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@ Why 2-Vector Bundles?

@ The bicategory of 2-Vector Spaces
© 2-Vector Bundles

@ Loop spaces and Bundle gerbes
e The spinor bundle on loop space

@ Regression to the stringor bundle
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Context

@ String Geometry
o Extended TQFT

o Categorification
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Transgression /Regression

LM = C>=(St, M)

{degree n geometric object on LM}

transgression <\ \) regression

{degree n + 1 geometric object on M}

Some examples:

LM

M

Q"(LM)

Q"Jrl(M)

fusive function (n = 0)

U(1)-bundle (n=1)

[Waldorf; '09]

fusive U(1)-bundle (n = 1)

bundle gerbe (n = 2)

[Waldorf; '10]

fusive vector bundle (n = 1)

2-vector bundle (n = 2)

[this talk]
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String Geometry

{fusive vector bundles} = {2-vector bundles}

Theorem: K. & Waldorf [2020]

A string structure on a manifold M leads to a fusive spinor bundle
on LM.

According to the transgression/regression principle, there should be
a corresponding 2-Vector Bundle.
This 2-Vector Bundle exists!, we call it the Stringor Bundle.

K., Ludewig & Waldorf, arXiv:2206.09797
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Extended TQFT

Theorem: Berwick-Evans & Pavlov [2023]

Smooth one-dimensional topological field theories over a manifold
M are vector bundles with connection on M.

1-d TFT ‘ Vector bundle & connection

value at a point

fibre over a point

value at a path

parallel transport

Might 2-Vector bundles with connection be related to (extended)

two-dimensional field theories?
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9 The bicategory of 2-Vector Spaces
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[e] Te]e]

Definition

The bicategory of 2-Vector Spaces is the (framed) bicategory with
Objects Algebras

1-Morphisms Bimodules
2-Morphisms Intertwiners of bimodules
and composition of
1-morphisms Relative tensor product of bimodules

2-morphisms Composition of maps
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Are these 2-Vector Spaces?

@ This bicategory is symmetric monoidal.

@ The unit object is the base field.

@ The morphism category of the unit object is the category of
vector spaces.

Indeed, a K-K-bimodule is just a vector space.
An intertwiner of K-K-bimodules is just a linear map.



Flavours

One may consider different flavours of this bicategory:
Finite-dimensional Finite-dimensional algebras and bimodules.
Super Everything is Z»-graded.

von Neumann Algebras are von Neumann algebras, Bimodules are
Hilbert spaces, relative tensor product is the Connes
Fusion product.

An open problem is to find an infinite-dimensional setting that
plays nicely with smoothness. Hilbert spaces are generally too rigid
for this.
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© 2-Vector Bundles
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Complex associated to an open cover

Let M be a manifold. Let {U;};e; be a (good) open cover of M.
Set

y =] U, and p:Y = M.
i€l

and

YR =¥ x5 Y = {(n, ) € Y?| p(n1) = p(y2) € M}.

An element of Y12 is essentially an element of U; N U;.
Consider the diagram

1

T
Y §
| -
M

vi2 2 3l
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Vector Bundles

Definition

A Vector Bundle with typical fibre V over M is a diagram

VxY f

Y & yB == yB
|-

M

Where f is a (smooth) family of linear automorphisms of V
parametrized by Y[ i.e. frye) + V — V satisfying a
compatibility condition over Y[3I.

Somewhat tautologically, f is an isomorphism of vector bundles:
f:nj(VxY)—=mi(VxY).
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Comparing Vect to 2-Vect

Let Y — M be a surjective submersion, e.g. Y =[], U;.

H Y ‘ yi2 ‘ Yyl
Vect || vector space | linear maps | consistency condition
2-Vect algebra bimodules intertwiners
C Objects 1-morphisms 2-morphisms

For 2-Vect, we will require a consistency condition on Y.
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Replacing Vect by 2-Vect

o If y € Y, then A, is an algebra.
o If (y1,y2) € Y then Viy,y,) is an Ay,-Ay, -bimodule.

o If (y1,y2,y3) € Yl then

H(y1,y2,y3) - V()’z,}/3) ®a,, V(ym@) - V(ymfa)

is an isomorphism.

R e 3]
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2-vector bundles

Definition [M. Ludewig, K. Waldorf, PK '21]

A 2-vector bundle over M is a diagram

A
V¢ ,

o y[2] ;; y3l

2

@ Y — M is a surjective submersion
@ A — Y is an algebra bundle

e Vs a m;A-m{A-bimodule bundle

@ 1173V ®a, T,V — w3V is an associative isomorphism
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1-Morphisms of 2-Vector Bundles

Let V1 = (Y, A1, Vi, 1) and Vo = (Y, Ag, Vo, up) be 2-Vector
Bundles.
A I-morphism from V; to V» consists of

@ an Ai-As-bimodule bundle P — Y

@ an intertwiner of bimodule bundles over Y2
¢ : W;P ®7r§‘A1 V1 — V2 ®7TTA2 7TTP.

@ such that ¢ is compatible with g1 and po.

If V1 and V> have different surjective submersions Y; — M and
Yo — M, first pull back to the common refinement Z = Y1 xp; Y.
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Bundle gerbes

Line bundles are geometric realizations of elements of H2(M, 7).
Bundle gerbes are geometric realizations of elements of H3(M, Z).

Definition [Murray, 1994]

A Bundle gerbe on M is a diagram

L I
Y £ yBl e yBl

™2

where L is a line bundle, and p an isomorphism
Wyl @ i, L — w5l

Observation: Bundle gerbes are 2-Line Bundles. Moreover,
Morphisms of bundle gerbes are 1-morphisms of 2-Line Bundles.
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e Loop spaces and Bundle gerbes
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Smooth loop space of a manifold

LM := C>=(S', M), PM := C°([0, x], M),
LXM::{FYELM/.Y(O):X}? PxM := {/BEPMaﬂ(O):X}

The space LM “remembers” M through the operation of fusion:

B2

({2
{8
Q

P MBI % P, Ml

Loops/paths that can be fused together are called compatible.
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Fusion products: fibrewise

2

(£
{8
Q

Let L — LM be a line bundle. A fusion product on L is an
operation that covers the operation of fusing compatible paths:

H1321 - L,BZU,6’3 ® Lﬁluﬂz - L&Uﬁsv

which satisfies the natural associativity condition when given four
compatible paths.
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Fusion products: global

Consider p : Px\M — M, 3+ B(). We identify P, Ml with L, M.
This is technically incorrect, and the solution is non-trivial, but
morally it suffices.

Let L — LM be a line bundle.

IM == PPl

Definition

A fusion product on a line bundle L — LM is an associative
isomorphism
p sl @ oL — w3l

p321 © Lg,ups @ Lgyug, = Lpiugss
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Regression

We can piece everything together:

L I

l

PM £ PMER = p, ML
™

|

M

We see that a fusion product is exactly the data required to obtain
a bundle gerbe with Y = P, M.
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Transgression /Regression of Line Bundles

Transgression
{Bundle Gerbes on M} g<:> {Fusive Line Bundles on LM}

Regression
lChern

H3(M, Z) H?(LM, Z)

Dixmier—Douadyl

(To invert the bottom arrow, look to the differential cohomology
diagram.)
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e The spinor bundle on loop space
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Clifford algebras

Let CI be the Clifford algebra generated by L2(S',CY), i.e. subject
to the relation

fg +gf = (f,2)1 f,g e L3S, CY).

Let L C L?(S*,C?) be the subspace consisting of functions with
vanishing negative fourier coefficients; set

F=AL=Cala(LAL)&....

By splitting elements of Cl into creation and annihilation
operators, it acts on F. That is, we have a homomorphism from CI
to the algebra of bounded operators on F:

Cl — B(F).
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The fibre

Denote by A the Clifford algebra of L2(/,C9). By including / into

St as the upper (lower) semi-circle, we get an (anti)-inclusion of A
into CL.

This turns F into an invertible A-A-bimodule, i.e. we have algebra

homomorphisms:

A — Cl — B(F)
AP 5 C1 — B(F)

with commuting images.
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Spin structures on loop spaces

Let M be a spin manifold with spin frame bundle Spin(M). Then
LSpin(M) has structure group LSpin(d). The group LSpin(d) has
a “basic” central extension:

U(1) — LSpin(d) — LSpin(d).

Definition (T.P. Killingback; '87)

A spin structure on the loop space LM is a lift

LSpln M) —— LSpin(M

~_ l
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The loop spinor representation

The loop group LSO(d) acts on Cl by pointwise action on the
functions f € L?(S',CY). This induces an action of LSpin(d) on
Cl, simply through the projection LSpin(d) — LSO(d).

The group LSpin(d) admits a representation on F by intertwiners
for the Cl action on F:

p(a1> P <a2) = p(a1) > p(¥) < p(a2),

for ¢ € LSpin(d), a;,a, € A, Y € F.
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The spinor bundle

Spinor bundle on loop space:

F(LM) = LSpin(M) x 5 o F-

Clifford algebra bundle on loop space:
The spinor bundle is a module bundle:

CI(LM) x  pg F(LM) — F(LM).
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@ Regression to the stringor bundle
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Clifford bundles over path space

The group PSO(d) acts on A through the pointwise action of
PSO(d) on L2(1,C9). Set

A(PM) = PSO(M) XPSO(d) A.
If (B1,52) € P, M2 then we have an algebra homomorphism
A(PM)g, x A(PM)%}; — CI(LM)g,u8,-

So that F(LM)g,up, becomes an A(PM)g,-A(PM)g,-bimodule.
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B

B2

71 Wy
=p1UpBs

Assume that the spin structure L/S_I)El(d) — LM is fusive.

{§
Q4
@

33

Theorem: Fusion of Fock spaces [K. Waldorf, PK '20]

For each triple (81, 52, 83), there exists an isomorphism of
A(PM)g,-A(PM)s, bimodules

p1,2,3 0 F(LM)5, X'A(PM)[32 F(LM), — F(LM)-y 59,

such that these isomorphisms are associative, i.e. have a
commutative square for each quadruple (81, f2, 53, 5a).
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The stringor bundle

Fix a basepoint {*} € M. Let A(P.M) and F(L.M) be the
restriction of A(PM) and F(LM) to P.M and L. M, respectively.

The stringor 2-vector bundle

A(P.M) F(L.M) [

I

PM & LM == P,MU]
™

|

M

.
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