Skein Algebras of Surfaces – algebraic structure

Thang Lê

Georgia Institute of Technology

letu@math.gatech.edu

September, 2024 based on joint work with F. Costantino, J. Korinman, S. Sikora, T. Yu

Kauffman bracket polynomial

 $D \subset \mathbb{R}^2$: unoriented link diagram $\longrightarrow \langle D \rangle \in \mathbb{Z}[q^{\pm 1}]$

$$= q + q^{-1}$$

$$= (-q^2 - q^{-2})$$

$$\langle \bigotimes \rangle = q^2 \langle \bigotimes \rangle + \langle \bigotimes \rangle + \langle \bigotimes \rangle + q^{-2} \langle \bigotimes \rangle$$

= $q^6 + q^2 + q^{-2} + q^{-6}$

- Invariant of framed unoriented link. Framed version of Jones polynomial.
- Extension (Reshetikhin-Turaev)

ribbon category \rightsquigarrow invariants of ribbon graph simple Lie algebra $\mathfrak{g} \rightsquigarrow$ ribbon category $\operatorname{Rep}(U_q(\mathfrak{g}))$ $\mathfrak{g} = sl_2 \rightsquigarrow$ (colored) Jones polynomial

Kauffman bracket skein module

Ground ring *R*: commutative domain, with fixed invertible *q*. Example: $R = \mathbb{Z}[q, q^{-1}], \mathbb{Q}(q)$, or $R = \mathbb{C} \ni q \neq 0$. *M* oriented 3-manifold. Define (Przytycki, Turaev)

$$\mathscr{S}(M) = \frac{R \text{-span of framed unoriented links in } M}{\bigotimes} = q \bigotimes + q^{-1} \bigotimes, \quad \bigcirc = (-q^2 - q^{-2})$$

Convention: \emptyset is a framed link. Orientation of *M* is used in the relations. Kauffman's theorem: $\mathscr{S}(S^3) \cong R = \mathbb{Z}[q, q^{-1}], L \to \langle L \rangle.$

• Kauffman type invariants of links in M:

R-linear
$$f: \mathscr{S}(M) \to R = \mathbb{Z}[q, q^{-1}].$$

Surfaces

 \mathfrak{S} : oriented surface. Thickened surface $\tilde{\mathfrak{S}} := \mathfrak{S} \times (-1, 1)$.

$$\mathscr{S}(\mathfrak{S}) := \mathscr{S}(\tilde{\mathfrak{S}}).$$

Links can be "drawn" on \mathfrak{S} (diagrams).

• Przytycki: {simple diagrams} = *R*-basis (simple=no crossings, no trivial knot).

Algebra structure

$\mathscr{S}(\mathfrak{S})$ is an associative algebra with unit (Turaev)

$$\alpha_1 \alpha_2 = \boxed{\alpha_2}$$
 example: **a**.**b** = (**b**)

- unit = empty link.
- $\mathscr{S}(\mathfrak{S})$ non-comutative in general.
- There are $\mathfrak{S} \neq \mathfrak{S}'$ with $\tilde{\mathfrak{S}} = \tilde{\mathfrak{S}}'$. But as algebra $\mathscr{S}(\mathfrak{S}) \neq \mathscr{S}(\mathfrak{S}')$.
- Related notion: skein categories (Walker, Johnson-Freyd)

$$\mathscr{S}(\bigcirc) \cong R, \qquad L \to \langle L \rangle$$

$$\mathscr{S}(\Sigma_{0,2}) = R[z]$$

 $\mathscr{S}(\Sigma_{0,3}) = R[x, y, z]$
 $\mathscr{S}(\Sigma_{1,1}) = R\langle x, y, z \rangle / Rel$

where Rel is

$$[x, y]_q = (q^2 - q^{-2})z, [y, z]_q = (q^2 - q^{-2})x, [z, x]_q = (q^2 - q^{-2})y$$

Here $[x, y]_q = qxy - q^{-1}yx$. (Bullock-Przytycki; *SO*(3).)

Quantization of Character variety

If $R = \mathbb{C}$, $q = \pm 1$, then $\mathscr{S}_{\pm 1}(M)$ is a commutative algebra, where product is disjoint union:

$$(q = -1)$$
 $X = -X - X = X$

Turaev, Bullock, Przytycki-Sikora,

Bullock-Frohman-Kania-Bartoszynska:

• $\mathscr{S}_{-1}(M) \cong$ (canonically) the universal coordinate ring of the SL_2 character variety of M, an important classical object.

• For surfaces: quantization along the Atiyah-Bott-Goldman bracket.

- connects Jones polynomial and classical topology.
- Used in TQFT.
- Helps proving AJ conjecture for many knots.
- Closely related to (quantum) Teichmüller space, cluster algebras.

General ribbon category \mathcal{C}

C ribbon *R*-linear category, *M* oriented 3-manifold.

$$\mathscr{S}_{\mathcal{C}}(M) = \frac{R \langle \mathcal{C}\text{-ribbon graphs in } M \rangle}{\text{local RT operatior relations}}$$

Examples: g semisimple Lie algebra.

- $C^{\operatorname{rat}} = \operatorname{Rep}(U_q(\mathfrak{g})), \operatorname{over} \mathbb{Q}(q^{1/D}) \rightsquigarrow \mathscr{S}_{\mathfrak{g}}^{\operatorname{rat}}(M)$
- $C^{\mathbb{Z}} = \operatorname{Rep}^{\mathbb{Z}}(U_q^{\mathbb{Z}}(\mathfrak{g}))$, over $R = \mathbb{Z}[q^{\pm 1/D}] \rightsquigarrow \mathscr{S}_{\mathfrak{g}}(M)$ $U_q^{\mathbb{Z}}(\mathfrak{g})$ Lusztig's integral version. $\operatorname{Rep}^{\mathbb{Z}}$ is generated by $V_{\lambda}^{\mathbb{Z}}, \lambda \in X_+$, tensor products. For $0 \neq \xi \in \mathbb{C}$ let $\mathscr{S}_{\mathfrak{g},\xi}(M) = \mathscr{S}_{\mathfrak{g}}(M) \otimes_R \mathbb{C}, q \to \xi$.
- $R = \mathbb{C} \ni \xi$ root of 1, $\mathcal{C}^*_{\mathfrak{g},\xi} = \operatorname{Rep}^{1,fd}(U_{\xi}(\mathfrak{g})) \rightsquigarrow \mathscr{S}^*_{\mathfrak{g},\xi}(M)$ $U_{\xi}(\mathfrak{g})$ Lusztig quantum group at ξ .

$$\mathcal{C}_{\mathfrak{g},\xi}^{\mathbb{Z}} \to \mathcal{C}_{\mathfrak{g},\xi}^* \rightsquigarrow F : \mathscr{S}_{\mathfrak{g},\xi}(M) \to \mathscr{S}_{\mathfrak{g},\xi}^*(M)$$

If F bijective?

SL_n-skein algebra (Sikora 2003, twisted version)

• *n*-web-diagram on \mathfrak{S} : 1-dimensional & oriented; locally either a smooth point, or an *n*-valent sink or source

$$\rightarrow$$
 \times \times

Over/undercrossing like in link diagrams.

example of 3-web

n-web in G̃ = G × (−1, 1), cyclic order at vertices, framing (normal vector field). These are special ribbon graphs, where strands are colored by the fundamental representation of U_q(sl_n).
considered up to isotopies in G × (−1, 1).

SL_n-skein algebra, definition

R any commutative domain, with $\hat{q}^{\pm 1}$. Usual $q = \hat{q}^{1/2n^2}$.

 $\mathscr{S}_{sl_n}(\Sigma) = \mathscr{S}_n(\Sigma) = R$ -span {isotopy classes of *n*-webs}/Rel

 SL_n -skein algebra

• Local *n*-webs: generating intertwiners of $U_q(sl_n)$ fundamental representation.

Defining Relations of skein algebra: (all) relations among elementary intertwiners.

- We don't use all ribbon graphs, all relations between ribbon graphs.
- n = 2, Kauffman bracket skein algebra.
- n = 3, Kuperberg skein algebra.
- other versions: MOY graphs, CKM graphs (restrictions on ground ring)
- Quantization of twisted character variety.

 $R = \mathbb{C}, \hat{q} = 1, \qquad \mathscr{S}_n(\Sigma) = \mathbb{C}[\text{ twisted } SL_n\text{-characters }]$

Poisson structure: Atiyah-Bott-Goldman, Fock-Rosly.

Free? Domain?

- Understand $\mathscr{S}(\mathfrak{S})$ algebraically. Questions.
 - (1) Is $\mathscr{S}(\mathfrak{S})$ free as an *R*-module? $R = \mathbb{Z}[\hat{q}^{\pm 1}]$.
 - (2) Is $\mathscr{S}(\mathfrak{S})$ a domain? ($xy = 0 \Rightarrow x = 0$ or y = 0).
- *sl*₂ Yes to both. Przytycki-Sikora, Bonahon-Wong.
- Unknown answers: $R = \mathbb{Z}[\hat{q}^{\pm 1}]$,
- $\mathfrak{S} = \Sigma_g, g \ge 1, sl_n, n \ge 3$. Even torus Σ_1 .
- $\mathfrak{S} = \Sigma_{g,p}, sl_n, n \geq 4$, except for $\Sigma_0, \Sigma_{0,1}, \Sigma_{0,2}$
- $R = \mathbb{C} \ni \hat{q} \neq 0$ (domain question)
- (Costantino-Korinman-L.):

All sl_n , $\mathfrak{S} = \Sigma_{g,p}$, $p \ge 1$, and $R = \mathbb{Q}(\hat{q})$. Then $\mathscr{S}(\mathfrak{S})$ is a domain. Proof use theory of stated skein algebra.

• difficulty: we don't know a (candidate for a) good basis for $\mathscr{S}_n(\mathfrak{S})$. We have basis $\mathfrak{g} = sl_2$, and $\mathfrak{g} = sl_3$ with $\Sigma_{g,p}, p \ge 1$.

Triangulation and coordinates

- Teichmüller space $\mathcal{T}(\mathfrak{S})=$ set of all hyperbolic structures on \mathfrak{S} up to isotopy.
- $\mathcal{T}(\mathfrak{S})$ is a component of $\chi_{PSL_2(\mathbb{R})}(\mathfrak{S})$
- Given an ideal triangulation of \mathfrak{S} . Thurston and Penner coordinatize versions of $\mathcal{T}(\mathfrak{S})$.
- Can we do the same for $\mathscr{S}(\mathfrak{S})$?

→ skein algebra of *ideal triangle*.

Need to extend skein algebra to involve the boundary.

sl₂ case. Tangle diagrams

Goal: Extend $\mathscr{S}(\mathfrak{S})$ to involve boundary edges. Links in $\widetilde{\mathfrak{S}} = \mathfrak{S} \times (-1)$ can "come" to boundary: Tangles in $\widetilde{\mathfrak{S}}$.

Tangle diagram α on \mathfrak{S} : closed curves and arcs with endpoints on $\partial \mathfrak{S}$. In interior of \mathfrak{S} : like a link diagram Each boundary edge *b* of \mathfrak{S} : a linear (height) order on $b \cap \partial \alpha$

State
$$s : \partial \alpha \to \{\pm\}$$

Stated skein algebra (L. 2016, $g = sl_2$)

$$\mathscr{S}(\mathfrak{S}) := \frac{R \text{-span of stated tangles in } \widetilde{\mathfrak{S}}}{(1), \text{ boundary rels (2) & (3)}}$$

$$= q + q^{-1} + q^{-1} , 0 = (-q^2 - q^{-2})$$
(1)

$$= q^{-1/2} + q^{-1/2} , = q^{-1/2} + q^{-1/2}$$
(2)

$$= q^{-1/2} + q^{-1/2}$$
(3)

- RT operator invariant, (dual)canonical basis.
- product $\alpha\beta$: α is above β , higher on each boundary edge.

Cutting homomorphism

Theorem (L. 2016)

 ψ is an algebra algebra homomorphism $\psi : \mathscr{S}(\mathfrak{S}) \to \mathscr{S}(\mathfrak{S}')$. Injective (any ground ring).

The exact image is known. (Hochschild cohomology)

triangulation
$$\lambda \rightsquigarrow \Psi : \mathscr{S}(\mathfrak{S}) \to \bigotimes_{\tau:faces} \mathscr{S}(\tau)$$

A presentation of $\mathscr{S}(\tau)$ is known. \rightsquigarrow many useful facts

*sl*_n, general ribbon category, half ribbon element

Stated skein algebra

 $\mathfrak{g} = \mathfrak{sl}_3$: V. Higgins. Cutting homomorphism ψ is injective (using basis of $\mathscr{S}(\mathfrak{S})$).

 sl_n : L.-Sikora. Cutting homomorphism ψ is injective if \mathfrak{S} is connected and has boundary.

• Costantino-Korinman-L.: General Tanakian ribbon category. (half ribbon structure)

Arbitrary simple Lie algebra \mathfrak{g} . If ground ring is $\mathbb{Q}(\hat{q})$, then Cutting homomorphism ψ is injective, even for 3-manifolds.

• Costantino-L.: $\mathfrak{g} = \mathfrak{sl}_2, R = \mathbb{C}, \hat{q}$ root of 1. In general, the cutting homomorphism is not injective for 3-manifolds. (but injective for surfaces).

• over $\mathbb{Q}(\hat{q})$: related to factorization homology, lattice field theory of Alekseev-Grosse-Schomerus and Buffenoir-Roche, skein category (work of Ben-Zvi-Brochier-Jordan, Cooke, Haioun).

Quantum space, Quantum torus

• λ : an ideal triangulation of \mathfrak{S} . Each face = \mathbb{P}_3 , triangle.

$$\mathscr{S}(\mathfrak{S}) \xrightarrow{\operatorname{cut}} \bigotimes_{\tau: \operatorname{faces}} \mathscr{S}(\tau)$$

It turns out $\mathscr{S}(\mathbb{P}_3)$ is closely related to **quantum tori**. *Q*: anti-symmetric $r \times r$ matrix, integer entries.

$$\mathbb{T}_+(Q)=R\langle x_i,i=1,\ldots,r
angle/(x_ix_j=q^{Q_{ij}}x_jx_i)\ \mathbb{T}(Q)=R\langle x_i^{\pm 1},i=1,\ldots,r
angle/(x_ix_j=q^{Q_{ij}}x_jx_i).$$

(Laurent) polynomials in *q*-commuting variables. Simplest type of non-commutative algebra: Noetherian domain. Gelfand-Kirilov dimension = r. q = root of 1: Azumaya algebra. Representation theory known.

Triangle \mathbb{P}_3 , *sl*₂

• Costantino-L.: Reduced stated skein algebra

$$\overline{\mathscr{S}}(\mathfrak{S}) = \mathscr{S}(\mathfrak{S})/(+-)$$

(Relations comes from Bonahon-Wong work on quantum trace)

• $\overline{\mathscr{S}}(\mathbb{P}_3)$ is a quantum torus:

$$\overline{\mathscr{S}}(\mathbb{P}_3) = \frac{R\langle a^{\pm 1}, b^{\pm 1}, c^{\pm 1} \rangle}{(ba = q^2ab, cb = q^2bc, ac = q^2ca)}$$

• λ : an ideal triangulation of \mathfrak{S}

$$\mathscr{S}(\mathfrak{S}) \to \overline{\mathscr{S}}(\mathfrak{S}) \xrightarrow{\mathsf{cut}} \bigotimes_{\tau:\mathsf{faces}} \overline{\mathscr{S}}(\tau) = \bigotimes_{\tau:\mathsf{faces}} \mathbb{T}(\mathbb{P}_3)$$

 \rightsquigarrow quantum trace maps (L.-Yu).

Triangle \mathbb{P}_3 , sl_n , $n \geq 3$

• L.-Yu Reduced stated skein algebra

$$\overline{\mathscr{S}}(\mathfrak{S}) = \mathscr{S}(\mathfrak{S})/(k i, i < k)$$

• $\overline{\mathscr{S}}(\mathbb{P}_3)$ is almost a quantum torus: \exists antisymmetric matrix P,

 $\mathbb{T}_+(P)\subset\overline{\mathscr{S}}(\mathbb{P}_3)\subset\mathbb{T}(P)$

• λ : an ideal triangulation of \mathfrak{S}

$$\mathscr{S}(\mathfrak{S}) \to \overline{\mathscr{S}}(\mathfrak{S}) \xrightarrow{\mathsf{cut}} \bigotimes_{\tau:\mathsf{faces}} \overline{\mathscr{S}}(\tau) \to \bigotimes_{\tau:\mathsf{faces}} \mathbb{T}(P)$$

 \rightsquigarrow quantum trace maps (L.-Yu).

Fock Goncharov algebra (quantum higher Teichmüller theory, 2009)

 λ : ideal triangulation of $\Sigma = \Sigma_g \setminus \mathcal{P}$,

• Subdivide each triangle into n^2 small triangles. Arrows on edges.

(n = 4) V = set of vertices (except P). $Q: V \times V \rightarrow \mathbb{Z}$ is the quiver matrix:

$$Q(x,y) = \#(x \to y) - \#(y \to x)$$

 $\overline{\mathcal{X}}_n(\Sigma,\lambda) := R\langle x^{\pm 1}, x \in V \rangle / (xy = \hat{q}^{2Q(x,y)}yx), \quad \text{quantum torus}$

• Quantization of X-variety (if q replaces q^{1/n^2} .)

Sl_n quantum trace

Ideal triangulation λ of \mathfrak{S}

$$\mathscr{S}(\mathfrak{S}) \to \overline{\mathscr{S}}(\mathfrak{S}) \xrightarrow{\mathsf{cut}} \bigotimes_{\tau:\mathsf{faces}} \overline{\mathscr{S}}(\tau) \to \bigotimes_{\tau:\mathsf{faces}} \mathbb{T}(P) \supset \overline{\mathcal{X}}_n(\Sigma, \lambda)$$

Theorem (L. & Yu)

 \exists algebra map, natural with respect to triangulation change

$$\operatorname{tr}_{\lambda}^{X}:\overline{\mathscr{S}}(\mathfrak{S})\to\overline{\mathcal{X}}(\mathfrak{S};\lambda).$$

(i) q = 1 recovers classical map of Fock-Goncharov.
(ii) n = 2 Bonahon-Wong map.
(iii) n ≤ 3 injective.

n = 3 independent work of H. Kim, partial result of D. Douglas.

• A-version for triangulable surfaces having no interior punctures.

THANK YOU!