Dark soliton solutions to the Nonlinear Schrödinger Equation

Salvador López Martínez

in collaboration with

André de Laire

19 September 2024

What is a soliton?

It is a physical object that travels with constant velocity in some direction without changing shape, even after mutual collisions.

Wikimedia Commons

What is a soliton?

Dark vs Bright solitons

Y.S. Kivshar and B. Luther-Davies (1998)

Are there dark solitons in nature? In Bose-Einstein condensates

In optics

Z. Chen et al. (1996)

Defocusing NLS (or Gross-Pitaevskii) equation

$$
\biggr| \, i \partial_t \Psi = \Delta \Psi + \Psi \bigl(1 - |\Psi|^2 \bigr) \quad \text{in } \mathbb{R} \times \mathbb{R}^N
$$

It models

- Bose-Einstein condensation with repulsive interactions between bosons.
- Evolution of optical pulses in nonlinear self-defocusing media.

Mathematically, a dark soliton is a traveling wave...

$$
c>0, \ \Psi(t,x)=u(x_1-ct,x') \implies \boxed{i c \partial_{x_1} u + \Delta u + u(1-|u|^2)=0 \quad \text{ in } \mathbb{R}^N}
$$

...with finite Ginzburg-Landau energy:

$$
E(u)=\frac{1}{2}\int_{\mathbb{R}^N}|\nabla u|^2dx+\frac{1}{4}\int_{\mathbb{R}^N}(1-|u|^2)^2dx<\infty\implies \boxed{|u(x)|\to 1,\text{ as }|x|\to\infty}
$$

Some basics

$$
ic\partial_{x_1}u + \Delta u + u(1-|u|^2) = 0 \quad \text{in } \mathbb{R}^N
$$

• The energy space is **not** a vector space...

$$
E(u) = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u|^2 dx + \frac{1}{4} \int_{\mathbb{R}^N} (1 - |u|^2)^2 dx
$$

$$
\mathcal{E}(\mathbb{R}^N)=\{u\in H^1_{\text{loc}}(\mathbb{R}^N;\mathbb{C}):\ \nabla u\in L^2(\mathbb{R}^N),\ 1-|u|^2\in L^2(\mathbb{R}^N)\}
$$

... and contains oscillating functions (for $N = 1$): $e^{i \log(x^2 + 1)} \in \mathcal{E}(\mathbb{R})$.

- Infinite energy solutions: $u(x) = e^{-cx_1 i}$, $|u| = 1$.
- Trivial solutions: $u \equiv \text{cst}, |u| = 1$.

• Invariances:

- ▶ $u(x) \rightsquigarrow u(x + x_0), x_0 \in \mathbb{R}^N$
- \blacktriangleright *u* $\leadsto e^{i\theta_0}u, \ \theta_0\in\mathbb{R}$

The 1d case

$$
icu' + u'' + u(1 - |u|^2) = 0 \quad \text{ in } \mathbb{R}
$$

Theorem (Béthuel, Gravejat, Saut (2008))

¹ *If c* ≥ √ 2*, we have* nonexistence*.* √

² *If c* ∈ [0, 2)*, then the* unique (u.t.i.) nontrivial finite-energy solution *is*

$$
u_c(x) = \sqrt{\frac{2-c^2}{2}}\tanh\left(\frac{\sqrt{2-c^2}}{2}x\right) - i\frac{c}{\sqrt{2}}
$$

Moreover, u^c is orbitally stable.

Properties:

- \mathbf{D} $1 |u_c|^2$ is analytic, even and radially monotone, and decays exponentially.
- 2 *u*_c has different limit values at $-\infty$ and $+\infty$.
- \bullet *u_c* has a vortex (i.e. $|u_c| = 0$ at some point) iff $c = 0$.

.

The 1d case

The Jones, Putterman and Roberts program $(N = 2, 3)$

$$
ic\partial_{x_1}u+\Delta u+u(1-|u|^2)=0\quad\hbox{ in }\mathbb{R}^N
$$

Jones, Putterman and Roberts conjectures for *N* = 2, 3 (1986)

Existence, asymptotics and stability ∀*c* ∈ (0, √ 2). Nonexistence ∀*c* > √ 2.

Nonexistence and asymptotics

Theorem (P. Gravejat (2003, 2004))

If N ≥ 2*, nonexistence for every c* > √ 2*. If N* = 2*, nonexistence for c* = √ 2*.*

Theorem (P. Gravejat (2004-2006))

Precise asymptotic behavior of the dark solitons u at infinity. In particular,

$$
u(x) \to 1 \text{ as } |x| \to \infty.
$$

Q
$$
(u(x) - 1)|x|^{N-1}
$$
 is bounded.

Existence of orbitally stable solutions The momentum

$$
P(u)=\frac{1}{2}\int_{\mathbb{R}^N}\langle i\partial_{x_1}u, u-1\rangle dx
$$

Not well-defined in $\mathcal{E}(\mathbb{R}^N)$

Alternatives:

2 Consider renormalized momentums, etc.

Theorem (Béthuel, Gravejat, Saut (2009), Chiron, Maris (2013))

If $N = 2$, for every $p > 0$ there exists a dark soliton $u_p \in \mathcal{E}(\mathbb{R}^N)$ with speed $c_p \in (0, \sqrt{2})$ *such that*

$$
E(u_p)=\min\{E(v): v\in \tilde{\mathcal{E}}(\mathbb{R}^N), P(v)=p\}.
$$

Moreover, the set of minimizers is orbitally stable. If $N = 3$ *, the same result holds for every* $p \ge p_0$ *, for some* $p_0 > 0$ *.* Remark: *The speed c^p is a Lagrange multiplier and cannot be prescribed.*

Existence for prescribed subsonic speed

- **1** By the Mountain Pass Lemma: existence for $c \ge 0$ in dimensions $N = 2$ [Béthuel, Saut (1999)] and $N = 3$ [Chiron (2004)].
- **2** By minimizing the energy under a Pohozaev constraint: existence for all $c \in (0, \sqrt{2})$ in dimension $N = 3$ [Mariş (2013)].
- ³ By pertubative methods (Lyapunov-Schmidt reduction): existence in dimension $N = 2$ for $c \gtrapprox 0$ [Liu, Wei (2020), Chiron, Pacherie (2021)] and for $c \lesssim \sqrt{2}$ [Liu, Wang, Wei, Yang (2021)].
- **4** By the MPL + Monotonicity trick: existence in dimension $N = 2$ for *almost every* $c \in (0, \sqrt{2})$ [Bellazzini, Ruiz (2023)].

The Jones, Putterman and Roberts program is *almost* complete. □

The nonlocal model

$$
i\partial_t \Psi = \Delta \Psi + \Psi\big(\mathcal{W}*\big(1-|\Psi|^2\big)\big)\quad\text{in } \mathbb{R}\times\mathbb{R}^N
$$

- It was originally proposed by [Gross (1963)] and [Pitaevskii (1961)].
- \bullet W is an even tempered distribution that captures **nonlocal interactions** between bosons or with the optical medium.

Example

$$
\mathcal{W}=\delta_0,\quad \mathcal{W}\approx e^{-x^2},\quad \mathcal{W}\approx e^{-|x|},\quad \mathcal{W}\approx \delta_0-e^{-|x|}.
$$

We still look for traveling waves with finite energy:

$$
\Psi(t,x) = u(x_1 - ct, x') \implies \boxed{ic\partial_{x_1}u + \Delta u + u(\mathcal{W} * (1 - |u|^2))} = 0 \quad \text{in } \mathbb{R}^N
$$

$$
E(u) = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u|^2 dx + \frac{1}{4} \int_{\mathbb{R}^N} (1 - |u|^2) (W * (1 - |u|^2)) dx
$$

 $\widehat{\mathcal{W}} \in L^{\infty}(\mathbb{R}^N) \implies E(u) < \infty \ \forall u \in \mathcal{E}(\mathbb{R}^N)$

The (nonlocal) Jones, Putterman and Roberts program

So far, only for $N = 1$ (except nonexistence for $N \geq 2$, $c >$ √ 2 [de Laire (2012)]).

- ¹ Existence of energy minimizers under (renormalized) momentum constraint [de Laire, Mennuni (2020)].
- 2 Existence for almost every $c \in (0, 1)$ √ 2), and for all $c \in (0, 1)$ √ 2) provided a priori estimates hold [de Laire, L.-M. (2022)]. √
- 3 Nonexistence for $c =$ 2 [de Laire, L.-M. (2022)].
- **4** Existence for $\sigma = \sqrt{2}$ [de Early, E. M. (2022)].
3 Existence of symmetric solution for $c \in (\varepsilon, \sqrt{2} \varepsilon)$ and for $\mathcal{W} \approx \delta_0$ [de Laire, L.-M. (2024)].
- ⁵ Qualitative properties for relevant examples [de Laire, L.-M. (2022, 2024)]:
	- \blacktriangleright A priori estimates.
	- ▶ Exponential convergence to different limits at $\pm \infty$.
	- \blacktriangleright Analytic regularity.
	- \blacktriangleright Monotonicity breaking.
	- ▶ Nonlocal-to-local limit.
- 6 Study of the case $c = 0$ [de Laire, L.-M. (2024)].

Simplifying the framework

 (TW_c)

$$
\int \text{i}cu' + u'' + u(\mathcal{W} * (1 - |u|^2)) = 0 \quad \text{in } \mathbb{R}
$$

Lemma

Every solution $u \in \mathcal{E}(\mathbb{R})$ *to* (*TW*_{*c*}) *is smooth and vortexless, i.e.* $|u| > 0$ *. In particular, there is a lifting* $u = \rho e^{i\theta}$ *with* $1 - \rho \in H^1(\mathbb{R}) \cap C^\infty(\mathbb{R})$, $\theta \in C^\infty(\mathbb{R})$. *Moreover,* ρ *satisfies (Pc).*

$$
(P_c) \qquad \boxed{-\rho'' + \frac{c^2}{4} \frac{1-\rho^2}{\rho^3} = \rho(\mathcal{W} * (1-\rho^2)) \quad \text{in } \mathbb{R}, \quad \rho : \mathbb{R} \to (0, +\infty)
$$

Lemma

Let $\rho \in 1 + H^1(\mathbb{R})$ *be a* **positive solution** *to* (P_c). We define $u = \rho e^{i\theta}$, with $\theta(x) = \frac{c}{2} \int_{a}^{x} \frac{1-\rho^2}{\rho^2}$ $\frac{-\rho^2}{\rho^2}$. *Then,* $u \in \mathcal{E}(\mathbb{R})$ *is a* nontrivial solution *to (TW_c).*

Variational structure

$$
J_c(1-\rho) = \frac{1}{2}\int_\mathbb{R} (\rho')^2 + \frac{1}{4}\int_\mathbb{R} (\mathcal{W} * (1-\rho^2))(1-\rho^2) - \frac{c^2}{8}\int_\mathbb{R} \frac{(1-\rho^2)^2}{\rho^2}
$$

$$
J_c(1-\rho)\in\mathbb{R}\cup\{-\infty\}\quad\forall 1-\rho\in H^1(\mathbb{R})
$$

Lemma

$$
J_c \in \mathcal{C}^2(\Omega), \text{ where } \Omega = \{1 - \rho \in H^1(\mathbb{R}): \rho > 0 \text{ in } \mathbb{R}\}. \text{ Moreover, given } 1 - \rho \in \Omega,
$$

$$
J'_{c}(1-\rho)=0 \iff \rho \text{ is a positive solution to } (P_{c}).
$$

Mountain Pass geometry

(H)
$$
\widehat{\mathcal{W}}(\xi) \ge 1 - \kappa \xi^2
$$
 in \mathbb{R} for some $\kappa \in [0, \frac{1}{2})$.

Lemma

Let $c_0 \in (0,$ √ **2**). Then, there exists $\phi \in \Omega$ such that, for all $c \in (c_0,$ √ 2)*,* \bigcirc *J*_c(ϕ) < 0*, and* \bullet *J_c achieves a strict local minimum at* 0*, with* $J_c(0) = 0$.

Jabri (2003)

Palais-Smale sequences

$$
1 - \rho_n = v_n \in \Omega: \quad J_c(v_n) \to \alpha \quad \text{and} \quad \|\mathsf{J}_c'(v_n)\|_{H^{-1}(\mathbb{R})} \to 0
$$

Theorem (Classical Mountain Pass Lemma)

 $\Omega = H^1(\mathbb{R})$ and MP structure $\implies \exists PS$ sequence $\{v_n\}$ at level $\alpha = \gamma(c)$, where

$$
\boxed{\gamma(c) := \inf_{g \in \Gamma(c_0)} \max_{t \in [0,1]} J_c(g(t)) > 0} \quad \forall c \in (c_0, \sqrt{2}),
$$

$$
\Gamma(c_0):=\{g\in \mathcal{C}([0,1],\Omega):\,\,g(0)=0,\,\,g(1)=\phi\}.
$$

Moreover, if $v_n \to v$ *, then* $J_c(v) = \gamma(c)$ *,* $J'_c(v) = 0$.

Ouestions

- \bullet Do PS sequences exist in Ω ?
- 2 Are they **bounded** in $H^1(\mathbb{R})$?
- Do they remain **away from the boundary** of $Ω$?

Monotoniciy trick of Struwe (and Jeanjean)

$$
J_c(1-\rho) = \frac{1}{2}\int_\mathbb{R} (\rho')^2 + \frac{1}{4}\int_\mathbb{R} (\mathcal{W} * (1-\rho^2))(1-\rho^2) - \frac{c^2}{8}\int_\mathbb{R} \frac{(1-\rho^2)^2}{\rho^2}
$$

$$
\boxed{\gamma(\pmb{c}):=\inf_{\pmb{g}\in\Gamma(\pmb{c}_0)}\max_{t\in[0,1]}J_c(g(t))}\quad\forall\pmb{c}\in(\pmb{c}_0,\sqrt{2})
$$

Monotonicity trick (Struwe (1988), Jeanjean (1999))

$$
\gamma : (c_0, \sqrt{2}) \to (0, +\infty) \text{ is non increasing } \implies \exists \gamma'(c) \text{ for a.e. } c \in (c_0, \sqrt{2})
$$

$$
\implies \exists \text{ bounded PS sequence}
$$

Monotoniciy trick of Struwe (and Jeanjean)

$$
J_c(1-\rho) = \frac{1}{2}\int_\mathbb{R} (\rho')^2 + \frac{1}{4}\int_\mathbb{R} (\mathcal{W} * (1-\rho^2))(1-\rho^2) - \frac{c^2}{8}\int_\mathbb{R} \frac{(1-\rho^2)^2}{\rho^2}
$$

$$
\boxed{\gamma(\pmb{c}):=\inf_{\pmb{g}\in\Gamma(\pmb{c}_0)}\max_{t\in[0,1]}J_c(g(t))}\quad\forall\pmb{c}\in(\pmb{c}_0,\sqrt{2})
$$

Monotonicity trick (Struwe (1988), Jeanjean (1999))

$$
\gamma : (c_0, \sqrt{2}) \to (0, +\infty) \text{ is non increasing } \implies \exists \gamma'(c) \text{ for a.e. } c \in (c_0, \sqrt{2})
$$

$$
\implies \exists \text{ bounded PS sequence}
$$

Theorem (de Laire, L.-M. (2022))

Under (H), there exists a nontrivial solution $u \in \mathcal{E}(\mathbb{R})$ *for a.e.* $c \in (0, \sqrt{\frac{2}{n}})$ 2)*.*

 (TW_{c_n})

$$
) \t\t |c_n u'_n + u''_n + u_n (W * (1 - |u_n|^2)) = 0 \t in \mathbb{R}
$$

 $c_n \to c \in (0, 1)$ √ 2) fixed

$$
(\mathrm{TW}_{c_n}) \qquad \qquad |c_n u'_n + u''_n + u_n \big(\mathcal{W} * (1 - |u_n|^2) \big) = 0 \quad \text{ in } \mathbb{R}
$$

 $c_n \to c \in (0, 1)$ √ 2) fixed

Question 1: $u_n \to u$ solution to (TW_c)?

 $\| \|\mathbf{u}_n\|_{W^{k,\infty}(\mathbb{R})} \leq C \|\text{holds for many relevant potentials } \mathcal{W}\|$

$$
(\mathrm{TW}_{c_n}) \qquad \qquad |c_n u'_n + u''_n + u_n \big(\mathcal{W} * (1 - |u_n|^2) \big) = 0 \quad \text{ in } \mathbb{R}
$$

 $c_n \to c \in (0, 1)$ √ 2) fixed

Question 1: $u_n \to u$ solution to (TW_c)?

 $\| \|\mathbf{u}_n\|_{W^{k,\infty}(\mathbb{R})} \leq C \|\text{holds for many relevant potentials } \mathcal{W}\|$

Question 2: Is *u* nontrivial?

$$
||1-|u_n|^2||_{L^\infty(\mathbb{R})}\geq C_{\mathcal{W}}(2-c_n^2).
$$

$$
(\mathrm{TW}_{c_n}) \qquad \qquad |c_n u'_n + u''_n + u_n \big(\mathcal{W} * (1 - |u_n|^2) \big) = 0 \quad \text{ in } \mathbb{R}
$$

 $c_n \to c \in (0, 1)$ √ 2) fixed

Question 1: $u_n \to u$ solution to (TW_c)?

 $\| \|\mathbf{u}_n\|_{W^{k,\infty}(\mathbb{R})} \leq C |\text{ (holds for many relevant potentials } \mathcal{W})|$

Question 2: Is *u* nontrivial?

$$
||1-|u_n|^2||_{L^{\infty}(\mathbb{R})}\geq C_{\mathcal{W}}(2-c_n^2).
$$

Question 3: $u \in \mathcal{E}(\mathbb{R})$?

Profile decomposition of Palais-Smale sequences, versions of Brezis-Lieb lemma, Pohozaev identity...

Theorem (de Laire, L.-M. (2021))

Let W be an even signed Borel measure with $\widehat{W} \in W^{2,\infty}(\mathbb{R})$ *,* $\widehat{W} > 0$ *,* $\widehat{W}(0) = 1$ *. Assume that there exist* $m \in [0, 1)$ *and* $k_c > 0$ *such that* $mk_c < 1$ *and*

$$
(\widehat{\mathcal{W}})'(\xi) \geq -m\xi \,\,\forall \xi \geq 0, \quad \|u\|_{L^{\infty}(\mathbb{R})}^2 \leq k_c \,\,\forall u \in \mathcal{E}(\mathbb{R}) \text{ solution.}
$$

Then there exists a nontrivial solution $u \in \mathcal{E}(\mathbb{R})$ *to (TW_c) for every* $c \in (0, \sqrt{d})$ 2)*.*

Example

$$
\mathcal{W} = \delta_0, \quad \mathcal{W} \approx e^{-x^2}, \quad \mathcal{W} \approx e^{-|x|}, \quad \mathcal{W} \approx \delta_0 - e^{-|x|}.
$$

Numerical plots

 $\mathcal{W} \approx \delta_0 - \boldsymbol{e}^{-|X|}$ $\mathbf{1}$ $0.8 0.6 \boxed{y}$ $0.4 = \begin{array}{|l|} \hline -c = 0.1 \\ \hline -c = 0.25 \\ -c = 0.5 \\ 0.2 = \begin{array}{|l|} \hline -c = 0.75 \\ -c = 1.0 \\ -c = 1.25 \\ \hline \end{array} \hline \end{array}$ -20 -10 $\overline{0}$ 10 20

de Laire, Dujardin, L.-M. (2023)

Numerical plots

 $\mathcal{W} \approx e^{-x^2}$ 1 $0.8 0.6 \equiv$ ⁰ 0.4 $\begin{array}{r|l} \hline \text{---} & c = 0.1 \\ \hline \text{---} & c = 0.25 \\ \hline \text{---} & c = 0.5 \\ \hline \text{---} & c = 0.75 \\ \hline \text{---} & c = 1.0 \\ \hline \text{---} & c = 1.25 \\ \hline \end{array}$ -20 -10 $\overline{0}$ 10 20

de Laire, Dujardin, L.-M. (2023)

Open problems

In the local case

- **1** Existence of dark solitons for every $c \in (0, 1)$ √ 2) in dimension $\vert N=2 \vert$.
- 2 Existence of 2-dimensional dark solitons for every $c \in (0, 1)$ $\sqrt{2}$) in a strip of \mathbb{R}^2 .
- Existence of **dark-bright solitons** for systems such as

$$
\begin{cases} i\partial_t \Psi=\Delta \Psi+\Psi(1-|\Psi|^2-\alpha|\Phi|^2),\quad \, |\Psi|\rightarrow 1\text{ as }|x|\rightarrow\infty,\\ i\partial_t \Phi=\Delta \Phi+\Phi(\Lambda-\alpha|\Psi|^2-\beta|\Phi|^2),\quad |\Phi|\rightarrow 0\text{ as }|x|\rightarrow\infty. \end{cases}
$$

In the nonlocal case

1 Essentially everything for $N > 2$.

In dimension $N = 1$

- ² Nonexistence for *c* > √ 2.
- Uniqueness (or multiplicity).
- Stability of Mountain Pass solutions.
- Existence of energy minimizers with fixed momentum for more general potentials.

Thanks for your attention!

Fig. 1. Do these 'animals' belong to the same soliton family? (the drawing made by Marc Haelterman in 1989).