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Kauffman bracket polynomial
D ⊂ R2: unoriented link diagram −→ ⟨D⟩ ∈ Z[q±1]

= q + q−1

= (−q2 − q−2)

⟨ ⟩ = q2⟨ ⟩+ ⟨ ⟩+ ⟨ ⟩+ q−2⟨ ⟩

= q6 + q2 + q−2 + q−6

• Invariant of framed unoriented link. Framed version of Jones
polynomial.
• Extension (Reshetikhin-Turaev)

ribbon category ⇝ invariants of ribbon graph
simple Lie algebra g⇝ ribbon category Rep(Uq(g))

g = sl2 ⇝ (colored) Jones polynomial



Kauffman bracket skein module

Ground ring R : commutative domain, with fixed invertible q.
Example: R = Z[q, q−1], Q(q), or R = C ∋ q ̸= 0.
M oriented 3-manifold. Define (Przytycki, Turaev)

S (M) =
R-span of framed unoriented links inM

= q + q−1 , = (−q2 − q−2)

Convention: ∅ is a framed link.
Orientation ofM is used in the relations.
Kauffman’s theorem: S (S3) ∼= R = Z[q, q−1], L → ⟨L⟩.
• Kauffman type invariants of links inM :

R-linear f : S (M) → R = Z[q, q−1].



Surfaces

S: oriented surface. Thickened surface S̃ := S× (−1, 1).

S (S) := S (S̃).

Links can be "drawn" on S (diagrams).

• Example: = q + q−1

• Przytycki: {simple diagrams} = R-basis
(simple=no crossings, no trivial knot).



Algebra structure

S (S) is an associative algebra with unit (Turaev)

α1α2 =

α1

α2 example: a.b = a b

• unit = empty link.
• S (S) non-comutative in general.
• There are S ̸= S′ with S̃ = S̃′. But as algebra S (S) ̸=S (S′).
• Related notion: skein categories (Walker, Johnson-Freyd)



Examples

S ( ) ∼= R, L → ⟨L⟩

S (Σ0,2) = R[z ]

S (Σ0,3) = R[x , y , z ]

S (Σ1,1) = R⟨x , y , z⟩/Rel

where Rel is

[x , y ]q = (q2 − q−2)z , [y , z ]q = (q2 − q−2)x , [z , x ]q = (q2 − q−2)y

Here [x , y ]q = qxy − q−1yx . (Bullock-Przytycki; SO(3).)



Quantization of Character variety

If R = C, q = ±1, then S±1(M) is a commutative algebra, where
product is disjoint union:

(q = −1) = − − =

Turaev, Bullock, Przytycki-Sikora,
Bullock-Frohman-Kania-Bartoszynska:
• S−1(M) ∼= (canonically) the universal coordinate ring of the SL2
character variety ofM , an important classical object.
• For surfaces: quantization along the Atiyah-Bott-Goldman
bracket.
• connects Jones polynomial and classical topology.
• Used in TQFT.
• Helps proving AJ conjecture for many knots.
• Closely related to (quantum) Teichmüller space, cluster algebras.



General ribbon category C
C ribbon R-linear category,M oriented 3-manifold.

SC(M) =
R⟨ C-ribbon graphs inM ⟩
local RT operatior relations

Examples: g semisimple Lie algebra.
• Crat = Rep(Uq(g)), over Q(q1/D) ⇝ S rat

g (M)

• CZ = RepZ(UZ
q (g)), over R = Z[q±1/D ] ⇝ Sg(M)

UZ
q (g) Lusztig’s integral version.

RepZ is generated by V Z
λ , λ ∈ X+, tensor products.

For 0 ̸= ξ ∈ C let Sg,ξ(M) = Sg(M)⊗R C, q → ξ.
• R = C ∋ ξ root of 1, C∗

g,ξ = Rep1,fd(Uξ(g))⇝ S ∗
g,ξ(M)

Uξ(g) Lusztig quantum group at ξ.

CZ
g,ξ → C∗

g,ξ ⇝ F : Sg,ξ(M) → S ∗
g,ξ(M)

If F bijective?



SLn-skein algebra (Sikora 2003, twisted version)

• n-web-diagram on S: 1-dimensonal & oriented; locally either a
smooth point, or an n-valent sink or source

Over/undercrossing like in link diagrams.

example of 3-web

• n-web in S̃ = S× (−1, 1), cyclic order at vertices, framing
(normal vector field). These are special ribbon graphs, where
strands are colored by the fundamental representation of Uq(sln).
• considered up to isotopies in S× (−1, 1).



SLn-skein algebra, definition
R any commutative domain, with q̂±1. Usual q = q̂1/2n

2 .

Ssln(Σ) = Sn(Σ) = R-span {isotopy classes of n-webs}/Rel

q
1

n −q−
1

n = (q − q−1) ,

= (−1)n−1qn−1/n ,

= (−1)n−1[n]q , [n]q =
qn − q−n

q − q−1

...... = (−q)(
n
2
) ·

∑
σ∈Sn

(−q(1−n)/n)ℓ(σ) ...... σ+ .

(ℓ(σ) length, σ+ positive braid)

α1α2 =
α1

α2

example: a.b = a b



SLn-skein algebra

• Local n-webs: generating intertwiners of Uq(sln) fundamental
representation.
Defining Relations of skein algebra: (all) relations among
elementary intertwiners.
•We don’t use all ribbon graphs, all relations between ribbon
graphs.
• n = 2, Kauffman bracket skein algebra.
• n = 3, Kuperberg skein algebra.
• other versions: MOY graphs, CKM graphs (restrictions on
ground ring)
• Quantization of twisted character variety.

R = C, q̂ = 1, Sn(Σ) = C[ twisted SLn-characters ]

Poisson structure: Atiyah-Bott-Goldman, Fock-Rosly.



Free? Domain?

• Understand S (S) algebraically.
Questions.
(1) Is S (S) free as an R-module? R = Z[q̂±1].
(2) Is S (S) a domain? (xy = 0 ⇒ x = 0 or y = 0).
• sl2 Yes to both. Przytycki-Sikora, Bonahon-Wong.
• Unknown answers: R = Z[q̂±1],
S = Σg , g ≥ 1, sln, n ≥ 3. Even torus Σ1.
S = Σg ,p, sln, n ≥ 4, except for Σ0,Σ0,1,Σ0,2

R = C ∋ q̂ ̸= 0 (domain question)
• (Costantino-Korinman-L.):
All sln, S = Σg ,p, p ≥ 1, and R = Q(q̂). Then S (S) is a domain.
Proof use theory of stated skein algebra.
• difficulty: we don’t know a (candidate for a) good basis for
Sn(S). We have basis g = sl2 , and g = sl3 with Σg ,p, p ≥ 1.



Triangulation and coordinates

• Teichmüller space T (S) = set of all hyperbolic structures on S
up to isotopy.
T (S) is a component of χPSL2(R)(S)
• Given an ideal triangulation of S. Thurston and Penner
coordinatize versions of T (S).
• Can we do the same for S (S)?
⇝ skein algebra of ideal triangle.
Need to extend skein algebra to involve the boundary.



sl2 case. Tangle diagrams

Goal: Extend S (S) to involve boundary edges.
Links in S̃ = S× (−1) can “come" to boundary: Tangles in S̃.

Tangle diagram α on S: closed curves
and arcs with endpoints on ∂S.
In interior of S: like a link diagram
Each boundary edge b of S: a linear
(height) order on b ∩ ∂α

State s : ∂α→ {±}



Stated skein algebra (L. 2016, g = sl2)

S (S) :=
R-span of stated tangles in S̃

(1), boundary rels (2) & (3)

= q + q−1 , = (−q2 − q−2) (1)

= q−1/2 , = 0, = 0 (2)

= q2 + q−1/2 (3)

• RT operator invariant, (dual)canonical basis.
• product αβ: α is above β, higher on each boundary edge.



Cutting homomorphism

cut

Theorem (L. 2016 )
ψ is an algebra algebra homomorphism ψ : S (S) → S (S′).
Injective (any ground ring).

The exact image is known. (Hochschild cohomology)

triangulation λ ⇝ Ψ : S (S) →
⊗

τ :faces

S (τ)

A presentation of S (τ) is known.
⇝ many useful facts



sln, general ribbon category, half ribbon element

Stated skein algebra
g = sl3: V. Higgins. Cutting homomorphism ψ is injective
(using basis of S (S)).
sln: L.-Sikora. Cutting homomorphism ψ is injective if S is
connected and has boundary.
• Costantino-Korinman-L.: General Tanakian ribbon category. (half
ribbon structure)
Arbitrary simple Lie algebra g. If ground ring is Q(q̂), then Cutting
homomorphism ψ is injective, even for 3-manifolds.
• Costantino–L.: g = sl2,R = C, q̂ root of 1. In general, the cutting
homomorphism is not injective for 3-manifolds. (but injective for
surfaces).
• over Q(q̂): related to factorization homology, lattice field theory
of Alekseev-Grosse-Schomerus and Buffenoir-Roche, skein
category (work of Ben-Zvi-Brochier-Jordan, Cooke, Haioun).



Quantum space, Quantum torus

• λ: an ideal triangulation of S. Each face = P3, triangle.

S (S)
cut−−→

⊗
τ :faces

S (τ)

It turns out S (P3) is closely related to quantum tori.
Q : anti-symmetric r × r matrix, integer entries.

T+(Q) = R⟨xi , i = 1, . . . , r⟩/(xixj = qQij xjxi )

T(Q) = R⟨x±1

i , i = 1, . . . , r⟩/(xixj = qQij xjxi ).

(Laurent) polynomials in q-commuting variables.
Simplest type of non-commutative algebra:
Noetherian domain. Gelfand-Kirilov dimension = r .
q = root of 1: Azumaya algebra. Representation theory known.



Triangle P3, sl2

• Costantino-L.: Reduced stated skein algebra

S (S) = S (S)/( )

(Relations comes from Bonahon-Wong work on quantum trace)
• S (P3) is a quantum torus:

S (P3) =
R⟨a±1, b±1, c±1⟩

(ba = q2ab, cb = q2bc, ac = q2ca)

• λ: an ideal triangulation of S

S (S) → S (S)
cut−−→

⊗
τ :faces

S (τ) =
⊗

τ :faces
T(P3)

⇝ quantum trace maps (L.-Yu).



Triangle P3, sln, n ≥ 3

• L.-Yu Reduced stated skein algebra

S (S) = S (S)/( , i < k)

• S (P3) is almost a quantum torus: ∃ antisymmetric matrix P ,

T+(P) ⊂ S (P3) ⊂ T(P)

• λ: an ideal triangulation of S

S (S) → S (S)
cut−−→

⊗
τ :faces

S (τ) →
⊗

τ :faces
T(P)

⇝ quantum trace maps (L.-Yu).



Fock Goncharov algebra (quantum higher
Teichmüller theory, 2009)

λ: ideal triangulation of Σ = Σg \ P ,

• Subdivide each triangle into n2 small triangles. Arrows on edges.
(n = 4)
V = set of vertices (except P ).
Q : V × V → Z is the quiver matrix:

Q(x , y) = #(x → y)−#(y → x)

X n(Σ, λ) := R⟨x±1, x ∈ V ⟩/(xy = q̂2Q(x ,y)yx), quantum torus

• Quantization of X -variety (if q replaces q1/n2 .)



Sln quantum trace
Ideal triangulation λ of S

S (S) → S (S)
cut−−→

⊗
τ :faces

S (τ) →
⊗

τ :faces
T(P)⊃ X n(Σ, λ)

Theorem (L. & Yu)
∃ algebra map, natural with respect to triangulation change

trXλ : S (S) → X (S;λ).

(i) q = 1 recovers classical map of Fock-Goncharov.
(ii) n = 2 Bonahon-Wong map.
(iii) n ≤ 3 injective.

n = 3 independent work of H. Kim, partial result of D. Douglas.
• A-version for triangulable surfaces having no interior punctures.
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