equations on ${\mathbb R}^3\setminus\{0\}$:

 $div \mathbf{E} = 0$ $div \mathbf{B} = 0$ $curl \mathbf{E} = 0$ $curl \mathbf{B} = 0.$

Introduction The Hopf bundle Principal bundles

Magnetic charge

Suppose that Coloumb's Law also holds for a "magnetic point charge" (which has never been observed in nature). Thus we would have, by analogy,

$$oldsymbol{\mathsf{E}}=oldsymbol{0}\ oldsymbol{\mathsf{B}}=rac{oldsymbol{g}}{
ho^2}oldsymbol{\mathsf{e}}_
ho,$$

where the constant g is the strength ("magnetic charge") of this magnetic monopole.

Introduction The Hopf bundle Principal bundles

Maxwell's equations

 E and B clearly satisfy the static, source-free Maxwell equations on ℝ³ \ {0}. In particular,

$$\label{eq:basic} \begin{split} &\text{div}\, \boldsymbol{B} = 0 \text{ on } \mathbb{R}^3 \setminus \{0\},\\ &\text{curl}\, \boldsymbol{B} = 0 \text{ on } \mathbb{R}^3 \setminus \{0\}. \end{split} \tag{1}$$

- (1) + simple-connectedness of ℝ³ \ {0} ⇒ existence of scalar potential for B.
- Want: vector potential for B: vector field A such that B = curl A for physical reasons.

Introduction The Hopf bundle Principal bundles

Potentials

- div B = 0 is necessary for the existence of a vector potential (div curl = 0), but not sufficient.
- Stokes' theorem tells us that there is no vector potential for **B** on $\mathbb{R}^3 \setminus \{0\}$.

Introduction The Hopf bundle Principal bundles

Simple-connectedness

- Simple-connectedness + vanishing curl ⇒ existence of scalar potential.
- Topological condition: vanishing of "fundamental group" π₁(ℝ³ \ {0}) = 0.
- Fundamental group encodes classes of loops (maps from the circle *S*¹ to the space) deformable to one another.
- Also called 1-connectedness.

Introduction The Hopf bundle Principal bundles

2-connectedness

- 2-connectedness: classes of maps from S² to a space U which form a group π₂(U).
- Intuitively, if *U* is 1-connected, $\pi_2(U) = 0$ means that any copy of S^2 in *U* encloses only points of *U*.
- $\pi_2(\mathbb{R}^3 \setminus \{0\}) \neq 0$; take any sphere around the origin.

Introduction The Hopf bundle Principal bundles

Existence of vector potential

Proposition

 $U \subset \mathbb{R}^3$ open 1-connected, **F** smooth vector field on *U*. If div **F** = 0 and $\pi_2(U) = 0$, then there exists a smooth vector field **A** on *U* such that **F** = curl **A**.

Introduction The Hopf bundle Principal bundles

Example

- Let $Z_{-} = \{(0,0,z) \in \mathbb{R}^3 \mid z \le 0\},\ Z_{+} = \{(0,0,z) \in \mathbb{R}^3 \mid z \ge 0\}.$
- The complements U_∓ = ℝ³ \ Z_± are simply-connected and 2-connected ⇒ ∃ vector potentials A_± for B on U_±.
- If ${f B}=(g/
 ho^2){f e}_
 ho,$ then we can calculate

$$\mathbf{A}_{+} = rac{g}{
ho\sin\phi} (1 - \cos\phi) \mathbf{e}_{ heta}, \qquad \mathbf{A}_{-} = -rac{g}{
ho\sin\phi} (1 + \cos\phi) \mathbf{e}_{ heta}.$$

< 日 > < 同 > < 回 > < 回 > < □ > <

12/56

Introduction The Hopf bundle Principal bundles

Example

- Note that $U_+ \cup U_- = \mathbb{R}^3 \setminus \{0\}$.
- On the overlap $U_+ \cap U_- = \mathbb{R}^3 \setminus \{z \text{ axis}\}$, we have

$$\mathbf{A}_{+}-\mathbf{A}_{-}=rac{2g}{
ho\sin\phi}\mathbf{e}_{ heta}=
abla(2g heta),$$

i.e. they differ by a gradient, which means

$$\operatorname{curl} \mathbf{A}_+ = \operatorname{curl} \mathbf{A}_-,$$

and so **B** is well-defined on the overlap.

Introduction The Hopf bundle Principal bundles

Physical significance of potentials

Consider now that, apart from the magnetic monopole at the origin of an inertial frame, we have an electric charge q free to move in space.

- Classically, the dynamics of the charge are determined by the Lorentz Force Law and Newton's second law.
- In quantum mechanics, the dynamical variable is the wavefunction and it is determined by Schrödinger's equation.

Introduction The Hopf bundle Principal bundles

Physical significance of potentials

- In classical theory, the motion of the charge is unchanged by a transformation A → A + ∇Ω of the potential. Thus, it has no physical significance, only the field.
- In the quantum picture, Schrödinger's equation tells us that replacing $\mathbf{A} \rightarrow \mathbf{A} + \nabla \Omega$ transforms the wavefunction as

$$\psi
ightarrow {\it e}^{\it iq\Omega} \psi,$$

changing only the amplitude (phase change) of the wavefunction.

Introduction The Hopf bundle Principal bundles

The Aharonov-Bohm effect

Introduction The Hopf bundle Principal bundles

Bundles

- Lack of global potential introduces phase differences.
- How to keep track of the phase of a particle as it travels through space?

Introduction The Hopf bundle Principal bundles

Bundles

- Associated to each point x in space, we have a circle (line segment with ends identified) of possible phase values.
- These circles ("fibers") are "bundled" together.
- A phase change corresponds to an action of *S*¹ on each fiber.

Introduction The Hopf bundle Principal bundles

Bundles

- Keeping track of the charge's phase is a "lifting problem": given the trajectory of the charge in space and a value of the phase at some given point, specify a curve through the total bundle space.
- The phase should vary continuously, so the fibers S¹ need to be bundled together topologically.

Introduction The Hopf bundle Principal bundles

Differential forms

Let $U \subset \mathbb{R}^3$ be an open set.

- 0-forms on *U* are by definition real-valued functions on *U*.
- 1-forms on U: $f_1 dx + f_2 dy + f_3 dz$
- 2-forms on $U: g_1 dy \wedge dz + g_2 dz \wedge dx + g_3 dx \wedge dy$.
- Both correspond to a vector field on U with components (f_1, f_2, f_3) and (g_1, g_2, g_3) , respectively.
- 3-forms on *U*: $fdx \wedge dy \wedge dz$.
- A *p*-form eats *p* vectors (skew-symmetric when exchange order) and spits out a number.

Introduction The Hopf bundle Principal bundles

Differential forms

Let *f* be a 0-form, ω a 1-form and *F* a 2-form.

- Exterior differentiation takes a p-form to a (p + 1)-form.
- $f \rightarrow df$ corresponds to ∇f .
- $\omega \rightarrow d\omega$ corresponds to curl ω
- $F \rightarrow dF$ corresponds to div *F*.

Introduction The Hopf bundle Principal bundles

Bundles over S²

- The monopole field **B** = (g/ρ²)**e**_ρ has a corresponding 2-form *F*, and the vector potential can now be thought of as a 1-form *A* such that *F* = d*A*.
- The vector potentials A₊ and A₋ correspond to the 1-forms

$$A_+ = g(1 - \cos \phi) d\theta, \qquad A_- = -g(1 + \cos \phi) d\theta.$$

Independence of ρ ⇒ phase is constant in radial direction. Thus, only need to consider bundles over S².

Introduction The Hopf bundle Principal bundles

The Hopf bundle

- Define S^3 as the set of $(z_1, z_2) \in \mathbb{C}^2$ with $|z_1|^2 + |z_2|^2 = 1$.
- Use polar coordinates in each entry: $z_1 = \cos(\phi/2)e^{i\xi_1}$, $z_2 = \sin(\phi/2)e^{i\xi_2}$ for $\phi \in [0, \pi]$ and $\xi_1, \xi_2 \in \mathbb{R}$.
- Let $T \subset S^3$ be given by $|z_1| = |z_2|$, i.e. all the points $(z_1, z_2) = (1/\sqrt{2})(e^{i\xi_1}, e^{i\xi_2})$, clearly a torus (product of two circles).

Introduction The Hopf bundle Principal bundles

The Hopf bundle

- Let $K_1 \subset S^3$ be given by $|z_1| \leq |z_2|$, i.e. $\cos(\phi/2) \leq \sin(\phi/2) \implies \pi/4 \leq \phi/2 \leq \pi/2.$
- φ/2 = π/4 gives us T; φ/2 = π/2 means z₁ = 0 and so we have {0} × S¹, a circle.

Introduction The Hopf bundle Principal bundles

The Hopf bundle

- Let $K_2 \subset S^3$ be given by $|z_1| \ge |z_2|$. Similarly, we have $0 \le \phi/2 \le \pi/4$.
- Also a solid torus bounded by *T*, degenerating into a circle (here seen as a line through infinity).

Introduction The Hopf bundle Principal bundles

The Hopf bundle

Action of U(1) (more traditional in gauge theory instead of S¹) on S³:

$$(z_1,z_2)\cdot g=(z_1g,z_2g).$$

Each orbit of the action corresponds to a point in S²: if (z₁, z₂) ~ (w₁, w₂), then z₁/z₂ = w₁/w₂, so it suffices to take one point of the orbit and take its ratio, which is a complex number (possibly ∞).

Introduction The Hopf bundle Principal bundles

The Hopf bundle

Consider the map $\pi: S^3 \to S^2$ given by

$$\pi(z_1, z_2) = \varphi_{\mathcal{S}}^{-1}\left(\frac{z_1}{z_2}\right),$$

where φ_S is stereographic projection from the north pole onto the extended complex plane.

27/56

Introduction The Hopf bundle Principal bundles

The Hopf bundle

• In terms of the parameters ϕ , ξ_1 , ξ_2 given by $(z_1, z_2) = (\cos(\phi/2)e^{i\xi_1}, \sin(\phi/2)e^{i\xi_2})$, we can write

$$\pi(\phi,\xi_1,\xi_2) = (\sin\phi\cos\theta,\sin\phi\sin\theta,\cos\phi),$$

where $\theta = \xi_1 - \xi_2$.

• π maps S^3 onto S^2 and for any $x \in S^2$, the fiber $\pi^{-1}(x)$ is the orbit of any (z_1, z_2) above x, i.e. such that $\pi(z_1, z_2) = x$.

Introduction The Hopf bundle Principal bundles

The Hopf bundle

Conclusion:

π : S³ → S² identifies each orbit in S³ (a copy of S¹) with a point in S².

Introduction The Hopf bundle Principal bundles

Definition

Let *M* be a manifold (e.g. S^2) and *G* a Lie group (e.g. U(1)). A *principal bundle* over *M* (the *base space*) with *structure group G* consists of

- A manifold P (e.g. S³), called total space,
- A map $\pi: P \rightarrow M$, called *projection*,
- An action of G on P.

Introduction The Hopf bundle Principal bundles

Definition

Moreover, we require that

- The action of *G* on *P* leave the fibers invariant, i.e. $\pi(p \cdot g) = \pi(p)$.
- 2 (Local triviality) For each $x \in M$ there exists an open set $U \ni x$ and a diffeo $\Psi : \pi^{-1}(U) \to U \times G$ of the form $\Psi(p) = (\pi(p), \psi(p))$, where $\psi : \pi^{-1}(U) \to G$ satisfies

$$\psi(p \cdot g) = \psi(p)g$$
 for all $p \in \pi^{-1}(U)$ and $g \in G$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction The Hopf bundle Principal bundles

Local triviality

- The Hopf map π : S³ → S² is similar to the natural projection S² × U(1) → S².
- Both slice the total space into a disjoint union of circles hovering above each point of *S*².
- The fibers are glued together differently when viewed globally, but can "untwist" them locally so as to be the same:

Introduction The Hopf bundle Principal bundles

Local triviality of the Hopf bundle

- Cover the sphere with $U_S \cup U_N = S^2$.
- Can trivialize the Hopf bundle π : S³ → S² on each open set of the cover

$$\begin{split} \Psi_{S} &: \pi^{-1}(U_{S}) \rightarrow S^{2} \times U(1) \\ & \left(z_{1}, z_{2} \right) \mapsto \left(\pi(z_{1}, z_{2}), \frac{z_{2}}{|z_{2}|} \right), \\ \Psi_{N} &: \pi^{-1}(U_{N}) \rightarrow S^{2} \times U(1) \\ & \left(z_{1}, z_{2} \right) \mapsto \left(\pi(z_{1}, z_{2}), \frac{z_{1}}{|z_{1}|} \right). \end{split}$$

Introduction The Hopf bundle Principal bundles

Transition functions for the Hopf bundle

• If $x \in U_S \cap U_N$, then Ψ_S and Ψ_N identify $\pi^{-1}(x)$ with U(1) differently. Let $\psi_{S,x}, \psi_{N,x} : \pi^{-1}(x) \to U(1)$ be the restriction to the fiber. We have

$$\psi_{S,x} \circ \psi_{N,x}^{-1}(g) = \left(\frac{z_2/|z_2|}{z_1/|z_1|}\right)g,$$

$$\psi_{N,x} \circ \psi_{S,x}^{-1}(g) = \left(\frac{z_1/|z_1|}{z_2/|z_2|}\right)g,$$

for any $(z_1, z_2) \in \pi^{-1}(x)$.

Introduction The Hopf bundle Principal bundles

Transition functions for the Hopf bundle

Get functions

$$g_{SN}: U_S \cap U_N \to U(1), \qquad g_{NS}: U_S \cap U_N \to U(1)$$

called transition functions, defined by

$$\psi_{\mathcal{S},x}\circ\psi_{\mathcal{N},x}^{-1}(g)=g_{\mathcal{S}\mathcal{N}}(x)g,\qquad \psi_{\mathcal{N},x}\circ\psi_{\mathcal{S},x}^{-1}(g)=g_{\mathcal{N}\mathcal{S}}(x)g.$$

In terms of the parameters φ, ξ₁, ξ₂, with θ = ξ₁ − ξ₂, we have

$$g_{SN}(\sin\phi\cos\theta,\sin\phi\sin\theta,\cos\phi) = e^{-i\theta},$$

$$g_{NS}(\sin\phi\cos\theta,\sin\phi\sin\theta,\cos\phi) = e^{i\theta}.$$

Introduction The Hopf bundle Principal bundles

Connections on principal bundles

Consider again $A_+ = g(1 - \cos \phi)d\theta$, $A_- = -g(1 + \cos \phi)d\theta$ for g = 1/2 (physical reasons).

• Correspond to potential 1-forms on $U_S, U_N \subset S^2$.

$$A_N = rac{1}{2}(1-\cos\phi)d heta, \qquad A_S = rac{1}{2}(1+\cos\phi)d heta.$$

• $A_N = A_S + d\theta$ on $U_S \cap U_N$.

• Replace $A_N \rightarrow -iA_N$ and $A_S \rightarrow -iA_S$, can write above equation as

$$egin{aligned} \mathcal{A}_{\mathcal{N}} &= e^{i heta}\mathcal{A}_{\mathcal{S}}e^{-i heta} + e^{i heta}de^{-i heta} \ &= g_{\mathcal{S}\mathcal{N}}^{-1}\mathcal{A}_{\mathcal{S}}g_{\mathcal{S}\mathcal{N}} + g_{\mathcal{S}\mathcal{N}}^{-1}dg_{\mathcal{S}\mathcal{N}}, \end{aligned}$$

Introduction The Hopf bundle Principal bundles

Lie algebra-valued 1-forms

- Locally defined 1-forms A₁, A₂ cannot be spliced together into a globally-defined form unless they agree on the intersection.
- Lie algebra-valued 1-forms can, if they satisfy the consistency condition

$$A_2 = g_{12}^{-1} A_1 g_{12} + g_{12}^{-1} dg_{12},$$

be spliced together into a globally-defined Lie algebra-valued form *on the principal bundle*.

Introduction The Hopf bundle Principal bundles

Wrapping up

- Lie algebra of U(1) is T₁U(1) ≃ Im C. Rotating the circle identifies T_θU(1) ≃ T₁U(1) ≃ Im C.
- Each $p \in S^3$ has through it a U(1) fiber \implies each T_pS^3 has $T_1U(1) \cong \text{Im } \mathbb{C}$ as subspace.
- A Lie algebra-valued 1-form ω on S^3 is a correspondence $p \mapsto \omega_p : T_p S^3 \to \text{Im } \mathbb{C} \subset T_p S^3$ (like a projection).
- The collection ker ω_p as p varies in S³ determine a 2-dim. distribution and the derivative of π : S³ → S² restricts to an isomorphism ker ω_p ≅ T_{π(p)}S² for each p.

Introduction The Hopf bundle Principal bundles

Wrapping up

- Each velocity vector along a curve in S² lifts to a unique vector in the tangent space of S³ via the isomorphisms.
- Given an initial condition, i.e. an initial phase, the lifted vectors can be fitted with a unique integral curve lifting the original curve in S².

Introduction The Hopf bundle Principal bundles

Nomenclature

- These Lie algebra-valued 1-forms ω are called *connections* on the principal bundle.
- The exterior derivative Ω = dω is called the *curvature* of the connection.
- In the Hopf bundle, the connection replaces the potential and its curvature corresponds to the field of the magnetic monopole.

Introduction The Hopf bundle Principal bundles

Instantons

- Analogous Hopf bundle replacing \mathbb{C} by *quaternions* $\mathbb{H} \cong \mathbb{R}^4$.
- $S^7 \subset \mathbb{H}^2$ as pairs of quaternions (q_1, q_2) with $|q_1|^2 + |q_2|^2 = 1$.
- *S*³ can be identified with unit quaternions, so there is action on *S*⁷.
- Identify orbits of this action with points in S⁴ via stereographic projection.
- Principal bundle over S^4 with structure group $SU(2) \cong S^3$.

Introduction The Hopf bundle Principal bundles

Instantons

- Models particles with *isotopic spin*.
- Interesting connections satisfy the *Yang-Mills* equations (restricts to Maxwell's equations for G = U(1)):

1

$$d_A F_A = 0$$

 $d_A * F_A = 0$,

with the first being an identity (Bianchi's identity; holds for every curvature 2-form).

Introduction The Hopf bundle Principal bundles

(Anti-)Self-duality

 Hodge star: operator on oriented Riemannian manifolds. Spits out the remaining form for the volume form with sign respecting orientation:

$$*(dx_1 \wedge dx_2) = dx_3 \wedge dx_4$$
$$*(dx_1 \wedge dx_4 \wedge dx_3) = -dx_2.$$

In dimension 4, * takes 2-forms into 2-forms and *² = Id ⇒ eigenvalues ±1. We can then decompose the space of 2-forms as

$$\Omega^2 = \Omega_+ \oplus \Omega_-,$$

self-dual and anti-self-dual parts.

Introduction The Hopf bundle Principal bundles

(Anti-)Self-duality

- If a curvature 2-form *F* is SD or ASD, i.e. $*F = \pm F$, then Yang-Mills equation $d_A * F_A = 0$ follows trivially from Bianchi's identity $d_A F_A = 0$.
- (Anti-)-self-dual solutions to the Yang-Mills equations are called *instantons*.
- Basic instanton is given by

$$A(x) = \operatorname{Im}\left(\frac{xd\bar{x}}{1+|x|^2}\right)$$

(Lie algebra of SU(2) can be identified with imaginary quaternions).

Introduction The Hopf bundle Principal bundles

Vector bundles

- $\pi: E \to M$ projection from total space to base space.
- Each fiber $E_x = \pi^{-1}(x)$ is now a vector space.
- Trivializations are linear when restricted to each fiber.
- Operations on vector spaces carry on to bundles (fiberwise): E^{*}, E ⊕ F, E ⊗ F, Λ^rE, E/F, etc.
- Arise from principal bundles by choosing a representation of the structure group.

- Any conformal transformation of S⁴ will give a new instanton, since the Hodge star is conformally invariant.
 Problem: exhibit all instantons.
- The twistor correspondence gives a 1-1 correspondence between instanton bundles over S⁴ and holomorphic bundles over ℙ³, called the twistor space.
- The ADHM construction is a recipe to build such holomorphic bundles over P³ and it can be proven that it exhausts all instantons.

Complex manifolds

- Transition functions between open sets of Cⁿ are holomorphic.
- Introduce *complex structure* on *TM*, i.e. $J : TM \rightarrow TM$ with $J^2 = -1$.
- Action of \mathbb{C} on each tangent space: $i \cdot v := J(v)$.
- Complexify each tangent space \implies *J* has eigenvalues $\pm i$.
- $TM = T^{1,0}M \oplus T^{0,1}M$ splits into holomorphic and anti-holomorphic parts.
- Decomposition carries over to *T***M* and its exterior powers:
 (*p*, *q*) forms.

Holomorphic bundles

- Defined over complex manifolds; admits holomorphic trivialization maps.
- Complex vector spaces as fibers.

Proposition

Given a hermitian metric on each fiber, there is a unique connection such that its Lie algebra-valued 1-form *A* satisfies

- $A^* = -A$ under unitary trivializations,
- 2 A is of type (1,0) under holomorphic trivializations,

called the Chern connection.

Twistor fibration

- In complex projective space \mathbb{P}^3 , every $\ell \in \mathbb{P}^3$ is a (complex) line passing through the origin in $\mathbb{C}^4 \cong \mathbb{H}^2$.
- Associate to each ℓ ∈ ℙ³ the *quaternionic* line ℍℓ passing through the origin in ℍ², which gives us a map π : ℙ³ → ℍℙ¹.
- Each quaternionic line *L* ∈ ℍℙ¹ is a copy of ℂ², and thus the fiber π⁻¹(*L*) is the set of lines through the origin in this ℂ², i.e. π⁻¹(*L*) ≅ ℙ¹.
- Identifying $S^4 \cong \mathbb{HP}^1$, we have a map $\pi : \mathbb{P}^3 \to S^4$ whose fibers are $\pi^{-1}(L) \cong \mathbb{P}^1$. This map is called the *twistor fibration*.

Twistor fibration

• Can identify $\mathbb{C}^4 \cong \mathbb{H}^2$ via

$$(z_1, z_2, z_3, z_4) \mapsto (z_1 + z_2 j, z_3 + z_4 j).$$

- $(z_1 + z_2j, z_3 + z_4j) \in \mathbb{H}^2$ left multiplied by *j* corresponds to $(-\bar{z_2}, \bar{z_1}, -\bar{z_4}, \bar{z_3}) \in \mathbb{C}^4$.
- Have map $\sigma: \mathbb{P}^3 \to \mathbb{P}^3$ given by

$$(z_1, z_2, z_3, z_4) \mapsto (-\bar{z_2}, \bar{z_1}, -\bar{z_4}, \bar{z_3})$$

in homogeneous coordinates.

 σ has invariant lines P¹ which are precisely the fibers of the twistor fibration.

ASD and complex structures

Lemma

A 2-form on S^4 is ASD if and only if its lift (pullback via π) to twistor space is of type (1, 1).

Applying this result to the curvature 2-form:

Proposition

A U(n)-bundle with a metric-compatible connection on S^4 has ASD curvature iff the lifted bundle on twistor space has curvature of type (1, 1).

Instantons and holomorphic bundles

 The lifted bundle has a natural holomorphic structure: let *E* → *X* be a Hermitian vector bundle over a complex manifold, equipped with a connection ∇ such that *F*_∇ ∈ Ω^{1,1}(*E*).

Proposition

E has a natural holomorphic structure such that ∇ is the Chern connection of *E*.

Instantons and holomorphic bundles

Theorem

Let $E \to S^4$ be an Hermitian vector bundle with an ASD connection and let $F = \pi^* E$ be the lifted bundle, where $\pi : \mathbb{P}^3 \to S^4$ is the twistor fibration. Then

- F is holomorphic.
- **2** *F* restricts to a holomorphic trivial bundle over each fiber $P_x := \pi^{-1}(x)$.
- There is a holomorphic isomorphism $\tau : \sigma^* \overline{F} \to F^*$ such that τ induces an Hermitian inner product on $H^0(P_x, F)$.

Conversely, every such bundle $F \to \mathbb{P}^3$ is given by $F = \pi^* E$ for some bundle $E \to S^4$ with ASD connection.

ADHM construction

- There is a non-degenerate skew-form on \mathbb{C}^4 defined by $\omega(u, jv) = \langle u, v \rangle$.
- Let L_z ⊂ C⁴ be the line corresponding to the point [z] ∈ P³.
- Consider the complement wrt this skew-form L^ω_Z which has dimension 3.
- The collection of E_z = L^ω_z/L_z with [z] varying over P³ defines a vector bundle E over P³ with fiber C².

ADHM construction

- *E* is holomorphic because it is the quotient of two holomorphic vector bundles.
- The definition of the skew-form ω implies that $L_z^{\omega} = L_{jz}^{\perp}$. Have orthogonal decomposition

$$\mathbb{C}^4 = L_z \oplus R_x \oplus L_{jz},$$

with $R_x = L_z^{\omega} \cap L_{jz}^{\omega}$ depending only on the fiber, i.e. on the point of $S^4 \implies E$ is trivial on the fibers of the twistor fibration.

• Corresponds to *SU*(2)-instanton bundle via twistor correspondence.

References

- Gregory L. Naber. *Topology, Geometry and Gauge fields: Foundations*. Springer, 2010.
- M. F. Atiyah. Geometry of Yang-Mills fields. Pisa, 1979.
- M. F. Atiyah, N. J. Hitchin and I. M. Singer. *Self-duality in four-dimensional Riemannian geometry*. 1978.