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Alternative title

Projective/anomalous TQFTs

Summary:

Naturally occurring classical symmetry groups typically act
projectively on the associated quantized theories.

In many examples this projectivity can be understood as appearing via
the homotopy theory of the higher automorphism group of the
quantum theory itself.
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Context and motivation

Projective TQFTS in general are relevant to the classification of
topological orders: a gapped quantum system is well-approximated at
low energy by a projective field theory which is topological [Freed].

The discussion concerning Rozansky-Witten theory is highly relevant
to the B-side (spectral side) of the relative Langlands program
[Ben-Zvi-Sakellaridis-Venkatesh].

Also see [Teleman] and
[Braverman-Dhillon-Finkelberg-Raskin-Travkin-Johnson-Freyd].
Relatedly, RW is the B-side of 3d mirror symmetry. See e.g.
[Raskin-Hilburn, Gammage-Hilburn-Mazel-Gee].

Jackson Van Dyke, TUM Projective TQFTs July 31, 2024 3 / 24



Context and motivation

Projective TQFTS in general are relevant to the classification of
topological orders: a gapped quantum system is well-approximated at
low energy by a projective field theory which is topological [Freed].

The discussion concerning Rozansky-Witten theory is highly relevant
to the B-side (spectral side) of the relative Langlands program
[Ben-Zvi-Sakellaridis-Venkatesh].

Also see [Teleman] and
[Braverman-Dhillon-Finkelberg-Raskin-Travkin-Johnson-Freyd].
Relatedly, RW is the B-side of 3d mirror symmetry. See e.g.
[Raskin-Hilburn, Gammage-Hilburn-Mazel-Gee].

Jackson Van Dyke, TUM Projective TQFTs July 31, 2024 3 / 24



Context and motivation

Projective TQFTS in general are relevant to the classification of
topological orders: a gapped quantum system is well-approximated at
low energy by a projective field theory which is topological [Freed].

The discussion concerning Rozansky-Witten theory is highly relevant
to the B-side (spectral side) of the relative Langlands program
[Ben-Zvi-Sakellaridis-Venkatesh].

Also see [Teleman] and
[Braverman-Dhillon-Finkelberg-Raskin-Travkin-Johnson-Freyd].

Relatedly, RW is the B-side of 3d mirror symmetry. See e.g.
[Raskin-Hilburn, Gammage-Hilburn-Mazel-Gee].

Jackson Van Dyke, TUM Projective TQFTs July 31, 2024 3 / 24



Context and motivation

Projective TQFTS in general are relevant to the classification of
topological orders: a gapped quantum system is well-approximated at
low energy by a projective field theory which is topological [Freed].

The discussion concerning Rozansky-Witten theory is highly relevant
to the B-side (spectral side) of the relative Langlands program
[Ben-Zvi-Sakellaridis-Venkatesh].

Also see [Teleman] and
[Braverman-Dhillon-Finkelberg-Raskin-Travkin-Johnson-Freyd].
Relatedly, RW is the B-side of 3d mirror symmetry. See e.g.
[Raskin-Hilburn, Gammage-Hilburn-Mazel-Gee].

Jackson Van Dyke, TUM Projective TQFTs July 31, 2024 3 / 24



Table of contents

1 Quantum mechanics

2 Interlude: Families, symmetries, and anomalies

3 Fusion categories

4 Rozansky-Witten theory

Jackson Van Dyke, TUM Projective TQFTs July 31, 2024 4 / 24



We are entering:

1 Quantum mechanics

2 Interlude: Families, symmetries, and anomalies

3 Fusion categories

4 Rozansky-Witten theory

Jackson Van Dyke, TUM Projective TQFTs July 31, 2024 5 / 24



Deformation and geometric quantization

Classical phase space: symplectic vector space (V ,!), say over R.

This has a natural group of symmetries Sp (V ) = Sp2n (R).
Deformation quantization (observables): The Weyl algebra:

A = T (V ) / ([u, v ]� ! (u, v)) = (O (V ) , ⇤!) ' R
⇥
x , p

⇤
/ ([xi , pi ]� 1)

The group Sp2n (R) still acts on A.

Geometric quantization (states): The Weil representation:

H = L2 (`)

where we have chosen a polarization V ' `� `_.
The group Sp2n (R) only acts projectively on H. Equivalently, a central
extension, classified by w2 2 H2 (B Sp2n (R)), acts linearly on H:

Z/2 ,! Mp ⇣ Sp2n (R)
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Table of analogies

d = 1 (QM) (V ,!) O (V ) , ⇤! L2 (`) w2 2 H2 (B Sp2n (R))

d = 3 (TV)

d = 3 (RW)

Jackson Van Dyke, TUM Projective TQFTs July 31, 2024 7 / 24



We are entering:

1 Quantum mechanics

2 Interlude: Families, symmetries, and anomalies

3 Fusion categories

4 Rozansky-Witten theory

Jackson Van Dyke, TUM Projective TQFTs July 31, 2024 8 / 24



Families

Let X be a (⇡-finite) groupoid (space).

Given a field theory F0, one can
ask if background fields can be inserted, i.e. if there is a family of theories
over X with fiber F0:

BordX
d

Bordd T
F

F0

Two equivalent ways of encoding this notion:

F : BordX
d
! T F : 1 ! �d+1

X

Notation: The (d + 1)-dimensional gauge theory associated to X as
in [Freed-Moore-Teleman] is �d+1

X
: Bordd+1 ! Alg (T ).

The RHS is an (op)lax natural transformation as in
[Johnson-Freyd-Scheimbauer].
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Example: X = BG

For G a finite group, families of theories over the groupoid X = BG
are equivalent to theories with an action of G .

For example, fix d = 1. Functors

F : BordBG1 ! T = Vect

are classified by functors BG ! Vect, which are representations of G .

On the other hand, the theory �2

BG
is a functor valued in the Morita

category of algebras:

Bord2 Alg

⇤ (C [G ] , ⇤)

�2

BG

A theory defined relative to the theory �2

BG
is a morphism in the

Morita category from C to the group algebra, i.e. a
module over the group algebra.
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Anomalies

Let X be a (⇡-finite) groupoid (space), and now consider projectivity data
on X :

BdC⇥ eX

X Bd+1C⇥↵

Projective/anomalous d-dimensional TQFT with background X -fields:

Theorem (VD23)

TFAE: F : 1X ! ↵ F : 1 ! �X ,c

F : Bord
eX
d
! T F : 1 ! � eX

E.g. X = BG , eX = B eG for eG a central extension of G classified by ↵.

projective rep mod over the twisted gp alg
rep of the ext’n mod over gp alg of the ext’n
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Anomalies

We will focus on the analogue of a module over the twisted group
algebra:

�d+1

X ,c : Bordd+1 ! Alg (T ) F : 1 ! �X ,c

Caveat: For some of the examples we will consider, the theory �d+1

X ,c
has not been formally constructed.

In these cases, one can consider the analogue of a projective
representation instead: 1 ! ↵
where everything is rigorous. See [VD23, Hypothesis Q] for more
details.
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Recasting quantization

The theory of states defines a 1-dimensional QFT GQ.

The classical symmetry group G = Sp2n (R) acting projectively on H
is equivalent to the theory living relative to twisted G -gauge theory:

U (1) U (H) U (H) /U (1)

Z/2 Mp Sp

B Mp

B Sp B2Z/2w2

�2

U(H)

�2

BG ,w2

1 �2

BG
1

fGQ

GQ
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Fusion categorical analogue of deformation quantization

Analogue of classical phase space: finite abelian group ⇤ equipped
with a quadratic form q : ⇤ ! C⇥.

Has a natural group of symmetries O (⇤, q).

Analogue of deformation quantization: braided fusion category

(Vect [⇤] , ⇤,�q) �C`,Ck
: C` ⇤ Ck

h`,ki
q
id

�����! Ck ⇤ C` .

Retains an action of O (⇤).

Analogue of geometric quantization: fusion category

Vect [L]

where we have chosen ⇤ ' L� L_ such that q = ev.
The group O (⇤) only acts projectively on Vect [L].
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The fusion categorical anomaly

Recasting the previous slide in terms of TQFTs:

There is a (framed, fully-extended) Turaev-Viro theory, which sends
the point to Vect [L], in the Morita 3-category of fusion categories
[Douglas-Schommer-Pries-Snyder].

Using the obstruction theory of [Etingof-Nikschych-Ostrik]:

Theorem (VD23)

The Turaev-Viro theory for Vect [L] can be upgraded to a theory defined
relative to a twisted gauge theory for O(⇤):

TV : 1 ! �B O(⇤),c
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Table of analogies (reprise)
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B Aut(TV)
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eO
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O(⇤)
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fTV

TV
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We are entering:

1 Quantum mechanics

2 Interlude: Families, symmetries, and anomalies

3 Fusion categories

4 Rozansky-Witten theory
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Shifted deformation quantization

The classical phase space: 2-shifted symplectic stack (M,!) as in
[Calaque, Pantev, Toën, Vaquié, Vezzosi].

The deformation quantization can be thought of as a braided
deformation of the derived category QC (M) of quasi-coherent
sheaves.

Think: the deformation quantization of k-shifted is an Ek+1-algebra,
modules over this form an Ek -category.

This will be the assignment of the Rozansky-Witten theory to the
circle. [Roberts-Willerton]

Compare: The braided fusion category Vect [⇤] was assigned to the
circle by Tuaev-Viro.
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The deformation quantization can be thought of as a braided
deformation of the derived category QC (M) of quasi-coherent
sheaves.

Think: the deformation quantization of k-shifted is an Ek+1-algebra,
modules over this form an Ek -category.

This will be the assignment of the Rozansky-Witten theory to the
circle. [Roberts-Willerton]

Compare: The braided fusion category Vect [⇤] was assigned to the
circle by Tuaev-Viro.

Jackson Van Dyke, TUM Projective TQFTs July 31, 2024 20 / 24



Shifted deformation quantization

The classical phase space: 2-shifted symplectic stack (M,!) as in
[Calaque, Pantev, Toën, Vaquié, Vezzosi].
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Rozansky-Witten theory

The geometric quantization of a shifted symplectic stack is less
well-studied, but a theory is developed in [Safronov].

The explicit construction of this geometric quantization again
typically appeals to a polarization, and therefore has more subtle
equivariance properties than the deformation quantization.

The output should be a certain 2-category, which is closely related to
existing constructions of Rozansky-Witten theory. [Rozansky-Witten,
Roberts-Willerton, Kapustin-Rozansky-Saulina,
Brunner-Carqueville-Fragkos-Roggenkamp,
Gammage-Hilburn-Mazel-Gee]

The theory should fit into the framework of the AKSZ construction.
[Alexandrov-Kontsevich-Schwarz-Zaboronsky, Qiu-Zabzine,
Scheimbauer-Calaque-Haugseng, Stefanich, Riva]

Jackson Van Dyke, TUM Projective TQFTs July 31, 2024 21 / 24



Rozansky-Witten theory

The geometric quantization of a shifted symplectic stack is less
well-studied, but a theory is developed in [Safronov].

The explicit construction of this geometric quantization again
typically appeals to a polarization, and therefore has more subtle
equivariance properties than the deformation quantization.

The output should be a certain 2-category, which is closely related to
existing constructions of Rozansky-Witten theory. [Rozansky-Witten,
Roberts-Willerton, Kapustin-Rozansky-Saulina,
Brunner-Carqueville-Fragkos-Roggenkamp,
Gammage-Hilburn-Mazel-Gee]

The theory should fit into the framework of the AKSZ construction.
[Alexandrov-Kontsevich-Schwarz-Zaboronsky, Qiu-Zabzine,
Scheimbauer-Calaque-Haugseng, Stefanich, Riva]

Jackson Van Dyke, TUM Projective TQFTs July 31, 2024 21 / 24



Rozansky-Witten theory

The geometric quantization of a shifted symplectic stack is less
well-studied, but a theory is developed in [Safronov].

The explicit construction of this geometric quantization again
typically appeals to a polarization, and therefore has more subtle
equivariance properties than the deformation quantization.

The output should be a certain 2-category, which is closely related to
existing constructions of Rozansky-Witten theory. [Rozansky-Witten,
Roberts-Willerton, Kapustin-Rozansky-Saulina,
Brunner-Carqueville-Fragkos-Roggenkamp,
Gammage-Hilburn-Mazel-Gee]

The theory should fit into the framework of the AKSZ construction.
[Alexandrov-Kontsevich-Schwarz-Zaboronsky, Qiu-Zabzine,
Scheimbauer-Calaque-Haugseng, Stefanich, Riva]

Jackson Van Dyke, TUM Projective TQFTs July 31, 2024 21 / 24



Rozansky-Witten theory

The geometric quantization of a shifted symplectic stack is less
well-studied, but a theory is developed in [Safronov].

The explicit construction of this geometric quantization again
typically appeals to a polarization, and therefore has more subtle
equivariance properties than the deformation quantization.

The output should be a certain 2-category, which is closely related to
existing constructions of Rozansky-Witten theory. [Rozansky-Witten,
Roberts-Willerton, Kapustin-Rozansky-Saulina,
Brunner-Carqueville-Fragkos-Roggenkamp,
Gammage-Hilburn-Mazel-Gee]

The theory should fit into the framework of the AKSZ construction.
[Alexandrov-Kontsevich-Schwarz-Zaboronsky, Qiu-Zabzine,
Scheimbauer-Calaque-Haugseng, Stefanich, Riva]

Jackson Van Dyke, TUM Projective TQFTs July 31, 2024 21 / 24



Table of analogies (reprise2)
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d = 3 (RW) (M,!) QC (M) ,�! RW (⇤) ? 2 H4 (B Sp (M))

K Aut (RW) ⇡1 Aut (RW)

K fSp Sp (V )
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B Aut(RW)
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gRW
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My current work in this direction

The analogue of Crane-Yetter in the RW context.
One strategy for accessing this projective Sp-action.

General relationship between the prequantum k-gerbe and the
anomaly (k + 1)-gerbe.

One strategy for understanding the impact of changing the polarization
on the shifted geometric quantization.
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Thank you!
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