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What is a soliton?

It is a physical object that travels with constant velocity in some direction without
changing shape, even after mutual collisions.

Wikimedia Commons
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What is a soliton?

The soliton wave was recreated on the Scott Russell Aqueduct in 1995 §
Image Credit: Department of Mathematics, Heriot-Watt University ‘L\ '
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Dark vs Bright solitons
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Are there dark solitons in nature?
In Bose-Einstein condensates
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S. Burger et al. (1999)
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Defocusing NLS (or Gross-Pitaevskii) equation

0V = AV +W(1—[VP?) inRxRY

It models

@ Bose-Einstein condensation with repulsive interactions between bosons.

@ Evolution of optical pulses in nonlinear self-defocusing media.

Mathematically, a dark soliton is a traveling wave...

c>0,W(t,x)=u(xq —ct,x') = |ico,u+Au+u(l—|uf)=0 inRN

...with finite Ginzburg-Landau energy:

1 1
E(u):E/RN|Vu|2dx+Z/RN(1—|u|2)2dx<oo — [u(x)] = 1, as x| = oc]
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Some basics

icOyu+ Au+u(1—|u?)=0 inRY

e The energy space is not a vector space...

1 1
E(u)=5 /RN |Vul?dx + 1 /RN(1 — |u?)?dx

ERNY={ueH! (RN;C): Vue BRN), 1-|uf e 3RV}

... and contains oscillating functions (for N = 1): e/le*+1) ¢ g(R).
o Infinite energy solutions: u(x) = e~/ |u| =1.
e Trivial solutions: u=cst, |u]=1.

e Invariances:
> U(X) ~ U(X + X0), Xo € RN
» u~ ey g eR
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The 1d case

ic +u" +u(1—|uf)=0 inR

Theorem (Béthuel, Gravejat, Saut (2008))

Q Ifc> \@, we have nonexistence.
© Ifc € [0,/2), then the unique (u.t.i.) nontrivial finite-energy solution is

2—c? V2 —c? . @
Ug(x) = 5 tanh — X —lﬁ.

Moreover, Ug is orbitally stable.

Properties:
@ 1 — |uc|? is analytic, even and radially monotone, and decays exponentially.
© Uuc has different limit values at —oo and +oc.
@ U has a vortex (i.e. |Uc| = 0 at some point) iff ¢ = 0.
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The 1d case

icd + v +u(l —|u?)=0 iR
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The Jones, Putterman and Roberts program (N = 2, 3)

icOyu+ Au+u(1—|u?)=0 inRY

Jones, Putterman and Roberts conjectures for N = 2, 3 (1986)
Existence, asymptotics and stability Vc € (0,1/2). Nonexistence V¢ > /2.

(a)

100 +
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Nonexistence and asymptotics

Theorem (P. Gravejat (2003, 2004))

If N > 2, nonexistence for every ¢ > \/2. If N = 2, nonexistence for ¢ = /2.

Theorem (P. Gravejat (2004-2006))

Precise asymptotic behavior of the dark solitons u at infinity. In particular,
Q u(x) — 1as|x| — occ.
@ (u(x) — 1)|x|N=" is bounded.

11/30



Existence of orbitally stable solutions
The momentum

P(u) (iOx, u,u —1)dx

"2 Jew

Not well-defined in £(RN)

Alternatives:

@ Work in a smaller space.

© Consider renormalized momentums, etc.

Theorem (Béthuel, Gravejat, Saut (2009), Chiron, Maris (2013))

If N = 2, for every p > 0O there exists a dark soliton up € E(RN) with speed
Cp € (0,V'2) such that

E(up) = min{E(v) : v € ERN), P(v) = p}.

Moreover, the set of minimizers is orbitally stable.
If N = 3, the same result holds for every p > py, for some py > 0.
Remark: The speed Cp is a Lagrange multiplier and cannot be prescribed.
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Existence for prescribed subsonic speed

@ By the Mountain Pass Lemma: existence for ¢ £ 0 in dimensions N = 2
[Béthuel, Saut (1999)] and N = 3 [Chiron (2004)].

© By minimizing the energy under a Pohozaev constraint: existence for all
c € (0, \@) in dimension N = 3 [Maris (2013)].

© By pertubative methods (Lyapunov-Schmidt reduction): existence in
dimension N = 2 for ¢ £ 0 [Liu, Wei (2020), Chiron, Pacherie (2021)] and for
(o V2 [Liu, Wang, Wei, Yang (2021)].

@ By the MPL + Monotonicity trick: existence in dimension N = 2 for almost
every ¢ € (0,/2) [Bellazzini, Ruiz (2023)].

The Jones, Putterman and Roberts program is almost complete. O
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The nonlocal model

0V =AY+ VYW (1—|V?)) inRxRN

@ It was originally proposed by [Gross (1963)] and [Pitaevskii (1961)].
@ )V is an even tempered distribution that captures nonlocal interactions between
bosons or with the optical medium.

2
W=é, Wre™*, Wre Xl Wag—e .

We still look for traveling waves with finite energy:

V(t,x) = u(x; — ct,x') = |icou+Au+uW=*(1—|uf)=0 inRY

E(u) = %/}RN |Vul?dx + %/RNU — |uP)(W = (1 — |uf?))dx

We L®(RN) = E(u) < coVu € E(RN) )
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The (nonlocal) Jones, Putterman and Roberts program

So far, only for N = 1 (except nonexistence for N > 2, ¢ > /2 [de Laire (2012)]). J

@ Existence of energy minimizers under (renormalized) momentum constraint [de
Laire, Mennuni (2020)].

@ Existence for almost every ¢ € (0,v/2), and for all ¢ € (0,/2) provided a
priori estimates hold [de Laire, L.-M. (2022)].

@ Nonexistence for ¢ = /2 [de Laire, L.-M. (2022)].

@ Existence of symmetric solution for ¢ € (¢,v/2 — €) and for W = &y [de Laire,
L.-M. (2024)].

@ Qualitative properties for relevant examples [de Laire, L.-M. (2022, 2024)]:

A priori estimates.

Exponential convergence to different limits at +-co.
Analytic regularity.

Monotonicity breaking.

Nonlocal-to-local limit.

@ Study of the case ¢ = 0 [de Laire, L.-M. (2024)].

vVYy VvV VvVYy
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Proof of existence for a.e. ¢ € (0,v/2)

Simplifying the framework

(TWe)

ict + U’ +uWx(1—|uff)) =0

in R

Every solution U € E(R) to (TW) is smooth and vortexless, i.e. |u| > 0. In
particular, there is a lifting u = pe’® with 1 — p € H'(R) N C*(R), § € C*(R).
Moreover, p satisfies (Pg).

(Pe)

_”+f1_
Py

p:R—(0,+00)

Let p € 1+ H'(R) be a positive solution to (P;). We define u = pe', with

0(x) =

=2 X 1—& Then, u € £(R) is a nontrivial solution 7o (TW;).
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Proof of existence for a.e. ¢ € (0,v/2)

Variational structure

) _2\2
Jc(1p)—g/R(p’)”l/R(W*“pz))“pz)%/Ruﬂzp)

Jo(1 —p) eERU{-0c0} V1 —pec H(R) J

Jo € C2(Q), where Q = {1 —p € H'(R) : p > 0inR}. Moreover, given1 — p € Q,

Ji(1 = p) =0 <= pisapositive solution to (Py). ‘
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Proof of existence for a.e. ¢ € (0,v/2)

Mountain Pass geometry

(H) )7V\(§) > 1— k&% in R for some x € [0, }).

Let ¢y € (0,/2). Then, there exists ¢ € Q such that, for all ¢ € (co,V2),
Q J:(¢) <0, and

@ Jc achieves a strict local minimum at 0, with J;(0) = 0.
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Jabri (2003)
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Proof of existence for a.e. ¢ € (0,v/2)

Palais-Smale sequences

T—pn=vneQ: |de(Va) = a| [IJe(va)lp-1r) =0

Theorem (Classical Mountain Pass Lemma)

Q = H'(R) and MP structure = 3 PS sequence {V,} at level @ = (C), where

v(c):= inf max Js(g(t))>0| Ve e (c,V2),
ger(co) tel0,1]

M(co) :={g €C([0,1],92) : 9(0) =0, g(1) = ¢}.
Moreover, if Vi, — V, then J(v) = ~v(c), Ji(v) = 0.

Questions
@ Do PS sequences exist in Q7?
@ Are they bounded in H'(R)?
@ Do they remain away from the boundary of Q?
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Proof of existence for a.e. ¢ € (0,v/2)

Monotoniciy trick of Struwe (and Jeanjean)

2  o\2
=) =5 [P+ g [ovea-ma- -5 [T

I

ger(c) te[0,1]

= inf max Jo(g(t))| Ve e (co,V2)

Monotonicity trick (Struwe (1988), Jeanjean (1999))

~: (o, V2) = (0,+00) is non increasing = 3/(c) for a.e. ¢ € (cy, V2)

—> dJbounded PS sequence
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Proof of existence for a.e. ¢ € (0,v/2)

Monotoniciy trick of Struwe (and Jeanjean)

) _2\2
Jc(1p)—;/R(p’)”l/R(W*“pz))“pz)%/Rupzp)

= inf Je(g(t v 2
W)= _inf | max Jo(g(D) | Ve € (o0, V2)

Monotonicity trick (Struwe (1988), Jeanjean (1999))

~: (o, V2) = (0,+00) is non increasing = 3/(c) for a.e. ¢ € (cy, V2)
—> dJbounded PS sequence

Theorem (de Laire, L.-M. (2022))

Under (H), there exists a nontrivial solution u € E(R) for a.e. ¢ € (0,v/2).
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Proof of existence for every ¢ € (0,v/2)

(TW¢,)

icaUp + Uy + us (W (1 — |up|?)) =0

in R

ch — ¢ € (0,V2) fixed
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Proof of existence for every ¢ € (0,v/2)

(TWe,) icotpy + Uy + up(W (1 —|un?)) =0 inR

ch — ¢ € (0,V2) fixed
Question 1: u, — u solution to (TW,)?

[ Unllwr.o@y < C

(holds for many relevant potentials W)
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Proof of existence for every ¢ € (0,v/2)

(TWe,) icotpy + Uy + up(W (1 —|un?)) =0 inR

ch — ¢ € (0,V2) fixed
Question 1: u, — u solution to (TW,)?

[|Un|wr. @) < C | (holds for many relevant potentials V)

Question 2: Is U nontrivial?

1 = |Un[?|| L ®) > Cw(2 — C3).
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Proof of existence for every ¢ € (0,v/2)

(TWe,) icotpy + Uy + up(W (1 —|un?)) =0 inR

ch — ¢ € (0,V2) fixed
Question 1: u, — u solution to (TW,)?

[|Un|wr. @) < C | (holds for many relevant potentials V)

Question 2: Is U nontrivial?

11 = [Un[?|| =) = Cw(2 — CB).
Question 3: u € £(R)?

Profile decomposition of Palais-Smale sequences, versions of Brezis-Lieb lemma,
Pohozaev identity...
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Proof of existence for every ¢ € (0,v/2)

Theorem (de Laire, L.-M. (2021))

Let W be an even signed Borel measure with W € W2(R), W > 0, W(0) = 1.
Assume that there exist m € [0,1) and k; > 0 such that mk, < 1 and

(W)'(€) = —me Ve > 0, ||ull}e(gy < Ko Yu € E(R) solution.

Then there exists a nontrivial solution u € E(R) to (TW¢) for every ¢ € (0,1/2).

Example

S
§

W=0d, Wre™*, Wre ¥ Wrg—e ¥
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Numerical plots
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de Laire, Dujardin, L.-M. (2023)
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Numerical plots
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Open problems

In the local case
O Existence of dark solitons for every ¢ € (0, /2) in dimension .

@ Existence of 2-dimensional dark solitons for every ¢ € (0,1/2) in a strip of R

@ Existence of dark-bright solitons for systems such as

IOV = AV + V(1 — V]2 —a|®?), |V|—1as|x| — oo,
101 = AP + (A — a|V[2 — B|P[?), |®| — 0as|x| — oco.

In the nonlocal case
@ Essentially everything for N > 2.

In dimension N = 1
@ Nonexistence for ¢ > /2.
@ Uniqueness (or multiplicity).
© Stability of Mountain Pass solutions.

@ Existence of energy minimizers with fixed momentum for more general
potentials.
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Thanks for your attention!

Fig. 1. Do these “animals’ belong to the same soliton family? (the drawing made by Marc Haelterman in 1989).
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