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What is a soliton?

It is a physical object that travels with constant velocity in some direction without
changing shape, even after mutual collisions.

Wikimedia Commons
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What is a soliton?
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Dark vs Bright solitons

Y.S. Kivshar and B. Luther-Davies (1998)
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Are there dark solitons in nature?
In Bose-Einstein condensates

S. Burger et al. (1999)

In optics

Z. Chen et al. (1996)
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Defocusing NLS (or Gross-Pitaevskii) equation

i∂tΨ = ∆Ψ+Ψ
(
1 − |Ψ|2

)
in R× RN

It models
Bose-Einstein condensation with repulsive interactions between bosons.
Evolution of optical pulses in nonlinear self-defocusing media.

Mathematically, a dark soliton is a traveling wave...

c > 0, Ψ(t , x) = u(x1 − ct , x ′) =⇒ ic∂x1u +∆u + u(1 − |u|2) = 0 in RN

...with finite Ginzburg-Landau energy:

E(u) =
1
2

∫
RN

|∇u|2dx+
1
4

∫
RN

(1−|u|2)2dx < ∞ =⇒ |u(x)| → 1, as |x | → ∞
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Some basics

ic∂x1u +∆u + u(1 − |u|2) = 0 in RN

The energy space is not a vector space...

E(u) =
1
2

∫
RN

|∇u|2dx +
1
4

∫
RN

(1 − |u|2)2dx

E(RN) = {u ∈ H1
loc(RN ;C) : ∇u ∈ L2(RN), 1 − |u|2 ∈ L2(RN)}

... and contains oscillating functions (for N = 1): ei log(x2+1) ∈ E(R).

Infinite energy solutions: u(x) = e−cx1 i , |u| = 1.

Trivial solutions: u ≡ cst, |u| = 1.

Invariances:
▶ u(x)⇝ u(x + x0), x0 ∈ RN

▶ u ⇝ eiθ0 u, θ0 ∈ R
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The 1d case

icu′ + u′′ + u(1 − |u|2) = 0 in R

Theorem (Béthuel, Gravejat, Saut (2008))
1 If c ≥

√
2, we have nonexistence.

2 If c ∈ [0,
√

2), then the unique (u.t.i.) nontrivial finite-energy solution is

uc(x) =

√
2 − c2

2
tanh

(√
2 − c2

2
x

)
− i

c√
2
.

Moreover, uc is orbitally stable.

Properties:
1 1 − |uc |2 is analytic, even and radially monotone, and decays exponentially.
2 uc has different limit values at −∞ and +∞.
3 uc has a vortex (i.e. |uc | = 0 at some point) iff c = 0.
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The 1d case

icu′ + u′′ + u(1 − |u|2) = 0 in R
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The Jones, Putterman and Roberts program (N = 2,3)

ic∂x1u +∆u + u(1 − |u|2) = 0 in RN

Jones, Putterman and Roberts conjectures for N = 2,3 (1986)

Existence, asymptotics and stability ∀c ∈ (0,
√

2). Nonexistence ∀c >
√

2.
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Nonexistence and asymptotics

Theorem (P. Gravejat (2003, 2004))

If N ≥ 2, nonexistence for every c >
√

2. If N = 2, nonexistence for c =
√

2.

Theorem (P. Gravejat (2004-2006))
Precise asymptotic behavior of the dark solitons u at infinity. In particular,

1 u(x) → 1 as |x | → ∞.
2 (u(x)− 1)|x |N−1 is bounded.
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Existence of orbitally stable solutions
The momentum

P(u) =
1
2

∫
RN

⟨i∂x1u,u − 1⟩dx

Not well-defined in E(RN)

Alternatives:
1 Work in a smaller space.
2 Consider renormalized momentums, etc.

Theorem (Béthuel, Gravejat, Saut (2009), Chiron, Mariş (2013))
If N = 2, for every p > 0 there exists a dark soliton up ∈ E(RN) with speed
cp ∈ (0,

√
2) such that

E(up) = min{E(v) : v ∈ Ẽ(RN), P(v) = p}.

Moreover, the set of minimizers is orbitally stable.
If N = 3, the same result holds for every p ≥ p0, for some p0 > 0.
Remark: The speed cp is a Lagrange multiplier and cannot be prescribed.
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Existence for prescribed subsonic speed

1 By the Mountain Pass Lemma: existence for c ⪆ 0 in dimensions N = 2
[Béthuel, Saut (1999)] and N = 3 [Chiron (2004)].

2 By minimizing the energy under a Pohozaev constraint: existence for all
c ∈ (0,

√
2) in dimension N = 3 [Mariş (2013)].

3 By pertubative methods (Lyapunov-Schmidt reduction): existence in
dimension N = 2 for c ⪆ 0 [Liu, Wei (2020), Chiron, Pacherie (2021)] and for
c ⪅

√
2 [Liu, Wang, Wei, Yang (2021)].

4 By the MPL + Monotonicity trick: existence in dimension N = 2 for almost
every c ∈ (0,

√
2) [Bellazzini, Ruiz (2023)].

The Jones, Putterman and Roberts program is almost complete. □
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The nonlocal model

i∂tΨ = ∆Ψ+Ψ
(
W ∗

(
1 − |Ψ|2

))
in R× RN

It was originally proposed by [Gross (1963)] and [Pitaevskii (1961)].
W is an even tempered distribution that captures nonlocal interactions between
bosons or with the optical medium.

Example

W = δ0, W ≈ e−x2
, W ≈ e−|x|, W ≈ δ0 − e−|x|.

We still look for traveling waves with finite energy:

Ψ(t , x) = u(x1 − ct , x ′) =⇒ ic∂x1u +∆u + u
(
W ∗ (1 − |u|2)

)
= 0 in RN

E(u) =
1
2

∫
RN

|∇u|2dx +
1
4

∫
RN

(1 − |u|2)
(
W ∗ (1 − |u|2)

)
dx

Ŵ ∈ L∞(RN) =⇒ E(u) < ∞∀u ∈ E(RN)
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The (nonlocal) Jones, Putterman and Roberts program

So far, only for N = 1 (except nonexistence for N ≥ 2, c >
√

2 [de Laire (2012)]).

1 Existence of energy minimizers under (renormalized) momentum constraint [de
Laire, Mennuni (2020)].

2 Existence for almost every c ∈ (0,
√

2), and for all c ∈ (0,
√

2) provided a
priori estimates hold [de Laire, L.-M. (2022)].

3 Nonexistence for c =
√

2 [de Laire, L.-M. (2022)].
4 Existence of symmetric solution for c ∈ (ε,

√
2 − ε) and for W ≈ δ0 [de Laire,

L.-M. (2024)].
5 Qualitative properties for relevant examples [de Laire, L.-M. (2022, 2024)]:

▶ A priori estimates.
▶ Exponential convergence to different limits at ±∞.
▶ Analytic regularity.
▶ Monotonicity breaking.
▶ Nonlocal-to-local limit.

6 Study of the case c = 0 [de Laire, L.-M. (2024)].
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Proof of existence for a.e. c ∈ (0,
√

2)
Simplifying the framework

(TWc) icu′ + u′′ + u
(
W ∗ (1 − |u|2)

)
= 0 in R

Lemma
Every solution u ∈ E(R) to (TWc) is smooth and vortexless, i.e. |u| > 0. In
particular, there is a lifting u = ρeiθ with 1 − ρ ∈ H1(R) ∩ C∞(R), θ ∈ C∞(R).
Moreover, ρ satisfies (Pc).

(Pc) −ρ′′ +
c2

4
1 − ρ2

ρ3 = ρ
(
W ∗ (1 − ρ2)

)
in R, ρ : R → (0,+∞)

Lemma
Let ρ ∈ 1 + H1(R) be a positive solution to (Pc). We define u = ρeiθ, with
θ(x) = c

2

∫ x
a

1−ρ2

ρ2 . Then, u ∈ E(R) is a nontrivial solution to (TWc).
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Proof of existence for a.e. c ∈ (0,
√

2)
Variational structure

Jc(1 − ρ) =
1
2

∫
R
(ρ′)2 +

1
4

∫
R
(W ∗ (1 − ρ2))(1 − ρ2)− c2

8

∫
R

(1 − ρ2)2

ρ2

Jc(1 − ρ) ∈ R ∪ {−∞} ∀1 − ρ ∈ H1(R)

Lemma
Jc ∈ C2(Ω), where Ω = {1 − ρ ∈ H1(R) : ρ > 0 in R}. Moreover, given 1 − ρ ∈ Ω,

J ′
c(1 − ρ) = 0 ⇐⇒ ρ is a positive solution to (Pc).
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Proof of existence for a.e. c ∈ (0,
√

2)
Mountain Pass geometry

(H) Ŵ(ξ) ≥ 1 − κξ2 in R for some κ ∈ [0, 1
2 ).

Lemma
Let c0 ∈ (0,

√
2). Then, there exists ϕ ∈ Ω such that, for all c ∈ (c0,

√
2),

1 Jc(ϕ) < 0, and
2 Jc achieves a strict local minimum at 0, with Jc(0) = 0.

Jabri (2003)
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Proof of existence for a.e. c ∈ (0,
√

2)
Palais-Smale sequences

1 − ρn = vn ∈ Ω : Jc(vn) → α ∥J ′
c(vn)∥H−1(R) → 0

Theorem (Classical Mountain Pass Lemma)
Ω = H1(R) and MP structure =⇒ ∃ PS sequence {vn} at level α = γ(c), where

γ(c) := inf
g∈Γ(c0)

max
t∈[0,1]

Jc(g(t))> 0 ∀c ∈ (c0,
√

2),

Γ(c0) := {g ∈ C([0,1],Ω) : g(0) = 0, g(1) = ϕ}.

Moreover, if vn → v , then Jc(v) = γ(c), J ′
c(v) = 0.

Questions
1 Do PS sequences exist in Ω?
2 Are they bounded in H1(R)?
3 Do they remain away from the boundary of Ω?
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Proof of existence for a.e. c ∈ (0,
√

2)
Monotoniciy trick of Struwe (and Jeanjean)

Jc(1 − ρ) =
1
2

∫
R
(ρ′)2 +

1
4

∫
R
(W ∗ (1 − ρ2))(1 − ρ2)− c2

8

∫
R

(1 − ρ2)2

ρ2

γ(c) := inf
g∈Γ(c0)

max
t∈[0,1]

Jc(g(t)) ∀c ∈ (c0,
√

2)

Monotonicity trick (Struwe (1988), Jeanjean (1999))

γ : (c0,
√

2) → (0,+∞) is non increasing =⇒ ∃γ′(c) for a.e. c ∈ (c0,
√

2)
=⇒ ∃ bounded PS sequence
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Proof of existence for a.e. c ∈ (0,
√
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Jc(1 − ρ) =
1
2

∫
R
(ρ′)2 +

1
4

∫
R
(W ∗ (1 − ρ2))(1 − ρ2)− c2

8

∫
R

(1 − ρ2)2

ρ2

γ(c) := inf
g∈Γ(c0)

max
t∈[0,1]

Jc(g(t)) ∀c ∈ (c0,
√

2)

Monotonicity trick (Struwe (1988), Jeanjean (1999))

γ : (c0,
√

2) → (0,+∞) is non increasing =⇒ ∃γ′(c) for a.e. c ∈ (c0,
√

2)
=⇒ ∃ bounded PS sequence

Theorem (de Laire, L.-M. (2022))
Under (H), there exists a nontrivial solution u ∈ E(R) for a.e. c ∈ (0,

√
2).
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Proof of existence for every c ∈ (0,
√

2)

(TWcn ) icnu′
n + u′′

n + un
(
W ∗ (1 − |un|2)

)
= 0 in R

cn → c ∈ (0,
√

2) fixed
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Proof of existence for every c ∈ (0,
√

2)

(TWcn ) icnu′
n + u′′

n + un
(
W ∗ (1 − |un|2)

)
= 0 in R

cn → c ∈ (0,
√

2) fixed

Question 1: un → u solution to (TWc)?

∥un∥W k,∞(R) ≤ C (holds for many relevant potentials W)
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Proof of existence for every c ∈ (0,
√

2)

(TWcn ) icnu′
n + u′′

n + un
(
W ∗ (1 − |un|2)

)
= 0 in R

cn → c ∈ (0,
√

2) fixed

Question 1: un → u solution to (TWc)?

∥un∥W k,∞(R) ≤ C (holds for many relevant potentials W)

Question 2: Is u nontrivial?

∥1 − |un|2∥L∞(R) ≥ CW(2 − c2
n).

Question 3: u ∈ E(R)?
Profile decomposition of Palais-Smale sequences, versions of Brezis-Lieb lemma,
Pohozaev identity...
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Proof of existence for every c ∈ (0,
√

2)

Theorem (de Laire, L.-M. (2021))

Let W be an even signed Borel measure with Ŵ ∈ W 2,∞(R), Ŵ ≥ 0, Ŵ(0) = 1.
Assume that there exist m ∈ [0,1) and kc > 0 such that mkc < 1 and(

Ŵ
)′
(ξ) ≥ −mξ ∀ξ ≥ 0, ∥u∥2

L∞(R) ≤ kc ∀u ∈ E(R) solution.

Then there exists a nontrivial solution u ∈ E(R) to (TWc) for every c ∈ (0,
√

2).

Example

W = δ0, W ≈ e−x2
, W ≈ e−|x|, W ≈ δ0 − e−|x|.
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Numerical plots

W ≈ δ0 − e−|x |

de Laire, Dujardin, L.-M. (2023)
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Numerical plots

W ≈ e−x2

de Laire, Dujardin, L.-M. (2023)
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Open problems
In the local case

1 Existence of dark solitons for every c ∈ (0,
√

2) in dimension N = 2 .

2 Existence of 2-dimensional dark solitons for every c ∈ (0,
√

2) in a strip of R2.
3 Existence of dark-bright solitons for systems such as{

i∂tΨ = ∆Ψ+Ψ(1 − |Ψ|2 − α|Φ|2), |Ψ| → 1 as |x | → ∞,

i∂tΦ = ∆Φ+Φ(Λ− α|Ψ|2 − β|Φ|2), |Φ| → 0 as |x | → ∞.

In the nonlocal case
1 Essentially everything for N ≥ 2.

In dimension N = 1
2 Nonexistence for c >

√
2.

3 Uniqueness (or multiplicity).
4 Stability of Mountain Pass solutions.
5 Existence of energy minimizers with fixed momentum for more general

potentials.
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Thanks for your attention!
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