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November 7th, 2018

LisMath Seminar, 2017/18

Instituto Superior Técnico

Universidade de Lisboa

1 / 70



Intro Toric Geometry Topological Sigma models A-Model B-Model Example: Quintic Hypersurface Conclusions

Introduction

Toric Geometry

Topological Sigma models

A-Model

B-Model

Example: Quintic Hypersurface

Conclusions

2 / 70



Intro Toric Geometry Topological Sigma models A-Model B-Model Example: Quintic Hypersurface Conclusions

Mirror Symmetry

Mirror Symmetry is the conjecture that the Complex Structure and

the Symplectic Structure of Mirror manifolds are equivalent.
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Introduction: two easy pictures
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Introduction: some easy examples

We will study the first cases of Mirror Symmetry through the

Strominger-Yau-Zaslow (SYZ) conjecture.

It states that the key to understanding mirror symmetry resides within the

submanifolds of a Calabi-Yau and the way in which they are organized.

The focus of this conjecture are special Lagrangian submanifolds, which have

special features such as

• having half the dimension of the space

• minimizing length, area or volume

• other properties

The simplest possible case is a two-dimensional torus.
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Calabi-Yau manifolds

For us a Calabi-Yau space is a manifold X with a Riemannian metric g,

satisfying three conditions:

1. X is a complex manifold and the metric g should be Hermitian with respect

to the complex structure

gij = gīj̄ = 0.

2. X is Kähler. This means that locally on X there is a real function K such

that

gij̄ =
∂

∂zi

∂

∂z̄j
K.

We also have a symplectic Kähler form

k = gij̄dz
i ∧ dz̄j .

3. X admits a global nonvanishing holomorphic n-form Ω.
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The two-dimensional torus

The special Lagrangian submanifold in this case will be a one-dimensional

space or object consisting of a loop through the hole of the torus.

The minimizing property tells us that it must be the smallest possible circle

going through that hole.

The entire Calabi-Yau, in this case, is just a union of circles.
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The moduli space of the torus

The moduli space M of the torus parameterizes the set of circles. Every point

on M corresponds to a different circle.

Furthermore, it also shows how all these subspaces are arranged.

Figure 1: S. Yau, S. Nadis.
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T-duality in the two-dimensional torus

The general idea is that one has a manifold X made up of all kinds of

submanifolds that are catalogued by the moduli space X .

Next you take all those submanifolds, of radius r, and make them of radius

1/r. This is known as T-duality and it extends beyond circles to products of

circles or tori.

T-duality and Mirror Symmetry go hand in hand. Suppose M is a torus of radii

r. Its mirror, M ′, is also a torus, but of radii 1/r.

In this case, when we invert the radii we are left with a torus of different radius,

but still a torus. In this sense, this example is trivial since the manifold and its

mirror are topologically identical.
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T-duality in the two-dimensional torus (II)

The flat metric depends on R1, R2, so we say we have a 2-dimensional ”moduli

space” of Calabi-Yau metrics on T 2, parameterized by (R1, R2).
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It is convenient to repackage the moduli of T 2 into

A = iR1R2,

τ = iR2/R1

A describes the overall area of the torus, or its “size”, while τ describes its

complex structure, or its “shape.”
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T-duality in the two-dimensional torus (III)

String Theory is invariant under the exchange of size and shape, A↔ τ , so this

is the simplest example of Mirror Symmetry.

τ is called complex modulus of T 2. A is changed by means of the Kähler

metric without changing the complex structure, so we call A a Kähler modulus

(symplectic flavour).
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Four-dimensional manifold: K3 surface

If we go up by one complex dimension, the Calabi-Yau becomes a K3 surface.

The easiest way to obtain a K3 surface is to quotient T 4/Z2, using the Z2

identification

(x1, x2, x3, x4) ∼ (−x1,−x2,−x3,−x4),

This quotient gives a singular K3 surface, with 16 singular points which are the

fixed points of the Z2 action. The singular points can be “blown up” to obtain

a smooth K3 surface.

Instead of being circles, the submanifolds in are two-dimensional tori.

In this case, X is just a two-dimensional sphere. Every point on this sphere X
corresponds to a different torus, except for twenty-four points corresponding to

pinched tori that have singularities.
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We can construct a K3 surface by taking a two-dimensional sphere and

attaching a two-dimensional torus to every point on that sphere.

Figure 2: S. Yau, S. Nadis.
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T-duality in the K3 surface

This example is also trivial in the same respect because all K3 surfaces are

topologically equivalent.
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Six-dimensional manifold: The Calabi-Yau threefold

Going up one more complex dimension, the manifold becomes a Calabi-Yau

threefold.

X now becomes a 3-sphere, and the subspaces become three-dimensional tori.
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T-duality in the Calabi-Yau threefold

This example is more interesting. Applying T-duality will invert the radii of the

tori. For a nonsingular torus, this radius change will not change the topology.

However, even if all the original submanifolds were nonsingular, changing the

radius can still change the topology of the manifolds because the pieces can be

put together in a non-trivial way.
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Singular points

T-duality interchanges the Euler characteristic of singular submanifolds from

+1 to −1, or vice versa.

In the mirror manifold, everything is reversed and the Euler characteristic is

reversed.

In general, everything interesting in mirror symmetry, all the topological

changes, happen at the singular points. This fact puts the moduli space X at

the center of mirror symmetry.
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Important remarks

• No trace of String Theory or Physics, even when it was originally

discovered in a Physics content.

• Mirror Symmetry is still a conjecture.

• SYZ has only been proven in a few select cases, but not in a general way.

• Even if it is not technically correct, it is likely that some modification

would hold.

• It is a nice example of how Physics gives rise to Mathematics, and then

mathematics repays its debt.

• If SYZ is correct, it would offer a deeper insight into the geometry of

Calabi-Yau spaces, while validating the existence of a Calabi-Yau

substructure.
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Beyond easy examples

We have seen very particular examples of realizations of Mirror Symmetry

through T-duality. We have also seen that Mirror Symmetry in its

mathematical core conjectures a duality between Complex Structure and

Symplectic Structure of mirror pairs.

In general, one could argue that not every manifold can be given in terms of

submanifolds that have intrinsic radii. However, there is an interesting set of

manifolds in which this process can be naturally implemented.
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Toric Geometry (Cn)

Consider Cn, with coordinates (z1, . . . , zn) and the standard flat metric.

Parameterizing

zi = |zi|eiθi ,

choose the coordinates ((|z1|2, θ1), . . . , (|zn|2, θn)). Roughly, with these the

coordinates one obtains a ”sloppy” factorization

Cn ≈ On+ × Tn,

where On+ denotes the positive orthant {|zi|2 ≥ 0}. At each point of On+ we

have the product of n circles obtained by varying θi.

However, when |zi|2 = 0 the circle |zi|eiθi degenerates to a single point (that is

why we said sloppy).
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Toric Geometry (CPn)

The toric representation for CPn consists on the quotient of the 2n+ 1-sphere

|z1|2 + · · ·+ |zn+1|2 = r

by the identification

(z1, . . . , zn+1) ∼ (eiθz1, . . . , e
iθzn+1), θ ∈ R

The toric base lies in the space coordinatized by the |zi|2. In the present case,

the base turns out to be an n-dimensional simplex.

In the case of CP2 it is just a triangle. Over each point then we have a T 2

fiber generated by shifts of θi
1. A cycle of T 2 collapses over each boundary of

the triangle.

1naively this would give a T 3 for θ1, θ2, θ3, but the identification reduces this

to T 2.
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Toric Geometry (local CP2, the first Calabi-Yau)

To get a toric presentation of a Calabi-Yau manifold we have to choose a

non-compact example. The construction is analogous to that of CPn. For

r > 0, we have

−3|z0|2+|z1|2+|z2|2+|z3|2 = r, (z0, z1, z2, z3) ∼ (e−3iθz0, e
iθz1, e

iθz2, e
iθz3), θ ∈ R.

We can also draw the toric diagram for this case. The condition that all

|zi|2 > 0 becomes

|z1|2 + |z2|2 + |z3|2 > r, |z2|2 > 0,

|z1|2 > 0, |z3|2 > 0.

So the toric base is the positive octant in R3 with a corner chopped off.

24 / 70



Intro Toric Geometry Topological Sigma models A-Model B-Model Example: Quintic Hypersurface Conclusions

Toric Geometry

This kind of construction allow us to define these manifolds in terms of the tori

defined by the θi’s, so for the manifolds described by Toric Geometry we have a

natural way to apply T-duality (provided they are Calabi-Yau manifolds).

Other examples are local CP1 or local CP1 × CP1. All these toric Calabi-Yaus

are non-compact, but it is also possible to construct compact Calabi-Yaus using

the techniques of toric geometry. For example, starting with CP3 and CP4 one

can impose some extra algebraic relations on the coordinates to obtain a

Calabi-Yau.
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Topological Sigma Models

They enable us to interpret the Yukawa couplings used in mirror symmetry as

correlation functions of topological field theory.

Two types of topological sigma models obtained by a topological twist of the

N = 2 SuperSymmetric Sigma Model:

• A-model: Yukawa couplings associated with Kähler deformations of a a

Calabi-Yau 3-fold M can be regarded as 3-point correlation function.

• B-model: Yukawa couplings associated with complex structure

deformations of a a Calabi-Yau 3-fold M can be regarded as 3-point

correlation function.
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Homological Mirror Symmetry and connection with

Topological Strings

Up to now, we have given a geometric interpretation of Mirror Symmetry.

Homological Mirror Symmetry corresponds to the algebraic approach. One of

the main ideas is that there are two kinds of submanifolds involved in this

phenomenon, and there are branes wrapping this different submanifolds.

We use the nomenclacure A-branes and B-branes. If you have a mirror pair of

Calabi-Yau manifolds, X and X ′, A-branes on X are the same as B-branes on

X ′.

A-branes are objects defined by symplectic geometry, whereas B-branes are

objects of algebraic geometry.
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A- and B-branes

The category of A-branes is an invariant of the symplectic structure on X. It is

closely related to the Fukaya category of X.

On the other hand, the category of B-branes is an invariant of the complex

structure on X. It has been argued to be equivalent to the derived category of

coherent sheaves on the complex manifold X.

Notice that the derived category of coherent sheaves is defined in an essentially

algebraic way, while the Fukaya category has a more geometric flavor.

28 / 70



Intro Toric Geometry Topological Sigma models A-Model B-Model Example: Quintic Hypersurface Conclusions

Topological Sigma Models

These twisted models are particularly interesting because all physical

observables can be reduced to classical questions in Geometry.

Mathematically, another interesting point is that the correlation functions of

these models can be computed by:

• A-model: counting rational curves, an interesting result for algebraic

geometry in the context of enumerative geometry.

• B-model: calculating periods of differential forms.
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The only contribution in these models is structure of zero modes, which

corresponds to the solution space of the instanton equation, the moduli space

of instantons.

Then, the correlation function of the twisted model is identified with the

topological intersection number of the moduli space:

• A-model: the worldsheet instanton is given by a holomorphic map from Σ

to M .

• B-model: the instanton is a constant map from Σ to M .
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A-model

• Φ are map Φ : Σ→ X from a Riemannian 2-dimensional surface Σ to

Riemannian manifold X.

• K, K are the canonical and anti-canonical line bundle.

• TX is the complexified tangent bundle of X.

• ψi+ and ψī− are regarded as sections of Φ∗(T 1,0X) and Φ∗(T 0,1X)

respectively.

• We combine them into a section χ of Φ∗(TX) as follows:

χi = ψi+ χī = ψī−.

• ψī+ is a (1,0) form on Σ with values in Φ∗(T 0,1X) and is denoted as ψīz.

• ψi− is a (0,1) form on Σ with values in Φ∗(T 1,0X) and is denoted as ψiz̄.
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The key of this model is that we can write the Lagrangian as

L = it

∫
Σ

d2z{Q,V }+ t

∫
Σ

Φ∗(K)

where Q is the BRST operator, with Q2 = 0 and

V = gij̄

(
ψīz∂z̄φ

j + ∂zφ
īψjz̄

)
∫

Σ

Φ∗(K) =

∫
Σ

d2z
(
∂zφ

i∂z̄φ
j̄gij̄ − ∂z̄φi∂zφj̄gij̄

)
,

where K = −igij̄dzidzj̄ is the Kähler form. Thus, the integral depends on the

cohomology class of both K and the map Φ.
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Topological nature

Since K is a representative of H2(X),
∫

Σ
Φ∗(K) becomes a topological

invariant. In particular, if H2(X,Z) ∼= Z and the metric g is normalized so that

the periods of K are integer multiples of 2π, then∫
Σ

Φ∗(K) = 2πn,

where n is an integer called instanton number or degree.
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Correlation function

With insertions of BRST operators we have

〈
∏
a

Oa〉n = e−2πnt

∫
Bn

DφDχDψ e−it{Q,
∫
V }
∏
a

Oa

where Bn is the field space of maps of degree n.

For a given n, the bosonic part of the Lagrangian is minimized for holomorphic

maps φi, that is, those fulfilling

∂z̄φ
i = ∂zφ

ī = 0

The weak coupling limit Re t→∞ therefore involves a reduction to Mn, the

moduli space of holomorphic maps of degree n.
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Final remarks and more on the topological nature

By saying that this is a topological field theory we mean that the correlation

functions 〈
∏
aOa〉 are independent of the complex structure of Σ and X and

depend only on the cohomology class of the Kähler form.

This can be seen from the fact that all the dependence of the Lagrangian on

the complex structure of Σ and X is encoded in V and it only appears in the

form {Q,V }. If we vary the integral with respect to the complex structure we

will get factors of the form {Q, ...}, which are irrelevant.

35 / 70



Intro Toric Geometry Topological Sigma models A-Model B-Model Example: Quintic Hypersurface Conclusions

In this generic case, our moduli space of instantons M̃n has dimension 0 and

consists of a finite number #M̃n of points and the integration is given by

〈
s∏
a=1

OHa(Pa)〉n = e−2πnt#M̃n → 〈
s∏
a=1

OHa(Pa)〉 =
∞∑
n=0

e−2πnt#M̃n

In the non generic case, if M̃n has dimension s, the space of fermionic ψ zero

modes is also s dimensional and varies as the fibers of a s-vector bundle V over

M̃n. The number of points gets substituted by the Euler class χ(V) of the

bundle V

〈
s∏
a=1

OHa(Pa)〉 =

∞∑
n=0

e−2πnt

∫
M̃n

χ(V)
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B-model

• ψī± are sections of Φ∗(T 0,1X), ψi+ is a section of K ⊗ Φ∗(T 1,0X) and

ψi− is a section of K̄ ⊗ Φ∗(T 1,0X).

• Define ηī = ψī+ + ψī− and θi = gīi

(
ψī+ − ψī−

)
.

• Also, combine ψi± into a one form ρ such that ρiz = ψi+ and ρiz̄ = ψi−.

The Lagrangian can be written as

L = it

∫
{Q,V }+ tW,

where

V = gij̄

(
ρiz∂z̄φ

j̄ + ρiz̄∂zφ
j̄
)

and

W =

∫
Σ

(
−θiDρi −

i

2
Rīijj̄ρ

i ∧ ρjηīθkgkj̄
)
.
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The B theory is a topological field theory in the sense that it is independent of

the complex structure of Σ and the Kähler metric of X.

The {Q,V } will give terms as {Q, ...}, W is independent of the complex

structure of Σ because it is written in terms of differential forms and under the

change of Kähler structure W varies by {Q, ...}.
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In the large Re t limit one expands around minima of the bosonic part of the

Lagrangian. These are just constant maps Φ : Σ→ X. The space of constant

maps is a copy of X so the integral reduces to an integral over X.

Recall that in the A-model one had to integrate over the moduli space of

holomorphic curves.

39 / 70



Intro Toric Geometry Topological Sigma models A-Model B-Model Example: Quintic Hypersurface Conclusions

Correlation Functions

Pick points Pa ∈ Σ and classes Va in Hpa(X,∧qaT 1,0X). The correlation

function

〈
∏
a

OVa(Pa)〉

reduces, in the large t limit, to an integral over constant maps Φ : Σ→ X.

We can view
∏
aOVa as a d form with values in ∧dT 1,0X. The remaining part

is to integrate over X the elements of Hd(X,∧dT 1,0X) obtained this way.
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Mirror Symmetry. First historical encounter.

If the target space is a complex 3-dimensional Calabi-Yau manifold X and we

consider GX an abelian group determined by X, we have that X∗ = X/GX is

a complex 3-dimensional Calabi-Yau manifold with singularities, which is called

orbifold.

From orbifold construction one can compute the Hilbert space of a sigma

model on X∗. The key part of mirror symmetry is that there is an isomorphism

between HX and HX∗ .
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By defining hp,q(X) = dimHp,q(X) as de dimension of the vector space of

harmonic forms and using the previous result and a bunch of extra tools, one

arrives to the Hodge diamond of X

1

0 0

0 h1,1(X) 0

1 h2,1(X) h2,1(X) 1

0 h1,1(X) 0

0 0

1

(1)
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Equality hp,q(X∗) = h3−p,q(X) allow us to express the Hodge diamond of X∗

as

1

0 0

0 h2,1(X) 0

1 h1,1(X) h1,1(X) 1

0 h2,1(X) 0

0 0

1

This misterious symmetry is what was initially called Mirror Symmetry and the

complex 3-dimensional Calabi-Yau manifolds are called Mirror manifolds.
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Recall

“Given X and X∗ mirror manifolds, the moduli space of the Kähler structure

(resp. complex structure) of X coincides with the moduli space of the complex

structure (resp. Kähler structure) of X∗”

This comes from the fact that the Mirror Symmetry translates in this case into

h2,1(X∗) = h1,1(X) h1,1(X∗) = h2,1(X)

and for complex Calabi-Yau 3-folds:

• h1,1 counts the number of parameters that correspond to the size (Kähler

structure) and therefore determines the dimension of the moduli space of

Kähler structure.

• h2,1 accounts for the dimension of the moduli space of the complex

structure of the Calabi-Yau, so it counts the number of parameters that

correspond to the shape.

44 / 70



Intro Toric Geometry Topological Sigma models A-Model B-Model Example: Quintic Hypersurface Conclusions

Discussion of the Yukawa coupling

Originally, the idea of mirror symmetry was implemented in the context of

Heterotic Strings. Compactification by complex 3-dimensional Calabi-Yau

manifold produces h2,1(X) massless fermions in (3, 27) representation (with

the subscript α, β, . . . ) and h1,1(X) in the (3̄, 27) representation (a, b, . . . ).

The Yukawa couplings

λαβγφ
αψβψγ λabcφ

aψbψc

are related to geometrical quantities of the Calabi-Yau.
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• λαβγ : associate the α generation with a base u(α) of H2,1(X). By

identifying with the Dolbeault cohomology H1(T 1,0X) ' H2,1(X) we

can associate a representative ũj
(α),̄i

dxī.

Recall that a Calabi-Yau has a unique (up to multiplication by a constant)

holomorphic 3-form Ω = Ωijkdx
i ∧ dxj ∧ dxk. Then, up to multiplication

λαβγ =

∫
X

Ωijkũ
p

(α),l̄
ũq(β),m̄ũ

r
(γ),n̄Ωpqrdx

i ∧ dxj ∧ dxk ∧ dxl̄ ∧ dxm̄ ∧ dxn̄.

• λabc: the generation a is associated with a base ν(a) of H1,1(X), which

is a closed (1, 1)-form. λabc is given by

λabc =

∫
X

ν(a) ∧ ν(b) ∧ ν(c) + instanton corrections.

The top term can be exactly computed with complex geometry tools.
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Example: Quintic Hypersurface M5 in the Complex Projective

space CP 4

A quintic hypersurface M5 in a 4-dimensional complex projective space CP 4 is

an example of a complex 3-dimensional Calabi-Yau manifold.

CP 4 = {(X1 : X2 : X3 : X4 : X5) : Xi ∈ C}

The defining equation of the quintic is

(X1)5 + (X2)5 + (X3)5 + (X4)5 + (X5)5 = 0.

The abelian group GM5 is given as a finite group isomorphic to (Z5)3.

From M5/GM5 we can define M∗5 as the complex 3-dim Calabi-Yau manifold

obtained from resolving the singularities of M5/GM5 .
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In general, the quintic is represented by a degree 5 polynomial∑
∑5

i=1 di=5

ad1d2d3d4d5(X1)d1(X2)d2(X3)d3(X4)d4(X5)d5 = 0,

where the a coefficients fulfill some conditions so that the quintic does not

have singulatities and encode the complex structure.

From Kodaira-Spencer theory the dimension of the moduli space is 101 and it

counts the number of substancial parameters of varying the defining equation

of M5.
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We can regard M∗5 as a family of spaces obtained from dividing the quintic

hypersurface

Fψ := (X1)5 + (X2)5 + (X3)5 + (X4)5 + (X5)5 + 5ψX1X2X3X4X5 = 0

by the group GM5 ' (Z5)3 and resolving the singularities.

Here, the parameter ψ represents the degrees of freedom of the moduli space of

the complex structure of M∗5 , whose dimension is h2,1(M∗5 ) = h1,1(M5) = 1.

The dimension of moduli space of the Kähler structure of M5 is also 1. We

define t as a local coordinate of this space. Then, we have

• t is a subscript of the base of H1,1(M5)

• ψ is a subscript of the base of H2,1(M∗5 )
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It is feasible to compute all instanton corrections to the Yukawa coupling

λttt(M5) using the exact result of the Yukawa coupling λψψψ(M∗5 ):

λψψψ(ψ) =

∫
M∗

5

Ω ∧ ∂3

∂ψ3
Ω

because this fulfills the equation

dW3

dψ
= −1

2
C3(ψ)W3(ψ),

where C3(ψ) is the constant appearing in the Picard-Fuchs equation for the

periods of a holomorphic 3-form.

From this construction one also obtains the mirror map relating the ψ and t

coordinates

t = t(ψ).
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On the other hand, λttt(t) was conjectured to be given by

λttt(t) = 5 +

∞∑
d=1

αde
2πidt = 5 + 2875 e2πit + 4876875 e4πit + . . . ,

where αd is the instanton correction coming from the degree d worldsheet

instanton.

These called attention of algebraic geometers interested in enumerative

geometry since the number of rational curves of degree d, nd, were computed

to be

n1 = 2875 n2 = 609250

We see that α1 = n1, and based on the equality 4876875 = 23 609250 + 2875

they proposed the following conjecture

λttt(t) = 5 +

∞∑
d=1

nd
d3e2πidt

1− e2πidt
.

It has been shown that this equality also holds for d = 3.
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The surprising and interest result is that, if this conjecture is proven right, we

would have easily obtained a highly non trivial result of Enumerative Geometry

by the means of Mirror Symmetry, which was discovered in the context of

String Theory.
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Recap

• We have seen that Mirror Symmetry conjectures a relation between the the

complex and symplectic nature of two mirror manifolds.

• The easiest realization of Mirror Symmetry is by means of the SYZ conjecture,

which intimate relates Mirror Symmetry to T-duality.

• Toric geometry presents itself as a natural candidate for the implementation of

SYZ although we still don’t know the full reach of this conjecture.

• We have also taken a peek at the A and B models of Topological String Theory,

which we have seen are closedly related to Mirror Symmetry.

• Then, we have seen the first encounter of Mirror Symmetry and we have

discussed the role of the Yukawa couplings in this duality.

• Finally, we have seen an example that glanced at the possible full power of

Mirror Symmetry, allowing us to compute the highly non trivial number of

rational curves of degree d by means of an easy mirror computation.
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Conclusions

It is clear that we do not fully understand Mirror

Symmetry and its reach. Maybe it will be proved,

maybe some modification will hold. However, a

possible relation between the complex and

symplectic nature of two mirror manifolds is

something astonishing.

Complex geometry is in an algebraic way a very

rigid world, while symplectic geometry is a more

geometric flexible field. The fact that these two

worlds may be related is, at least, fascinating.

Furthermore, dualities between different fields are

one of the most interesting phenomenons in

Mathematics since it incredibly widens the toolkit

to tackle problems in the different fields, specially if

the fields have very different nature.
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Proof that 〈{Q,U}〉 = 0

Let U be an observable and Q be the BRST charge.

〈{Q,U}〉 : =

∫
D(fields) e−L {Q,U} = 0

Using 〈U〉, we will rotate the field by using a supersymmetric transformation

exp(εQ), with ε a Grassmann number. We will use a the measure is invariant

under rotations with Jacobian 1.

〈U〉 : =

∫
D(fields) e−L U =

∫
D(exp(εQ)fields) (exp(εQ)e−L U)

=

∫
D(fields) (exp(εQ)e−L U) =

∫
D(fields) e−L (exp(εQ)U)

=

∫
D(fields) e−L (U + ε{Q,U})

= 〈U〉+ 〈{Q,U}〉
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Proof that the correlation function is invariant under changes

in t

We will write D(fields) = DX for simplicity.

〈O1 . . .On〉 =

∫
DX e−LO1 . . .On

=

∫
DX e−it

∫
Σ d

2z{Q,V }−t
∫
Σ Φ∗(K)O1 . . .On

=
∞∑
d=0

e−2πndt

∫
Pd

DX e−it
∫
Σ d

2z{Q,V }−t
∫
Σ Φ∗(K)O1 . . .On,

where Pd are the connected components of the phase space. Now, we

implement a variation in the coupling constant t→ t+ δt
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∫
Pd

DX e−i(t+δt)
∫
Σ d

2z{Q,V }O1 . . .On

=

∫
Pd

DX e−it
∫
Σ d

2z{Q,V }e−iδt
∫
Σ d

2z{Q,V }O1 . . .On

=

∫
Pd

DX e−it
∫
Σ d

2z{Q,V }(1− iδt
∫

Σ

d2z{Q,V })O1 . . .On

=

∫
Pd

DX e−it
∫
Σ d

2z{Q,V }O1 . . .On

− iδt
∫
Pd

DX e−it
∫
Σ d

2z{Q,V }{Q,
∫

Σ

d2zV }O1 . . .On

=

∫
Pd

DX e−it
∫
Σ d

2z{Q,V }O1 . . .On

− iδt
∫
Pd

DX e−it
∫
Σ d

2z{Q,V }{Q,
(∫

Σ

d2zV

)
O1 . . .On}

=

∫
Pd

DX e−it
∫
Σ d

2z{Q,V }O1 . . .On
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Details of the A-model

With insertions of BRST operators we have

〈
∏
a

Oa〉n = e−2πnt

∫
Bn

DφDχDψ e−it{Q,
∫
V }
∏
a

Oa

where Bn is the field space of maps of degree n.

We also have that 〈{Q,W}〉n = 0 for any W .

If {Q,Oa} = 0 for all a, then the n-expectation value will be invariant under

Oa → Oa + {Q,Sa} for any Sa. Thus, Oa should be considered as

representatives of BRST cohomology classes.
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For a given n, the bosonic part of the Lagrangian is minimized for holomorphic

maps φi, that is, those fulfilling

∂z̄φ
i = ∂zφ

ī = 0

The weak coupling limit therefore involves a reduction to Mn, the moduli

space of holomorphic maps of degree n.

Then, the entire path integral reduces to an integration over Mn weighted by

one loop determinants of the non-zero modes.
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Final remarks and more on the topological nature

By saying that this is a topological field theory we mean that the correlation

functions 〈
∏
aOa〉 are independent of the complex structure of Σ and X and

depend only on the cohomology class of the Kähler form.

This can be seen from the fact that all the dependence of the Lagrangian on

the complex structure of Σ and X is encoded in V and it only appears in the

form {Q,V }. If we vary the integral with respect to the complex structure we

will get factors of the form {Q, ...}, which are irrelevant.
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If an bn are, respectively, the number of χ and ψ zero modes, the index

theorem tells us that

wn = an − bn

is a topological invariant.

The n-correlation function 〈
∏
aOa〉n will vanish unless the sum of ghost

numbers2 of the Oa is equal to wn.

2At the classical level (because at the quantum level we find an anomaly) we

have a conservation law for the ghost number coming from assigning the

following ghost numbers to our fields: χ→ 1, ψ → −1, φ→ 0 and Q→ 0.
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Observables of the A-model

The BRST cohomology of the model can be represented by operators that are

functions of φ and χ only. If we have an n-form W = WI1,...,Indφ
I1 . . . dφIn

on X the corresponding operator is

OW (P ) = WI1,...,Inχ
I1 . . . χIn(P ).

We also have

{Q,OW } = −OdW

Therefore, taking W → OW gives a natural map from the de Rham

cohomology of X to the BRST cohomology.
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Incise

Let H be any cohomology cycle, the Poincaré dual of H is a cohomology class

that counts intersections with H. It can be represented by a differential form

W (H) that has a delta function support on H.

If we pick some homology cycles Ha of codimensions qa and points Pa ∈ Σ,

the quantity

〈OH1(P1) . . .OHs(Ps)〉n = e−2πnt

∫
Bn

DφDψDχe−it
∫
{Q,V }

∏
OHa(Pa)

will vanish unless
∑
a qa = wn.

In the limit Re t→∞ it reduces to an integral over the moduli space Mn of

instantons.

Moreover, since we have picked OHa(Pa) to have delta function support such

that Φ(Pa) ∈ Ha, the moduli space over which we integrate M̃n turns out to

be the moduli space of instantons fulfulling Φ(Pa) ∈ Ha.
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In a generic situation, the dimension an of Mn coincides with wn. Moreover,

Φ(Pa) ∈ Ha imposes qa conditions. Therefore, the dimension of M̃n should be

wn −
∑
a qa = 0.

In this generic case M̃n consists of a finite number #M̃n of points and the

integration is given by

〈
s∏
a=1

OHa(Pa)〉n = e−2πnt#M̃n → 〈
s∏
a=1

OHa(Pa)〉 =
∞∑
n=0

e−2πnt#M̃n

In the non generic case, if M̃n has dimension s, the space of ψ zero modes is

also s dimensional and varies as the fibers of a s-vector bundle V over M̃n.

The number of points gets substituted by the Euler class χ(V) of the bundle V

〈
s∏
a=1

OHa(Pa)〉 =

∞∑
n=0

e−2πnt

∫
M̃n

χ(V)
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Details on the B-model

The theory is independent of t except for a trivial factor as long as Re t > 0 so

that the integral converges.

For the t{Q,V } term, the variation w. r. t. t will give {Q, ...} terms.

For the tW term, it can be removed by θ → θ/t.

If Oa are BRST invariant operators that are homogeneus in t of degree ka,

then the dependence of 〈
∏
aOa〉 is a factor t−

∑
a ka coming from the rescaling

of θ to remove the t in tW .
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In the large Re t limit one expands around minima of the bosonic part of the

Lagrangian. These are just constant maps Φ : Σ→ X. The space of constant

maps is a copy of X so the integral reduces to an integral over X.

Recall that in the A-model one had to integrate over the moduli space of

holomorphic curves. This comes from the fact that the t dependence in the

A-model allows for more general setups satisfying that the bosonic part is zero.

That is, holomorphic curves rather that only constant maps.
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The fermion determinant in the A-model is real and positive so it is a

well-defined quantum field theory even before taking BRST cohomology. This

justifies that in the A-model the correlation functions don’t use the Calabi-Yau

condition.

However, for the B-model, the Calabi-Yau condition becomes crucial. The

fermion determinant is complex. To make sense of it as a quantum field theory

we need an anomaly cancellation condition that makes it possible to define

fermion determinants as a functions. This condition is c1(X) = 0, that is, X

has to be a Calabi-Yau manifold.

As the A-model, the B-model has an Z grading by a quantum ghost number3.

If X is a Calabi-Yau of complex dimension d, and Oa are BRST invariant

operators of ghost number wa, then 〈Oa〉 vanishes in genus g unless∑
a

wa = 2d(1− g)

3η → 1, θ → 1, ρ→ −1, φ→ 0 and Q→ 1.
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Consider (0, p) forms X with values in ∧qT 0,1X

V = dz̄i1 . . . dz̄ipV
j1...jq

ī1...̄ip

∂

∂zj1
. . .

∂

∂zjq

For each V and every P ∈ Σ we can form a quantum field theory operator

OV = ηī1 . . . ηīpV
j1...jq

ī1...̄ip
ψj1 . . . ψjq

that fulfills

{Q,OV } = −O∂̄V ,

where ∂̄ is the exterior operator of the sheaf cohomology group

Hp(X,∧qT 1,0X). Consequently we have a natural map V → OV from

⊕p,qHp(X,∧qT 1,0X) to the BRST cohomology.
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Correlation Functions

Pick points Pa ∈ Σ and classes Va in Hpa(X,∧qaT 1,0X). The correlation

function

〈
∏
a

OVa(Pa)〉

vanishes unless
∑
a pa =

∑
a qa = d. In the large t limit, the calculation

reduces to an integral over constant maps Φ : Σ→ X.

In addition to the bose zero modes, displacements of the constant map Φ,

there are fermi zero modes, constant modes of η and θ.

The non-zero modes just go into the definition of the string coupling constant t.

We can view
∏
aOVa as a d form with values in ∧dT 1,0X. The remaining part

is to integrate over X the elements of Hd(X,∧dT 1,0X) obtained this way.

The Calabi-Yau condition then becomes essential to ensure that

Hd(X,∧dT 1,0X) is nonzero and one-dimensional.
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