
Motivation 2-Vect Bundles Loop spaces Spinor bundle on LM Stringor bundle

2-Vector Bundles

Peter Kristel
with Konrad Waldorf & Matthias Ludewig

October 09, 2024



Motivation 2-Vect Bundles Loop spaces Spinor bundle on LM Stringor bundle

Overview

1 Why 2-Vector Bundles?

2 The bicategory of 2-Vector Spaces

3 2-Vector Bundles

4 Loop spaces and Bundle gerbes

5 The spinor bundle on loop space

6 Regression to the stringor bundle



Motivation 2-Vect Bundles Loop spaces Spinor bundle on LM Stringor bundle

Context

String Geometry

Extended TQFT

Categorification
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Transgression/Regression

LM = C∞(S1,M)

{degree n geometric object on LM}

{degree n + 1 geometric object on M}

regressiontransgression

Some examples:

LM M

Ωn(LM) Ωn+1(M)

fusive function (n = 0) U(1)-bundle (n = 1) [Waldorf; ’09]

fusive U(1)-bundle (n = 1) bundle gerbe (n = 2) [Waldorf; ’10]

fusive vector bundle (n = 1) 2-vector bundle (n = 2) [this talk]
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String Geometry

{fusive vector bundles} ⇄ {2-vector bundles}

Theorem: K. & Waldorf [2020]

A string structure on a manifold M leads to a fusive spinor bundle
on LM.

According to the transgression/regression principle, there should be
a corresponding 2-Vector Bundle.
This 2-Vector Bundle exists1, we call it the Stringor Bundle.

1K., Ludewig & Waldorf, arXiv:2206.09797
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Extended TQFT

Theorem: Berwick-Evans & Pavlov [2023]

Smooth one-dimensional topological field theories over a manifold
M are vector bundles with connection on M.

1-d TFT Vector bundle & connection

value at a point fibre over a point

value at a path parallel transport

Might 2-Vector bundles with connection be related to (extended)
two-dimensional field theories?
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Definition

The bicategory of 2-Vector Spaces is the (framed) bicategory with

Objects Algebras

1-Morphisms Bimodules

2-Morphisms Intertwiners of bimodules

and composition of

1-morphisms Relative tensor product of bimodules

2-morphisms Composition of maps
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Are these 2-Vector Spaces?

This bicategory is symmetric monoidal.

The unit object is the base field.

The morphism category of the unit object is the category of
vector spaces.

Indeed, a K-K-bimodule is just a vector space.
An intertwiner of K-K-bimodules is just a linear map.
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Flavours

One may consider different flavours of this bicategory:

Finite-dimensional Finite-dimensional algebras and bimodules.

Super Everything is Z2-graded.

von Neumann Algebras are von Neumann algebras, Bimodules are
Hilbert spaces, relative tensor product is the Connes
Fusion product.

An open problem is to find an infinite-dimensional setting that
plays nicely with smoothness. Hilbert spaces are generally too rigid
for this.
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Complex associated to an open cover

Let M be a manifold. Let {Ui}i∈I be a (good) open cover of M.
Set

Y =
∐
i∈I

Ui , and p : Y → M.

and

Y [2] = Y ×M Y = {(y1, y2) ∈ Y 2 | p(y1) = p(y2) ∈ M}.

An element of Y [2] is essentially an element of Ui ∩ Uj .
Consider the diagram

Y Y [2] Y [3]

M

π1

π2

πij
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Vector Bundles

Definition

A Vector Bundle with typical fibre V over M is a diagram

V × Y f

Y Y [2] Y [3]

M

π1

π2

πij

Where f is a (smooth) family of linear automorphisms of V
parametrized by Y [2], i.e. f(y1,y2) : V → V satisfying a

compatibility condition over Y [3].

Somewhat tautologically, f is an isomorphism of vector bundles:
f : π∗1(V × Y ) → π∗2(V × Y ).
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Comparing Vect to 2-Vect

Let Y → M be a surjective submersion, e.g. Y =
∐

i Ui .

Y Y [2] Y [3]

Vect vector space linear maps consistency condition

2-Vect algebra bimodules intertwiners

C Objects 1-morphisms 2-morphisms

For 2-Vect, we will require a consistency condition on Y [4].
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Replacing Vect by 2-Vect

If y ∈ Y , then Ay is an algebra.

If (y1, y2) ∈ Y [2], then V(y1,y2) is an Ay2-Ay1-bimodule.

If (y1, y2, y3) ∈ Y [3], then

µ(y1,y2,y3) : V(y2,y3) ⊗Ay2
V(y1,y2) → V(y1,y3)

is an isomorphism.

A V µ

Y Y [2] Y [3]
π1

π2

πij
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2-vector bundles

Definition [M. Ludewig, K. Waldorf, PK ’21]

A 2-vector bundle over M is a diagram

A V µ

Y Y [2] Y [3]
π1

π2

πij

Y → M is a surjective submersion

A → Y is an algebra bundle

V is a π∗2A-π
∗
1A-bimodule bundle

µ : π∗23V ⊗A2 π
∗
12V → π∗13V is an associative isomorphism
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1-Morphisms of 2-Vector Bundles

Let V1 = (Y ,A1,V1, µ1) and V2 = (Y ,A2,V2, µ2) be 2-Vector
Bundles.
A 1-morphism from V1 to V2 consists of

an A1-A2-bimodule bundle P → Y

an intertwiner of bimodule bundles over Y [2]

ϕ : π∗2P ⊗π∗
2A1 V1 → V2 ⊗π∗

1A2 π
∗
1P.

such that ϕ is compatible with µ1 and µ2.

If V1 and V2 have different surjective submersions Y1 → M and
Y2 → M, first pull back to the common refinement Z = Y1 ×M Y2.
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Bundle gerbes

Line bundles are geometric realizations of elements of H2(M,Z).
Bundle gerbes are geometric realizations of elements of H3(M,Z).

Definition [Murray, 1994]

A Bundle gerbe on M is a diagram

L µ

Y Y [2] Y [3]
π1

π2

πij

where L is a line bundle, and µ an isomorphism
µ : π∗23L⊗ π∗12L → π∗13L.

Observation: Bundle gerbes are 2-Line Bundles. Moreover,
Morphisms of bundle gerbes are 1-morphisms of 2-Line Bundles.
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Smooth loop space of a manifold

LM := C∞(S1,M), PM := C∞([0, π],M),

LxM := {γ ∈ LM, γ(0) = x}, PxM := {β ∈ PM, β(0) = x}.

The space LM “remembers” M through the operation of fusion:

PxM
[3] PxM

[2]
πij

Loops/paths that can be fused together are called compatible.
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Fusion products: fibrewise

Let L → LM be a line bundle. A fusion product on L is an
operation that covers the operation of fusing compatible paths:

µ321 : Lβ2∪β3 ⊗ Lβ1∪β2 → Lβ1∪β3 ,

which satisfies the natural associativity condition when given four
compatible paths.
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Fusion products: global

Consider p : PxM → M, β 7→ β(π). We identify PxM
[2] with LxM.

This is technically incorrect, and the solution is non-trivial, but
morally it suffices.
Let L → LM be a line bundle.

LM P
[3]
x M

πij

Definition

A fusion product on a line bundle L → LM is an associative
isomorphism

µ : π∗23L⊗ π∗12L → π∗13L.

µ321 : Lβ2∪β3 ⊗ Lβ1∪β2 → Lβ1∪β3 ,
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Regression

We can piece everything together:

L µ

PxM PxM
[2] PxM

[3]

M

π1

π2

πij

We see that a fusion product is exactly the data required to obtain
a bundle gerbe with Y = PxM.
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Transgression/Regression of Line Bundles

{Bundle Gerbes on M} {Fusive Line Bundles on LM}

H3(M,Z) H2(LM,Z)

Transgression

Dixmier-Douady Chern

Regression

(To invert the bottom arrow, look to the differential cohomology
diagram.)
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Clifford algebras

Let Cl be the Clifford algebra generated by L2(S1,Cd), i.e. subject
to the relation

fg + gf = ⟨f , g⟩1 f , g ∈ L2(S1,Cd).

Let L ⊂ L2(S1,Cd) be the subspace consisting of functions with
vanishing negative fourier coefficients; set

F = ΛL = C⊕ L⊕ (L ∧ L)⊕ . . . .

By splitting elements of Cl into creation and annihilation
operators, it acts on F . That is, we have a homomorphism from Cl
to the algebra of bounded operators on F :

Cl → B(F ).
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The fibre

Denote by A the Clifford algebra of L2(I ,Cd). By including I into
S1 as the upper (lower) semi-circle, we get an (anti)-inclusion of A
into Cl.
This turns F into an invertible A-A-bimodule, i.e. we have algebra
homomorphisms:

A → Cl → B(F )

Aop → Cl → B(F )

with commuting images.
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Spin structures on loop spaces

Let M be a spin manifold with spin frame bundle Spin(M). Then
LSpin(M) has structure group LSpin(d). The group LSpin(d) has
a “basic” central extension:

U(1) → L̃Spin(d) → LSpin(d).

Definition (T.P. Killingback; ’87)

A spin structure on the loop space LM is a lift

L̃Spin(M) LSpin(M)

LM
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The loop spinor representation

The loop group LSO(d) acts on Cl by pointwise action on the

functions f ∈ L2(S1,Cd). This induces an action of L̃Spin(d) on

Cl, simply through the projection L̃Spin(d) → LSO(d).

Theorem

The group L̃Spin(d) admits a representation on F by intertwiners
for the Cl action on F :

φ(a1 ▷ ψ ◁ a2) = φ(a1) ▷ φ(ψ) ◁ φ(a2),

for φ ∈ L̃Spin(d), a1, a2 ∈ A, ψ ∈ F .
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The spinor bundle

Spinor bundle on loop space:

F (LM) = L̃Spin(M)×
L̃Spin(d)

F .

Clifford algebra bundle on loop space:

Cl(LM) = LSO(M)×LSO(d) Cl(d).

The spinor bundle is a module bundle:

Cl(LM)×LM F(LM) → F(LM).
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Clifford bundles over path space

The group PSO(d) acts on A through the pointwise action of
PSO(d) on L2(I ,Cd). Set

A(PM) = PSO(M)×PSO(d) A.

If (β1, β2) ∈ PxM
[2] then we have an algebra homomorphism

A(PM)β1 × A(PM)opβ2
→ Cl(LM)β1∪β2 .

So that F (LM)β1∪β2 becomes an A(PM)β1-A(PM)β2-bimodule.
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Fusion

Assume that the spin structure L̃Spin(d) → LM is fusive.

Theorem: Fusion of Fock spaces [K. Waldorf, PK ’20]

For each triple (β1, β2, β3), there exists an isomorphism of
A(PM)β1-A(PM)β3 bimodules

µ1,2,3 : F (LM)γ1 ⊠A(PM)β2
F (LM)γ2

≃−→ F (LM)γ1⊠γ2 .

such that these isomorphisms are associative, i.e. have a
commutative square for each quadruple (β1, β2, β3, β4).
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The stringor bundle

Fix a basepoint {∗} ∈ M. Let A(P∗M) and F (L∗M) be the
restriction of A(PM) and F (LM) to P∗M and L∗M, respectively.

The stringor 2-vector bundle

A(P∗M) F (L∗M) µ

P∗M L∗M P∗M
[3]

M

π1

π2

πij
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