Motivation 0000

Bundles

Loop spaces

Spinor bundle on LM

Stringor bundle

2-Vector Bundles

Peter Kristel with Konrad Waldorf & Matthias Ludewig

October 09, 2024

Motivation	2-Vect	Bundles	Loop spaces	Spinor bundle on <i>LM</i>	Stringor bundle
0000	0000	00000000	000000	000000	
Overviev	N				

- 1 Why 2-Vector Bundles?
- 2 The bicategory of 2-Vector Spaces
- 3 2-Vector Bundles
- 4 Loop spaces and Bundle gerbes
- 5 The spinor bundle on loop space
- 6 Regression to the stringor bundle

Motivation ●000	2-Vect 0000	Bundles 00000000	Loop spaces 000000	Spinor bundle on LM	Stringor bundle
Context					

- String Geometry
- Extended TQFT
- Categorification

$$LM = C^{\infty}(S^{1}, M)$$

{degree *n* geometric object on *LM*}
transgression $\left(\begin{array}{c} \\ \end{array} \right)$ regression

{degree n + 1 geometric object on M}

Some examples:

LM	М	
$\Omega^n(LM)$	$\Omega^{n+1}(M)$	
fusive function $(n = 0)$	$\mathrm{U}(1)$ -bundle ($n=1$)	[Waldorf; '09]
fusive U(1)-bundle $(n = 1)$	bundle gerbe $(n = 2)$	[Waldorf; '10]
fusive vector bundle $(n=1)$	2-vector bundle ($n = 2$)	[this talk]

{fusive vector bundles} \rightleftharpoons {2-vector bundles}

Theorem: K. & Waldorf [2020]

A string structure on a manifold M leads to a *fusive spinor bundle* on LM.

According to the transgression/regression principle, there should be a corresponding 2-Vector Bundle.

This 2-Vector Bundle exists¹, we call it the *Stringor Bundle*.

¹K., Ludewig & Waldorf, arXiv:2206.09797

Theorem: Berwick-Evans & Pavlov [2023]

Smooth one-dimensional topological field theories over a manifold M are vector bundles with connection on M.

1-d TFT	Vector bundle & connection		
value at a point	fibre over a point		
value at a path	parallel transport		

Might 2-Vector bundles with connection be related to (extended) two-dimensional field theories?

Motivation 0000	2-Vect ●000	Bundles 00000000	Loop spaces 000000	Spinor bundle on LM	Stringor bundle
Outline					

- 2 The bicategory of 2-Vector Spaces
- 3 2-Vector Bundles
- 4 Loop spaces and Bundle gerbes
- 5 The spinor bundle on loop space
- 6 Regression to the stringor bundle

The bicategory of 2-Vector Spaces is the (framed) bicategory with Objects Algebras 1-Morphisms Bimodules 2-Morphisms Intertwiners of bimodules and composition of 1-morphisms Relative tensor product of bimodules 2-morphisms Composition of maps

Are these 2-Vector Spaces?

- This bicategory is symmetric monoidal.
- The unit object is the base field.
- The morphism category of the unit object is the category of vector spaces.

Indeed, a $\mathbb{K}\text{-}\mathbb{K}\text{-bimodule}$ is just a vector space. An intertwiner of $\mathbb{K}\text{-}\mathbb{K}\text{-bimodules}$ is just a linear map.

One may consider different flavours of this bicategory:

Finite-dimensional Finite-dimensional algebras and bimodules.

Super Everything is \mathbb{Z}_2 -graded.

von Neumann Algebras are von Neumann algebras, Bimodules are Hilbert spaces, relative tensor product is the Connes Fusion product.

An open problem is to find an infinite-dimensional setting that plays nicely with smoothness. Hilbert spaces are generally too rigid for this.

Motivation	2-Vect	Bundles	Loop spaces	Spinor bundle on LM	Stringor bundle
0000	0000	●0000000	000000	000000	
Outline					

- Why 2-Vector Bundles?
- 2 The bicategory of 2-Vector Spaces
- 3 2-Vector Bundles
- 4 Loop spaces and Bundle gerbes
- 5 The spinor bundle on loop space
- 6 Regression to the stringor bundle

Complex associated to an open cover

Bundles

Let M be a manifold. Let $\{U_i\}_{i \in I}$ be a (good) open cover of M. Set

Loop spaces

Spinor bundle on LM

Stringor bundle

 $Y = \coprod_{i \in I} U_i$, and $p: Y \to M$.

and

$$Y^{[2]} = Y \times_M Y = \{(y_1, y_2) \in Y^2 \mid p(y_1) = p(y_2) \in M\}.$$

An element of $Y^{[2]}$ is essentially an element of $U_i \cap U_j$. Consider the diagram

$$Y \xleftarrow{\pi_1}{\pi_2} Y^{[2]} \xleftarrow{\pi_{ij}}{\pi_{ij}} Y^{[3]}$$
$$\downarrow M$$

Definition

A Vector Bundle with typical fibre V over M is a diagram

Where f is a (smooth) family of linear automorphisms of V parametrized by $Y^{[2]}$, i.e. $f_{(y_1,y_2)}: V \to V$ satisfying a compatibility condition over $Y^{[3]}$.

Somewhat tautologically, f is an isomorphism of vector bundles: $f: \pi_1^*(V \times Y) \to \pi_2^*(V \times Y).$

Comparing Vect to 2-Vect

Let $Y \to M$ be a surjective submersion, e.g. $Y = \coprod_i U_i$.

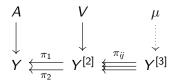
	Y	$Y^{[2]}$	Y ^[3]
Vect	vector space	linear maps	consistency condition
2-Vect	algebra	bimodules	intertwiners
С	Objects	1-morphisms	2-morphisms

For 2-Vect, we will require a consistency condition on $Y^{[4]}$.

- If $y \in Y$, then A_y is an algebra.
- If $(y_1, y_2) \in Y^{[2]}$, then $V_{(y_1, y_2)}$ is an A_{y_2} - A_{y_1} -bimodule.
- If $(y_1,y_2,y_3)\in Y^{[3]}$, then

$$\mu_{(y_1,y_2,y_3)}: V_{(y_2,y_3)} \otimes_{\mathcal{A}_{y_2}} V_{(y_1,y_2)} \to V_{(y_1,y_3)}$$

is an isomorphism.



Motivation	2-Vect	Bundles	Loop spaces	Spinor bundle on LM	Stringor bundle
0000	0000	00000●00	000000	000000	
2-vecto	r hundle	2			

Definition [M. Ludewig, K. Waldorf, PK '21]

A 2-vector bundle over M is a diagram

$$\begin{array}{cccc} A & V & \mu \\ \downarrow & \downarrow & \downarrow \\ Y \xleftarrow{\pi_1} & Y^{[2]} \xleftarrow{\pi_{ij}} & Y^{[3]} \end{array}$$

- $Y \to M$ is a surjective submersion
- $A \rightarrow Y$ is an algebra bundle
- *V* is a π_2^*A - π_1^*A -bimodule bundle
- $\mu: \pi^*_{23}V \otimes_{\mathcal{A}_2} \pi^*_{12}V o \pi^*_{13}V$ is an associative isomorphism

Let $V_1 = (Y, A_1, V_1, \mu_1)$ and $V_2 = (Y, A_2, V_2, \mu_2)$ be 2-Vector Bundles.

A 1-morphism from \mathcal{V}_1 to \mathcal{V}_2 consists of

- an A_1 - A_2 -bimodule bundle P o Y
- an intertwiner of bimodule bundles over Y^[2]

$$\phi: \pi_2^* P \otimes_{\pi_2^* A_1} V_1 \to V_2 \otimes_{\pi_1^* A_2} \pi_1^* P.$$

• such that ϕ is compatible with μ_1 and μ_2 .

If \mathcal{V}_1 and \mathcal{V}_2 have different surjective submersions $Y_1 \to M$ and $Y_2 \to M$, first pull back to the common refinement $Z = Y_1 \times_M Y_2$.

Line bundles are geometric realizations of elements of $H^2(M, \mathbb{Z})$. Bundle gerbes are geometric realizations of elements of $H^3(M, \mathbb{Z})$.

Definition [Murray, 1994]

A Bundle gerbe on M is a diagram

$$Y \xleftarrow{\pi_1}{} Y^{[2]} \xleftarrow{\mu}{} Y^{[3]}$$

where *L* is a line bundle, and μ an isomorphism $\mu : \pi_{23}^* L \otimes \pi_{12}^* L \to \pi_{13}^* L$.

Observation: Bundle gerbes are 2-Line Bundles. Moreover, Morphisms of bundle gerbes are 1-morphisms of 2-Line Bundles.

Motivation	2-Vect	Bundles	Loop spaces	Spinor bundle on LM	Stringor bundle
0000	0000	00000000	●00000	000000	
Outline					

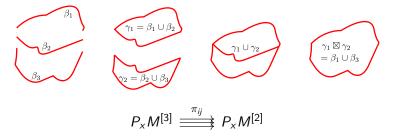
- Why 2-Vector Bundles?
- 2 The bicategory of 2-Vector Spaces
- **3** 2-Vector Bundles
- 4 Loop spaces and Bundle gerbes
- 5 The spinor bundle on loop space
- 6 Regression to the stringor bundle

 Motivation
 2-Vect
 Bundles
 Loop spaces
 Spinor bundle on LM
 Stringor bundle

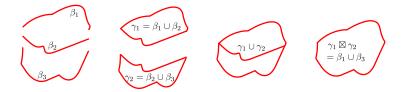
 Smooth
 loop space of a manifold

$$\begin{split} LM &:= C^{\infty}(S^1, M), & PM &:= C^{\infty}([0, \pi], M), \\ L_xM &:= \{\gamma \in LM, \gamma(0) = x\}, \quad P_xM &:= \{\beta \in PM, \beta(0) = x\}. \end{split}$$

The space *LM* "remembers" *M* through the operation of fusion:



Loops/paths that can be fused together are called *compatible*.



Let $L \rightarrow LM$ be a line bundle. A fusion product on L is an operation that covers the operation of fusing compatible paths:

$$\mu_{321}: L_{\beta_2 \cup \beta_3} \otimes L_{\beta_1 \cup \beta_2} \to L_{\beta_1 \cup \beta_3},$$

which satisfies the natural associativity condition when given four compatible paths.

Consider $p: P_x M \to M, \beta \mapsto \beta(\pi)$. We identify $P_x M^{[2]}$ with $L_x M$. This is technically incorrect, and the solution is non-trivial, but morally it suffices.

Let $L \to LM$ be a line bundle.

$$LM \stackrel{\pi_{ij}}{=} P_x^{[3]}M$$

Definition

A fusion product on a line bundle $L \rightarrow LM$ is an associative isomorphism

$$\mu: \pi_{23}^* L \otimes \pi_{12}^* L \to \pi_{13}^* L.$$

$$\mu_{321}: L_{\beta_2 \cup \beta_3} \otimes L_{\beta_1 \cup \beta_2} \to L_{\beta_1 \cup \beta_3},$$

We can piece everything together:

$$P_{x}M \xleftarrow{\pi_{1}}{\pi_{2}} P_{x}M^{[2]} \xleftarrow{\pi_{ij}}{\#} P_{x}M^{[3]}$$
$$\downarrow M$$

We see that a fusion product is exactly the data required to obtain a bundle gerbe with $Y = P_x M$.

(To invert the bottom arrow, look to the differential cohomology diagram.)

Motivation	2-Vect	Bundles	Loop spaces	Spinor bundle on <i>LM</i>	Stringor bundle
0000	0000	00000000	000000	●00000	
Outline					

- Why 2-Vector Bundles?
- 2 The bicategory of 2-Vector Spaces
- 3 2-Vector Bundles
- 4 Loop spaces and Bundle gerbes
- 5 The spinor bundle on loop space
- 6 Regression to the stringor bundle

Let Cl be the Clifford algebra generated by $L^2(S^1, \mathbb{C}^d)$, i.e. subject to the relation

$$fg + gf = \langle f, \overline{g} \rangle \mathbb{1}$$
 $f, g \in L^2(S^1, \mathbb{C}^d).$

Let $L \subset L^2(S^1, \mathbb{C}^d)$ be the subspace consisting of functions with vanishing negative fourier coefficients; set

$$F = \Lambda L = \mathbb{C} \oplus L \oplus (L \wedge L) \oplus \ldots$$

By splitting elements of Cl into creation and annihilation operators, it acts on F. That is, we have a homomorphism from Cl to the algebra of bounded operators on F:

$$\mathrm{Cl} \to B(F).$$

Denote by A the Clifford algebra of $L^2(I, \mathbb{C}^d)$. By including I into S^1 as the upper (lower) semi-circle, we get an (anti)-inclusion of A into Cl.

This turns F into an invertible A-A-bimodule, i.e. we have algebra homomorphisms:

$$A
ightarrow \mathrm{Cl}
ightarrow B(F)$$

 $A^{\mathrm{op}}
ightarrow \mathrm{Cl}
ightarrow B(F)$

with commuting images.

 Motivation
 2-Vect
 Bundles
 Loop spaces
 Spinor bundle on LM
 Stringer bundle

 0000
 000000
 000000
 000000
 000000
 000000

Spin structures on loop spaces

Let *M* be a spin manifold with spin frame bundle Spin(M). Then LSpin(M) has structure group LSpin(d). The group LSpin(d) has a "basic" central extension:

$$\mathrm{U}(1)
ightarrow \widetilde{L\mathrm{Spin}}(d)
ightarrow L\mathrm{Spin}(d).$$

Definition (T.P. Killingback; '87)

A spin structure on the loop space LM is a lift

$$\widetilde{L\mathrm{Spin}}(M) \longrightarrow L\mathrm{Spin}(M)$$
 \downarrow
 LM

The loop spinor representation

The loop group LSO(d) acts on Cl by pointwise action on the functions $f \in L^2(S^1, \mathbb{C}^d)$. This induces an action of $\widetilde{LSpin}(d)$ on Cl, simply through the projection $\widetilde{LSpin}(d) \to LSO(d)$.

Theorem

The group $\widetilde{LSpin}(d)$ admits a representation on F by intertwiners for the Cl action on F:

$$\varphi(a_1 \triangleright \psi \triangleleft a_2) = \varphi(a_1) \triangleright \varphi(\psi) \triangleleft \varphi(a_2),$$

for $\varphi \in \widetilde{LSpin}(d)$, $a_1, a_2 \in A$, $\psi \in F$.


```
Spinor bundle on loop space:
```

$$F(LM) = \widetilde{L\mathrm{Spin}}(M) \times_{\widetilde{L\mathrm{Spin}}(d)} F.$$

Clifford algebra bundle on loop space:

$$\operatorname{Cl}(LM) = LSO(M) \times_{LSO(d)} \operatorname{Cl}(d).$$

The spinor bundle is a module bundle:

$$\operatorname{Cl}(LM) \times_{LM} \mathcal{F}(LM) \to \mathcal{F}(LM).$$

Motivation	2-Vect	Bundles	Loop spaces	Spinor bundle on LM	Stringor bundle
0000	0000	00000000	000000	000000	●000
Outline					

- Why 2-Vector Bundles?
- 2 The bicategory of 2-Vector Spaces
- 3 2-Vector Bundles
- 4 Loop spaces and Bundle gerbes
- 5 The spinor bundle on loop space
- 6 Regression to the stringor bundle

The group PSO(d) acts on A through the pointwise action of PSO(d) on $L^2(I, \mathbb{C}^d)$. Set

$$A(PM) = PSO(M) \times_{PSO(d)} A.$$

If $(\beta_1, \beta_2) \in P_x M^{[2]}$ then we have an algebra homomorphism

$$A(PM)_{\beta_1} \times A(PM)^{\mathrm{op}}_{\beta_2} \to \mathrm{Cl}(LM)_{\beta_1 \cup \beta_2}.$$

So that $F(LM)_{\beta_1\cup\beta_2}$ becomes an $A(PM)_{\beta_1}-A(PM)_{\beta_2}$ -bimodule.

Motivation 0000	2-Vect 0000	Bundles 00000000	Loop spaces	Spinor bundle on LM	Stringor bundle ○○●○
Fusion					

Assume that the spin structure $\widetilde{L\mathrm{Spin}}(d) \to LM$ is fusive.

Theorem: Fusion of Fock spaces [K. Waldorf, PK '20]

For each triple $(\beta_1, \beta_2, \beta_3)$, there exists an isomorphism of $A(PM)_{\beta_1}$ - $A(PM)_{\beta_3}$ bimodules

$$\mu_{1,2,3}: F(LM)_{\gamma_1} \boxtimes_{\mathcal{A}(PM)_{\beta_2}} F(LM)_{\gamma_2} \stackrel{\simeq}{\longrightarrow} F(LM)_{\gamma_1 \boxtimes \gamma_2}.$$

such that these isomorphisms are associative, i.e. have a commutative square for each quadruple $(\beta_1, \beta_2, \beta_3, \beta_4)$.

Fix a basepoint $\{*\} \in M$. Let $A(P_*M)$ and $F(L_*M)$ be the restriction of A(PM) and F(LM) to P_*M and L_*M , respectively.

