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• Explore a construction known as “twisting” for
supersymmetric QFT.

• It can be used to derive interesting algebraic structures, such
as vertex algebras and En algebras, from the observables of a
supersymmetric QFT.

• Focus on theories with superconformal symmetry, generalizing
a construction of Beem, Lemos, Liendo, Peelaers, Rastelli and
van Rees.

I’m going to discuss joint work with Owen Gwilliam and Matteo
Lotito.
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Let M be a smooth manifold (spacetime).

Definition
A prefactorization algebra Obs on M is a “multiplicative
precosheaf” of complex cochain complexes on M. This means,
given open subsets U ⊆ V we have a map

Obs(U) → Obs(V )

and given disjoint U1, . . . ,Un ⊆ V we have

Obs(U1)⊗ · · ·⊗Obs(Un) → Obs(V )

satisfying natural coherence conditions.

We say Obs is a factorization algebra if it satisfies a descent
condition (won’t be important for the results today).
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Supersymmetry

We’re going to be interested in theories with a special kind of
symmetry. Suppose Obs is equipped with an additional
Z/2Z-grading.

Definition
For g a Z/2Z-graded Lie algebra, we say Obs is g-supersymmetric
if we’re given a Lie algebra map

ρ : g → Der(Obs).
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What sorts of g are we interested in?

• Supertranslation algebra — even part is an abelian Lie algebra
Rn.

• Super Poincaré algebra — even part is the Lie algebra iso(n)
of infinitesimal isometries of Rn (or more generally Rp,q, with
indefinite signature).

• Super conformal algebra — even part contains the Lie algebra
conf(n) of infinitesimal conformal transformations of Rn (or
more generally Rp,q).

In practice we ask for actions that are are “geometric”, meaning
the even part acts as the derivative of an action of a Lie group of
transformations of M = Rn.
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Twisting

Given an odd element Q ∈ g1 with [Q,Q] = 0.

Definition
The twist of Obs by Q is the deformation

ObsQ = (Obs, dObs + ρ(Q)).

The square zero condition guarantees that this is still a cochain
complex.

What’s the motivation? All the Q-exact symmetries are
homotopically trivialized. If A = [Q,Q ′] then ρ(A) vanishes in the
cohomology of ObsQ .
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Witten’s original motivation was to study theories where all the
translations are Q-exact. In this language ObsQ models a TQFT.

Theorem (E–Safronov)

Let Obs be a prefactorization algebra on Rn with an action of a
supertranslation algebra. Let Q be a topological supercharge,
meaning all translations are Q-exact. Then the twist ObsQ has the
structure of an En-algebra if it satisfies a condition of
scale-invariance:

ObsQ(Br (0)) → ObsQ(BR(0))

is a quasi-isomorphism for all r < R, which we can typically verify
directly in examples.
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Questions to ask
Given a supersymmetry algebra g, we can study the possible twists.

• What is the space of possible twists? The (affine) nilpotence
variety of g is the affine quadric subvariety of g1 defined by

Nilpg = {Q ∈ g1 : [Q,Q] = 0}.

• Suppose further that g is the complexified Lie algebra of a
super Lie group GR. Study the quotient stack for the adjoint
action �

Nilpg/(GR)0
�
.

• Given a g-supersymmetric theory Obs we can obtain a family
of twisted theories parameterized by this quotient stack.

In work with Safronov and Williams we have a complete description
for supertranslation / super Poincaré algebras in dimensions ≤ 10.
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Superconformal Theories

Superconformal Lie algebras in dimension d include both the Lie
algebra of conformal transformations of Rd and a super Poincaré
algebra extending the Lie algebra of isometries of Rd . There is a
simple classification in dimensions d ≥ 3, and they do not exist in
dimensions d > 6 (due to Nahm).

If we want to make sense of the conformal transformations acting
geometrically, we need an action of the conformal group on
spacetime. We can study theories on M = C (Rd), the conformal
compactification of Rd . More generally M = C (Rp,q). In practice

C (Rp,q) ∼= (Sp × Sq)/(Z/2Z).
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Example: Dimension 4

In dimension 4, the (complex) conformal algebra is isomorphic to
so(6,C) ∼= sl(4,C). The (complex) superconformal algebras look
like

g ∼= sl(4|N ,C)

for a choice of natural number N . We can study the nilpotence
variety concretely, it consists of pairs

Q+ ∈ Hom(C4,CN ),Q− ∈ Hom(CN ,C4)

such that
Q+ ◦Q− = Q− ◦Q+ = 0.
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How Vertex Algebras Occur

Idea: to generalize Witten’s construction of topological field
theories, restrict to affine subspaces Rk ⊆ C (Rp,q) where some or
all of the isometries are Q-exact. Beem et al showed how to realize
a vertex algebra from a certain twist of 4d N = 2 superconformal
theories. Their construction generalizes.

Theorem (E–Gwilliam–Lotito)

Suppose we have an embedding ι : R2 ,→ C (Rp,q) and a nilpotent
supercharge Q so that

• The complexified algebra isometries iso(2,C) are all Q-closed.

• The complexified isometry ∂
∂z is Q-exact.

Then ι∗(ObsQ) naturally has the structure of a vertex algebra.
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How TQFTs Occur

Alternatively we can do something much more directly analogous
to Witten’s original construction to build TQFTs.

Theorem (E–Gwilliam–Lotito)

Suppose we have an embedding ι : Rk ,→ C (Rp,q) and a nilpotent
supercharge Q so that all translations are Q-exact. Then ι∗(ObsQ)
naturally has the structure of an Ek algebra.
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Future Work

• We have a description of the nilpotence variety for each
superconformal algebra, and there are finitely many orbits for
the even part of the complex superconformal group (classified
by Duflo and Serganova). What does the orbit structure look
like for real forms, which will look different depending on the
signature?

• How does this look like for actual concrete field theories? Can
we extend the construction of super Poincaré twists of super
Yang–Mills theory to the superconformal nilpotence variety in
some examples?



Thanks for listening!


