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Almost contact metric manifolds



Almost contact structures

Definition

An almost contact manifold is a smooth manifold M2n+1 endowed with a (1, 1)-tensor field φ, a

vector field ξ, and a 1-form η such that

φ2 = −I + η ⊗ ξ, η(ξ) = 1.

It follows that φξ = 0, η ◦ φ = 0 and

TM = H⊕ ⟨ξ⟩, J2
H = −I,

where H := Ker η = Imφ is a distribution of rank 2n and JH := φ|H.
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Normality

Given an almost contact manifold (M,φ, ξ, η), one can define an almost complex structure J on the

product M × R by setting

J

(
X, f

d

dt

)
=

(
φX − fξ, η(X)

d

dt

)
for every X ∈ X(M) and f ∈ C∞(M × R).

Then,

J is integrable ⇔ [J, J ] = 0 ⇔ Nφ := [φ,φ] + 2dη ⊗ ξ = 0.

In this case (M,φ, ξ, η) is called a normal almost contact manifold.
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Compatible Riemannian metrics

Definition

Let (M,φ, ξ, η) be an almost contact manifold. A Riemannian metric g is called compatible with the

(φ, ξ, η)-structure if

g(φX,φY ) = g(X,Y )− η(X)η(Y )

for all X,Y ∈ X(M).

In this case (M,φ, ξ, η, g) will be called an almost contact metric manifold.

It follows that:

� ∥ξ∥ = 1, ⟨ξ⟩ = H⊥;

� η = g(ξ, ·)

� g(φX,φY ) = g(X,Y ) ∀X,Y ∈ H, i.e.

(JH, g) is an almost Hermitian structure on H;

� φ is skew-symmetric w.r.t. g ⇝ Φ := g(·, φ·) is the
fundamental 2-form of the structure.

TM

ξ

H = ⟨ξ⟩⊥

φ
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Almost Hermitian

manifolds

Hermitian

manifolds

Kähler

manifolds

Almost contact

metric manifolds

Normal almost

contact metric

manifolds

Quasi-Sasakian

manifolds

[J, J ] = 0 dΩ = 0

Nφ = 0 dΦ = 0

Remark: Recall that (M,J, g) Kähler ⇐⇒ ∇gJ = 0.
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Quasi-Sasakian manifolds

Definition (Blair, 1967)

An almost contact metric manifold (M,φ, ξ, η, g) is called quasi-Sasakian (qS) if

dΦ = 0, Nφ = 0.

By Kanemaki, this turns out to be equivalent to

(∇g
XΦ)(Y,Z) = g(Y, (∇g

Xφ)Z)

= η(Z)g(Y,AX)− η(Y )g(X,AZ)

∀X,Y, Z ∈ X(M)

=
1

2

{
η(Z)dη(X,φY ) + η(Y )dη(φX,Z)

}
∀X,Y, Z ∈ X(M),

where A is a (1, 1)-tensor field such that

Aφ = φA, g(AX,Y ) = g(X,AY ),

and it is uniquely determined, up to f ∈ C∞(M), by A = −φ ◦ ∇gξ + fη ⊗ ξ.
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Remarkable subclasses

A quasi-Sasakian manifold (M2n+1, φ, ξ, η, g) is called

� Cokähler manifolds: dη = 0

∇gΦ = 0 (or ∇gφ = 0)

H = Ker η is integrable and totally geodesic ⇒ locally M ∼= N2n ×R, with N2n Kähler manifold.

� Sasakian manifolds: dη = 2Φ

(∇g
Xφ)Y = g(X,Y )ξ − η(Y )X ∀X,Y ∈ X(M);

η is a contact form, i.e. η ∧ (dη)n ̸= 0 everywhere.

More generally, we say that a quasi-Sasakian structure has constant rank 2r + 1 if

η ∧ (dη)r ̸= 0, (dη)r+1 = 0.

dη(ξ, ·) = 0 ⇒ the manifold cannot have even rank.

Remark: Tanno provided a 3-dim. example of quasi-Sasakian structure of maximal rank, which is not

Sasakian.
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For an almost contact metric manifold (M,φ, ξ, η, g)

Nφ(ξ,X) = −φ(Lξφ)X + dη(ξ,X)ξ,

dη(ξ,X) = η((Lξφ)φX) = (Lξg)(ξ,X) = (Lξη)X,

dΦ(ξ,X, Y ) = (Lξg)(X,φY ) + g(X, (Lξφ)Y ).

(1)

Assuming M to be quasi-Sasakian:

dΦ = 0, Nφ = 0 ⇒ Lξφ = 0, Lξg = 0

� M is transversely Kähler, i.e. (φ, g) are projectable along the 1-dimensional foliation generated by

ξ, and π :M !M/ξ is a local Riemannian submersion onto a Kähler manifold.

Being also

Lξ(dη) = 0, 0 = η(Nφ(X,Y )) = dη(φX,φY )− dη(X,Y )

� dη projects onto a closed 2-form ω of type (1, 1) on M/ξ.

Remark: In the Sasakian case ω = 2Ω.
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Examples

Example (Cokähler)

For any Kähler manifold (N2n, J, k), the Riemannian product N × R has a cokähler structure.

NB: The converse is not true! Counterexamples by Chinea, de León, Marrero, ...

Example (Sasakian)

Consider (S2n+1, g) as hypersurfaces of the complex space form (Cn+1, J, g0), and let ν be a unit

normal. For any X ∈ X(S2n+1), one can decompose

JX = φX + η(X)ν, ξ := −Jν

Then, (S2n+1, φ, ξ, η, g) is a Sasakian manifold fibering on the complex space form CPn via the Hopf

fibration.

Examples (Quasi-Sasakian)

� Orientable hypersurfaces of Kähler manifolds with Aνφ = φAν .

� Riemannian product of (quasi-)Sasakian and Kähler manifolds.

� Heisenberg Lie groups H2n+1
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Topological properties

� Cokähler manifolds

� are formal ⇝ compact nilmanifolds ∼= T 2n+1

� satisfy a version of the Hard Lefschetz property

� all the Betti numbers are non-zero

� b0 ≤ b1 ≤ · · · ≤ bn = bn+1 ≥ bn+2 ≥ · · · ≥ b2n+1

� b2p+1 − b2p is even. In particular, b1 is odd

� ...

� Sasakian manifolds

� compact nilmanifolds ∼= H2n+1/Γ

� satisfy a version of the Hard Lefschetz property

� bp is even for odd 1 ≤ p ≤ n and even n+ 1 ≤ p ≤ 2n+ 1.

� ...

� Quasi-Sasakian manifolds

� have an almost formal model ⇝ compact nilmanifolds ∼= (H2l+1 × R2(n−l))/Γ
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Objective

Define a new class of almost contact metric manifolds such that the transverse geometry with respect

to ξ is given by a Kähler structure endowed with a closed 2-form ω of type (2, 0).

Given an almost complex manifold (B, J), consider the canonical splitting

Λ2
C(B) = Λ2,0(B)⊕ Λ1,1(B)⊕ Λ0,2(B).

Then, there is a one-to-one correspondence between complex (2, 0)-forms and real J-anti-invariant

2-forms. In particular:

{ωC ∈ Λ2,0(B), dωC = 0} 1:1
 ! {ω ∈ Λ2(B), ω(JX, JY ) = −ω(X,Y ), dω = 0}.

In the nondegenrate case, (B, J, ω) is a complex symplectic manifold and dimRB = 4n.

Example

Hyperkähler manifolds are special complex symplectic manifolds.
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Anti-quasi-Sasakian manifolds



Anti-quasi-Sasakian structures

Definition

An almost contact metric manifold (M,φ, ξ, η, g) is called anti-quasi-Sasakian (aqS) if

dΦ = 0, Nφ = 2dη ⊗ ξ.

We refer to Nφ = 2dη ⊗ ξ as the anti-normality condition.

Remark:

For an anti-quasi-Sasakian manifold

normality ⇔ dη = 0 (i.e. rk η = 1) ⇔ M is cokähler,

that is

qS ∩ aqS = {cokähler}.
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The transverse geometry

Applying (1), for every anti-quasi-Sasakian manifold (M,φ, ξ, η, g), it turns out that:

dη(ξ, ·) = 0, dη(φX,φY ) = −dη(X,Y ).

Lξφ = 0, Lξg = 0, Lξη = 0, Lξdη = 0.

� If the φ-invariant distribution E = H∩Ker(dη) has constant rank 2q, then dimM = 2q + 4p+ 1,

where 4p+ 1 = rk(η), i.e.

η ∧ (dη)2p ̸= 0, dη2p+1 = 0.

Considering the local submersion
π :M !M/ξ,

� φ projects onto an almost complex structure J on M/ξ;
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Theorem (Boothby-Wang type theorem)

Every anti-quasi-Sasakian manifold (M,φ, ξ, η, g) locally fibers onto a Kähler manifold (M/ξ, J, g)

endowed with a closed (2, 0)-form ω.

In particular, if ξ is regular with compact leaves, then M is a principal S1-bundle over M/ξ and η is a

connection form on M , whose curvature form is dη = π∗ω.

Conversely:

Theorem

Let (B, J, k) be a Kähler manifold endowed with a closed (2,0)-form ω. If [ω] ∈ H2(B,Z), then there

exists a principal S1-bundle M over B endowed with an anti-quasi-Sasakian structure (φ, ξ, η, g) such

that η is a connection form on M whose curvature form is dη = π∗ω.

This provides a method to construct examples of aqS manifolds.

15/37



Theorem (Boothby-Wang type theorem)

Every anti-quasi-Sasakian manifold (M,φ, ξ, η, g) locally fibers onto a Kähler manifold (M/ξ, J, g)

endowed with a closed (2, 0)-form ω.

In particular, if ξ is regular with compact leaves, then M is a principal S1-bundle over M/ξ and η is a

connection form on M , whose curvature form is dη = π∗ω.

Conversely:

Theorem

Let (B, J, k) be a Kähler manifold endowed with a closed (2,0)-form ω. If [ω] ∈ H2(B,Z), then there

exists a principal S1-bundle M over B endowed with an anti-quasi-Sasakian structure (φ, ξ, η, g) such

that η is a connection form on M whose curvature form is dη = π∗ω.

This provides a method to construct examples of aqS manifolds.

15/37



Theorem (Boothby-Wang type theorem)

Every anti-quasi-Sasakian manifold (M,φ, ξ, η, g) locally fibers onto a Kähler manifold (M/ξ, J, g)

endowed with a closed (2, 0)-form ω.

In particular, if ξ is regular with compact leaves, then M is a principal S1-bundle over M/ξ and η is a

connection form on M , whose curvature form is dη = π∗ω.

Conversely:

Theorem

Let (B, J, k) be a Kähler manifold endowed with a closed (2,0)-form ω. If [ω] ∈ H2(B,Z), then there

exists a principal S1-bundle M over B endowed with an anti-quasi-Sasakian structure (φ, ξ, η, g) such

that η is a connection form on M whose curvature form is dη = π∗ω.

This provides a method to construct examples of aqS manifolds.

15/37



Examples

� Let (B4n, J, k) be a Kähler manifold, U a coordinate neighborhood such that J ∂
∂xi

= ∂
∂yi

and

J ∂
∂yi

= − ∂
∂xi

, i = 1, . . . , 2n. Consider

ω =

p∑
i=1

(dxi ∧ dxn+i − dyi ∧ dyn+i), 1 ≤ p ≤ n,

ω = dβ is an exact 2-form of type (2, 0) and rank 4p.

The trivial bundle U × S1 is endowed with an aqS structure (φ, ξ, η, g), where

ξ =
d

dt
, φξ = 0, φX∗ = (JX)∗,

η = dt+ π∗β, g = π∗k + η ⊗ η.

� Complex unit disc D2n ⊂ C2n endowed with the Kähler structure of constant holomorphic

sectional curvature c < 0.

� Hermitian symmetric spaces of non-compact type of complex dimension 2n.
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� Hyperkähler manifolds (B4n, J1, J2, J3, g):

J2
i = −I, g(JiX, JiY ) = g(X,Y ), ∇Ji = 0,

J1J2 = J3 = −J2J1

✓ All the fundamental 2-forms Ωi = g(·, Ji·) are closed (dΩi = 0).

✓ For every even permutation of (1,2,3), Ωj ,Ωk are Ji-anti-invariant.

• IF Ωj (or Ωk) is integral ⇝ aqS structure on the principal S1-bundle M over (B, Ji, g,Ωj).

V. Cortés, A note on quaternionic Kähler manifolds with ends of finite volume, Q. J. Math. 74

(2023), no. 4, 1489-1493.
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A remarkable class of examples

We call Sp(n)-almost contact metric manifold any smooth manifold M4n+1 such that the structural

group of the frame bundle is reducible to Sp(n)× {1}.

This is equivalent to the existence of three almost contact metric structures (φi, ξ, η, g)i=1,2,3 such that

φ1φ2 = φ3 = −φ2φ1.

Theorem

If (M,φi, ξ, η, g)i=1,2,3 is an Sp(n)-almost contact metric manifold such that

dΦ1 = dΦ2 = 0, dη = 2Φ3,

then (φ1, ξ, η, g) and (φ2, ξ, η, g) are anti-quasi-Sasakian, while (φ3, ξ, η, g) is Sasakian. In particular

M locally fibers onto a hyperkähler manifold.

We call such a structure double aqS-Sasakian.

Remark: For n = 1, i.e. dimM = 5, then Sp(1) = SU(2) and

{double aqS-Sasakian} = {contact Calabi-Yau} ⊂ {K-contact hypo SU(2)}.
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Example (Weighted Heisenberg Lie group)

Let n ≥ 1, λ = (λ1, . . . , λn) ∈ Rn, h4n+1
λ := span{ξ, τ1, . . . , τ4n}, such that

[τr, τ3n+r] = [τn+r, τ2n+r] = 2λrξ, r = 1, . . . , n.

Let H4n+1
λ be the simply connected Lie group with Lie algebra h4n+1

λ . We define three left-invariant

almost contact metric structures (φi, ξ, η, g) by setting φiξ = 0 and

φi(τr) = τin+r, φi(τin+r) = −τr, φi(τjn+r) = τkn+r, φi(τkn+r) = −τjn+r.

for r = 1, . . . , n and (i, j, k) even permutation of (1, 2, 3).

It turns out that:

� (φ1, ξ, η, g), (φ2, ξ, η, g) are anti-quasi-Sasakian, (φ3, ξ, η, g) is quasi-Sasakian and

φ1φ2 = φ3 = −φ2φ1.

� If λr ̸= 0 for all r, the structures have maximal rank.

If λr = 1 for all r, then (φ3, ξ, η, g) is Sasakian.

� h4n+1
λ is a 2-step nilpotent Lie algebra.
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Being 2-step nilpotent, if λr ∈ Q for every r, then H4n+1
λ admits a cocompact discrete subgroup Γ

(Malčev), so that an aqS strucure is induced on the compact nilmanifold H4n+1
λ /Γ.

Proposition

A (4n+ 1)-dimensional compact nilmanifold G/Γ admits an anti-quasi-Sasakian structure of maximal

rank induced by a left-invariant aqS structure on G if and only G ∼= H4n+1
λ .

Theorem

Every nilpotent Lie algebra endowed with an anti-quasi-Sasakian structure of maximal rank is

isomorphic to h4n+1
λ , for some non-zero weights λ1, . . . , λn.

This follows from the following

Proposition

Every nilpotent Lie algebras g endowed with a transversely Kähler almost contact metric structure of

maximal rank is the 1-dimensional central extensions of an abelian Lie algebra a, i.e.

g = a⊕ Rξ, [X, ξ] = 0, [X,Y ] = −ω(X,Y )ξ

for every X,Y ∈ a and for some 2-cocycle ω on a.

20/37



Being 2-step nilpotent, if λr ∈ Q for every r, then H4n+1
λ admits a cocompact discrete subgroup Γ
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Geometric and topological obstructions



A characterization of aqS manifold

In the spirit of the Kanemaki’s characterization of quasi-Sasakian manifold, we have the following:

Theorem

An almost contact metric manifold (M,φ, ξ, η, g) is anti-quasi-Sasakian if and only if for every

X,Y ∈ X(M)

(∇g
Xφ)Y = 2η(X)AY + η(Y )AX + g(X,AY )ξ,

for some (1, 1)-tensor field A such that g(AX,Y ) = −g(X,AY ) and Aφ = −φA. In this case A is

uniquely determined by A = −φ ◦ ∇gξ.
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Given an anti-quasi-Sasakian manifold (M,φ, ξ, η, g), consider

A := −φ ◦ ∇gξ, ψ := Aφ = −∇gξ.

Then Aξ = ψξ = 0, η ◦A = η ◦ ψ = 0, A,ψ are skew-symmetric w.r.t. g and

Aφ = ψ = −φA, φψ = A = −ψφ, ψA = −φA2 = −Aψ

The associated 2-forms A := g(·, A·) and Ψ := g(·, ψ·) satisfy

dA = 0, dΦ = 0, dη = 2Ψ.

Remark: In general A, ψ are not almost contact structures, i.e. A|2H = ψ|2H ̸= −I.
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The associated 2-forms A := g(·, A·) and Ψ := g(·, ψ·) satisfy

dA = 0, dΦ = 0, dη = 2Ψ.

Remark: In general A, ψ are not almost contact structures, i.e. A|2H = ψ|2H ̸= −I.
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Proposition

Let (M,φ, ξ, η, g) be an anti-quasi-Sasakian manifold. Then

1. R(ξ,X)Y = (∇g
Xψ)Y ;

2. R(ξ,X)ξ = ψ2X = A2X.

In particular M has non-negative ξ-sectional curvatures, and K(ξ,X) = λ2, for every unit X ∈ H such

that ψ2X = −λ2X.

Theorem

Let (M,φ, ξ, η, g) be anti-quasi-Sasakian manifold. Then the following are equivalent:

(a) K(ξ,X) = 1 for every X ∈ H;

(b) ψ2 = A2 = −I + η ⊗ ξ;

(c) (A,φ, ψ, ξ, η, g) is a double aqS-Sasakian structure.

Furthermore, if one of the above condition holds, then M is transversely hyperkähler, hence

transversely Ricci-flat.
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Owing to dA = 0, we have the following:

Proposition

Let (M,φ, ξ, η, g) be an anti-quasi-Sasakian manifold. Then:

1. Ric(ξ, ξ) = ∥ψ∥2;

2. Ric(ξ,X) = 0;

3. Ric(X,Y ) = RicT (X ′, Y ′)− 2g(ψX,ψY ),

where RicT is the Ricci tensor field of the base space of the local Riemannian submersion

π :M !M/ξ, and X,Y ∈ H are basic vector fields projecting on X ′, Y ′.

The scalar curvatures of M and M/ξ are related by

s = sT − ∥∇ξ∥2 = sT − ∥ψ∥2.
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Theorem

Let (M,φ, ξ, η, g) be a transversely Einstein, non coKähler, aqS manifold. Then:

ψ2|H = −λ2I, λ ∈ R∗ ⇔ M is η-Einstein.

In this case M turns out to be transversely Ricci-flat, dimM = 4n+ 1, and

Ric = −2λ2g + (4n+ 2)λ2η ⊗ η, s = −4nλ2.

Proof (⇒): Apply the homothetic deformation:

φ′ = φ, ξ′ =
1

λ
ξ, η′ = λη, g′ = λ2g.

Then (φ′, ξ′, η′, g′) is an aqS structure with associated operator ψ′ = 1
λ
ψ, A′ = 1

λ
A. In particular,

ψ′2|H = −I ⇒ (A′, φ′, ψ′, ξ′, η′, g′) is double aqS-Sasakian

Thus the metric g is transversely Ricci-flat (RicT = 0), being homothetic to g′, and by the previous

theorem one gets the result.

25/37



These results give obstructions to the existence of anti-quasi-Sasakian structures.

Theorem

If (M,φ, ξ, η, g) is an anti-quasi-Sasakian manifold with constant sectional curvature, then it is flat

and cokähler.

Proof: If (M, g) has constat sectional curvature κ, then M is Einstein and

R(X,Y )Z = κ(g(Y,Z)X − g(X,Z)Y ).

Hence,

ψ2 = R(ξ, ·)ξ = κ(−I + η ⊗ ξ),

that is

ψ2|H = −κI.

If κ ̸= 0, M is η-Einstein, non Einstein.
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Theorem

There exist no compact regular, non-cokähler, aqS manifolds with Ric > 0.

There exist no compact regular aqS manifolds of maximal rank with Ric ≥ 0.

Proof: If (M,φ, ξ, η, g) is a compact regular, non cokähler, aqS manifold, then M/ξ is compact

Kähler with a non-vanishing closed (hence holomorphic) (2, 0)-form. Hence M/ξ cannot have positive

definite Riemannian Ricci tensor.

On the other hand, for every X ′ ∈ X(M/ξ) and X ∈ H basic vector field such that π∗X = X ′, in

both the cases of the statement one has:

RicT (X ′, X ′) = Ric(X,X) + 2∥ψX∥2 ⇒ RicT > 0,

which is not possible.

Corollary

There exist no connected homogeneous aqS manifolds of maximal rank with Ric ≥ 0.

W.M. Boothby, H.C. Wang, On contact manifolds, Ann. of Math. 68 (1958), 721-734.
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Compact homogeneous manifolds

Theorem

There exist no compact homogeneous aqS manifolds of maximal rank.

Proof: Let (M,φ, ξ, η, g) be a compact homogeneous aqS manifold of maximal rank, and let G a Lie

group acting transitively on M .

Then:

� η is an invariant contact form ⇒ ξ is regular with compact orbits ⇒ π :M !M/ξ is a principal

circle bundle over a Kähler manifold endowed with a closed (2, 0)-form ω such that dη = π∗ω.

� M/ξ is simply connected (D́ıaz-Miranda & Reventós).

� ξ is G-invariant ⇒ the G-action on M descends to a transitive G-action on M/ξ, such that

g · π(x) = π(g · x).

� M/ξ is a simply connected, compact homogeneous Kähler manifold.

Theorem

Every simply connected, compact, homogeneous Kähler manifold is a generalized flag manifold

G/ZG(S).

28/37



Compact homogeneous manifolds

Theorem

There exist no compact homogeneous aqS manifolds of maximal rank.

Proof: Let (M,φ, ξ, η, g) be a compact homogeneous aqS manifold of maximal rank, and let G a Lie

group acting transitively on M . Then:

� η is an invariant contact form ⇒ ξ is regular with compact orbits ⇒ π :M !M/ξ is a principal

circle bundle over a Kähler manifold endowed with a closed (2, 0)-form ω such that dη = π∗ω.

� M/ξ is simply connected (D́ıaz-Miranda & Reventós).

� ξ is G-invariant ⇒ the G-action on M descends to a transitive G-action on M/ξ, such that

g · π(x) = π(g · x).

� M/ξ is a simply connected, compact homogeneous Kähler manifold.

Theorem

Every simply connected, compact, homogeneous Kähler manifold is a generalized flag manifold

G/ZG(S).

28/37



Compact homogeneous manifolds

Theorem

There exist no compact homogeneous aqS manifolds of maximal rank.

Proof: Let (M,φ, ξ, η, g) be a compact homogeneous aqS manifold of maximal rank, and let G a Lie

group acting transitively on M . Then:

� η is an invariant contact form ⇒ ξ is regular with compact orbits ⇒ π :M !M/ξ is a principal

circle bundle over a Kähler manifold endowed with a closed (2, 0)-form ω such that dη = π∗ω.

� M/ξ is simply connected (D́ıaz-Miranda & Reventós).

� ξ is G-invariant ⇒ the G-action on M descends to a transitive G-action on M/ξ, such that

g · π(x) = π(g · x).

� M/ξ is a simply connected, compact homogeneous Kähler manifold.

Theorem

Every simply connected, compact, homogeneous Kähler manifold is a generalized flag manifold

G/ZG(S).

28/37



Compact homogeneous manifolds

Theorem

There exist no compact homogeneous aqS manifolds of maximal rank.

Proof: Let (M,φ, ξ, η, g) be a compact homogeneous aqS manifold of maximal rank, and let G a Lie

group acting transitively on M . Then:

� η is an invariant contact form ⇒ ξ is regular with compact orbits ⇒ π :M !M/ξ is a principal

circle bundle over a Kähler manifold endowed with a closed (2, 0)-form ω such that dη = π∗ω.

� M/ξ is simply connected (D́ıaz-Miranda & Reventós).

� ξ is G-invariant ⇒ the G-action on M descends to a transitive G-action on M/ξ, such that

g · π(x) = π(g · x).

� M/ξ is a simply connected, compact homogeneous Kähler manifold.

Theorem

Every simply connected, compact, homogeneous Kähler manifold is a generalized flag manifold

G/ZG(S).

28/37



Compact homogeneous manifolds

Theorem

There exist no compact homogeneous aqS manifolds of maximal rank.

Proof: Let (M,φ, ξ, η, g) be a compact homogeneous aqS manifold of maximal rank, and let G a Lie

group acting transitively on M . Then:

� η is an invariant contact form ⇒ ξ is regular with compact orbits ⇒ π :M !M/ξ is a principal

circle bundle over a Kähler manifold endowed with a closed (2, 0)-form ω such that dη = π∗ω.

� M/ξ is simply connected (D́ıaz-Miranda & Reventós).

� ξ is G-invariant ⇒ the G-action on M descends to a transitive G-action on M/ξ, such that

g · π(x) = π(g · x).

� M/ξ is a simply connected, compact homogeneous Kähler manifold.

Theorem

Every simply connected, compact, homogeneous Kähler manifold is a generalized flag manifold

G/ZG(S).

28/37



Compact homogeneous manifolds

Theorem

There exist no compact homogeneous aqS manifolds of maximal rank.

Proof: Let (M,φ, ξ, η, g) be a compact homogeneous aqS manifold of maximal rank, and let G a Lie

group acting transitively on M . Then:

� η is an invariant contact form ⇒ ξ is regular with compact orbits ⇒ π :M !M/ξ is a principal

circle bundle over a Kähler manifold endowed with a closed (2, 0)-form ω such that dη = π∗ω.

� M/ξ is simply connected (D́ıaz-Miranda & Reventós).

� ξ is G-invariant ⇒ the G-action on M descends to a transitive G-action on M/ξ, such that

g · π(x) = π(g · x).

� M/ξ is a simply connected, compact homogeneous Kähler manifold.

Theorem

Every simply connected, compact, homogeneous Kähler manifold is a generalized flag manifold

G/ZG(S).

28/37



M/ξ ∼= G/K, with G compact semisimple and K = ZG(S). The Killing form B < 0 gives rise to a

reductive decomposition

g = k⊕m, m = k⊥

Let T be a maximal torus in G. Then, h := tC ⊂ kC is a Cartan subalgebra of gC and

kC = h⊕
⊕

α∈∆K

CEα, mC =
⊕

α∈∆M

CEα (∆M := ∆ \∆K).

� Invariant complex structures: J : m! m, JEα = iεαEα (α ∈ ∆M ).

� B(JX, JY ) = B(X,Y ), X,Y ∈ m.

� Invariant closed 2-form: ω(X,Y ) = B([X,Y ], Zω), X,Y ∈ m, Zω ∈ z(k).

Proposition

Every closed, invariant 2-form on a generalized flag manifolds is of type (1, 1).
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Transverse Hodge theory

Let (M,φi, ξ, η, g) be a double aqS-Sasakian manifold. We define:

� Basic k-forms: Ω∗
B(M, ξ) := {α ∈ Ωk(M) | iξα = 0, Lξα = 0}

Remark: If ξ is regular, then Ω∗
B(M, ξ) ∼= π∗Ω∗(M/ξ), being π :M !M/ξ.

Denoting by dB the restriction of d to basic forms, (Ω∗
B(M, ξ), dB) is a subcomplex of the de

Rham complex and H∗
B(M, ξ) := Ker dB

Im dB
is the basic cohomology of the Reeb foliation.

� Basic Hodge star orperator: ⋆̄α := ⋆(η ∧ α) = (−1)kiξ(⋆α), α ∈ Ωk
B(U , ξ)

� Basic codifferential: δB := −⋆̄dB ⋆̄

� Basic Laplacian: ∆B := dBδB + δBdB

� Basic harmonic k-forms: Ω∗
∆B

(U , ξ) := Ker∆B

Theorem (A. El Kacimi-Alaoui, G. Hector)

If M is compact, then Ω∗
∆B

(M, ξ) ∼= H∗
B(M, ξ).
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Theorem

Let (M4n+1, φi, ξ, η, g) be a compact double aqS-Sasakian manifold. Then, the Betti numbers bk, for

odd 1 ≤ k ≤ 2n, are divisible by 4.

Proof: For any Sasakian manifold, the short exact sequence of complexes

0! Ωk
B(M)

j
↪−! Ωk(M)

iξ
−! Ωk−1

B (M)! 0,

induces the long exact sequence in cohomology

· · ·! Hk−2
B (M, ξ)

[dη∧−]
−! Hk

B(M, ξ)
j∗−! Hk(M)

(iξ)∗
−! Hk−1

B (M, ξ)
[dη∧−]
−! Hk+1

B (M, ξ)! · · ·

By the Transverse Hard Lefschetz property, the maps

Hk
B(M, ξ)! H4n−k

B (M, ξ) [α]B 7! [(dη)2n−k ∧ α]B

are isomorphisms for all 0 ≤ k ≤ 2n. In particular, the connection homomorphism is injective for

0 ≤ k ≤ 2n− 1, and the map j∗ : Hk
B(M, ξ)! Hk(M) is surjective by the exactness, for all

1 ≤ k ≤ 2n. It follows that for k in such range, bk = bBk − bBk−2.
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· · ·! Hk−2
B (M, ξ)

[dη∧−]
−! Hk

B(M, ξ)
j∗−! Hk(M)

(iξ)∗
−! Hk−1

B (M, ξ)
[dη∧−]
−! Hk+1

B (M, ξ)! · · ·

By the Transverse Hard Lefschetz property, the maps

Hk
B(M, ξ)! H4n−k

B (M, ξ) [α]B 7! [(dη)2n−k ∧ α]B

are isomorphisms for all 0 ≤ k ≤ 2n. In particular, the connection homomorphism is injective for

0 ≤ k ≤ 2n− 1, and the map j∗ : Hk
B(M, ξ)! Hk(M) is surjective by the exactness, for all

1 ≤ k ≤ 2n. It follows that for k in such range, bk = bBk − bBk−2.
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Claim: The odd basic Betti numbers bB2p+1 are divisible by 4.

Proof: For i = 1, 2, 3 define the operators Ki, Ii : Ω
k
B(M)! Ωk

B(M) such that

(Kiα)(X1, . . . , Xk) :=

k∑
s=1

α(X1, . . . φiXs, . . . , Xk)

(Iiα)(X1, . . . , Xk) := α(φiX1, . . . , φiXk).

Each Ii can be written as a linear combination of iterates {Ks
i }ks=0, so that we can consider them

as endomorphisms of Ωk
∆B

(M).

Being I2
i = (−1)kI and taking into account φ1φ2 = φ3 = −φ2φ1, it follows that for k odd, the

operators I1, I2, I3 behaves as the imaginary units of the quaternion algebra. Hence, for k = 2p+ 1,

bB2p+1 = dimH2p+1
B (M, ξ) = dimΩ2p+1

∆B
(M) is divisble by 4.
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Theorem

Let (M4n+1, φi, ξ, η, g) be a compact double aqS-Sasakian manifold. Then, for 1 ≤ p ≤ n we have

that
p∑

h=0

b2h ≥

(
p+ 2

2

)
.

In particular, b2 ≥ 2.

Proof (sketch): The set

Sp := {Φp1
1 ∧ Φp2

2 ∧ Φp3
3 | p1 + p2 + p3 = p} ⊂ Ω2p

∆B
(M, ξ)

has
(
p+2
2

)
linealrly independent elements. Therefore bB2p ≥

(
p+2
2

)
. Using bB2p = b2p + bB2p−2 and

iterating, one gets the statement.

In particular for p = 1, b2 + b0 ≥ 3 ⇒ b2 ≥ 3− 1 = 2.

Corollary

The spheres S4n+1 cannot admit double aqS-Sasakian structures.
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The case of general compact aqS manifolds

Theorem

Let (M2n+1, φ, ξ, η, g) a compact anti-quasi-Sasakian manifold. Then, the Betti numbers b2 and

b2n−1 are positive.

Proof:
Φ is φ-invariant

dη is φ-anti-invariant

}
⇒ dη ∧ Φn−1 = 0 ⇒ d(η ∧ Φn−1) = 0.

If b2 = 0, i.e. H2(M,R) = {0}, then Φ = dα for some α ∈ Λ1(M), and

0 ̸=
∫
M

η ∧ Φn =

∫
M

(η ∧ Φn−1) ∧ dα = −
∫
M

d(η ∧ Φn−1 ∧ α) = 0 !!

Corollary

The odd dimensional spheres S2n+1 cannot admit anti-quasi-Sasakian structures.

Remark: Notice that Sasakian manifolds with positive curvature have b2 = 0.
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