Geometric quantization, fusion categories, and Rozansky–Witten theory

Jackson Van Dyke TU Munich

July 31, 2024

4 0 8

Projective/anomalous TQFTs

∢ □ ▶ ⊣ 倒 ▶

 QQ

Projective/anomalous TQFTs

Summary:

• Naturally occurring classical symmetry groups typically act *projectively* on the associated quantized theories.

Projective/anomalous TQFTs

Summary:

- Naturally occurring classical symmetry groups typically act *projectively* on the associated quantized theories.
- In many examples this projectivity can be understood as appearing via the homotopy theory of the higher automorphism group of the quantum theory itself.

 $G = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}$

Projective TQFTS in general are relevant to the classification of topological orders: a gapped quantum system is well-approximated at low energy by a *projective* field theory which is topological [Freed].

- Projective TQFTS in general are relevant to the classification of topological orders: a gapped quantum system is well-approximated at low energy by a *projective* field theory which is topological [Freed].
- The discussion concerning Rozansky-Witten theory is highly relevant to the B-side (spectral side) of the relative Langlands program [Ben-Zvi-Sakellaridis-Venkatesh].

- Projective TQFTS in general are relevant to the classification of topological orders: a gapped quantum system is well-approximated at low energy by a *projective* field theory which is topological [Freed].
- The discussion concerning Rozansky-Witten theory is highly relevant to the B-side (spectral side) of the relative Langlands program [Ben-Zvi-Sakellaridis-Venkatesh].
	- Also see [Teleman] and

[Braverman-Dhillon-Finkelberg-Raskin-Travkin-Johnson-Freyd].

- Projective TQFTS in general are relevant to the classification of topological orders: a gapped quantum system is well-approximated at low energy by a *projective* field theory which is topological [Freed].
- The discussion concerning Rozansky-Witten theory is highly relevant to the B-side (spectral side) of the relative Langlands program [Ben-Zvi-Sakellaridis-Venkatesh].
	- Also see [Teleman] and [Braverman-Dhillon-Finkelberg-Raskin-Travkin-Johnson-Freyd].
	- Relatedly, RW is the B-side of 3d mirror symmetry. See e.g. [Raskin-Hilburn, Gammage-Hilburn-Mazel-Gee].

- Interlude: Families, symmetries, and anomalies
- Fusion categories
- Rozansky-Witten theory

D F

1 Quantum mechanics

Interlude: Families, symmetries, and anomalies

Fusion categories

Rozansky-Witten theory

4 **D F**

• Classical phase space: symplectic vector space (V, ω) , say over R.

4 0 8

- Classical phase space: symplectic vector space (V, ω) , say over R.
	- This has a natural group of symmetries $Sp(V) = Sp_{2n}(\mathbb{R})$.

4 **D F**

- Classical phase space: symplectic vector space (V, ω) , say over R. • This has a natural group of symmetries $Sp(V) = Sp_{2n}(\mathbb{R})$.
- Deformation quantization (observables): The Weyl algebra:

 $A = T(V)/([u, v] - \omega (u, v))$

- Classical phase space: symplectic vector space (V, ω) , say over R. • This has a natural group of symmetries $Sp(V) = Sp_{2n}(\mathbb{R})$.
- Deformation quantization (observables): The Weyl algebra:

$$
A = T(V) / ([u, v] - \omega(u, v)) = (\mathcal{O}(V), *_\omega)
$$

- Classical phase space: symplectic vector space (V, ω) , say over R. • This has a natural group of symmetries $Sp(V) = Sp_{2n}(\mathbb{R})$.
- Deformation quantization (observables): The Weyl algebra:

 $A = T(V)/([u, v] - \omega(u, v)) = (\mathcal{O}(V), *_{\omega}) \simeq \mathbb{R} [\underline{x}, \underline{p}] / ([x_i, p_i] - 1)$

- Classical phase space: symplectic vector space (V, ω) , say over R. • This has a natural group of symmetries $Sp(V) = Sp_{2n}(\mathbb{R})$.
- Deformation quantization (observables): The Weyl algebra:

$$
A = T(V)/([u, v] - \omega(u, v)) = (\mathcal{O}(V), *_{\omega}) \simeq \mathbb{R}[\underline{x}, \underline{p}]/([x_i, p_i] - 1)
$$

• The group $Sp_{2n}(\mathbb{R})$ still acts on A.

- Classical phase space: symplectic vector space (V, ω) , say over R. • This has a natural group of symmetries $Sp(V) = Sp_{2n}(\mathbb{R})$.
- Deformation quantization (observables): The Weyl algebra:

$$
A = T(V)/([u, v] - \omega(u, v)) = (\mathcal{O}(V), *_{\omega}) \simeq \mathbb{R}[\underline{x}, \underline{p}]/([x_i, p_i] - 1)
$$

- The group $Sp_{2n}(\mathbb{R})$ still acts on A.
- Geometric quantization (states): The Weil representation:

$$
\mathcal{H}=L^{2}\left(\ell\right)
$$

where we have chosen a polarization $V \simeq \ell \oplus \ell^{\vee}$.

- Classical phase space: symplectic vector space (V, ω) , say over R. • This has a natural group of symmetries $Sp(V) = Sp_{2n}(\mathbb{R})$.
- Deformation quantization (observables): The Weyl algebra:

$$
A = T(V)/([u, v] - \omega(u, v)) = (\mathcal{O}(V), *_{\omega}) \simeq \mathbb{R}[\underline{x}, \underline{p}]/([x_i, p_i] - 1)
$$

• The group $Sp_{2n}(\mathbb{R})$ still acts on A.

Th

 $\frac{q}{q}$

Geometric quantization (states): The Weil representation:

$$
\mathcal{H}=L^{2}\left(\ell\right)
$$

where we have chosen a polarization $V \simeq \ell \oplus \ell^{\vee}$.

• The group $Sp_{2n}(\mathbb{R})$ only acts *projectively* on H. Equivalently, a central extension, classified by $w_2 \in H^2(B \text{Sp}_{2n}(\mathbb{R}))$, acts linearly on \mathcal{H} : u \overline{y}

$$
\mathbb{Z}/2\hookrightarrow \mathsf{Mp}\twoheadrightarrow \mathsf{Sp}_{2n}\big(\mathbb{R}\big)
$$

 $J\prime$

B \rightarrow \prec

K ロ ▶ K 御 ▶ K 舌

Quantum mechanics

2 Interlude: Families, symmetries, and anomalies

Fusion categories

Rozansky-Witten theory

4 **D F**

Let X be a $(\pi$ -finite) groupoid (space).

≃

イロト イ団ト イヨト イ

Let *X* be a $(\pi$ -finite) groupoid (space). Given a field theory F_0 , one can ask if background fields can be inserted, i.e. if there is a family of theories over X with fiber F_0 :

4 **D F**

Let X be a $(\pi$ -finite) groupoid (space). Given a field theory F_0 , one can ask if background fields can be inserted, i.e. if there is a family of theories over X with fiber F_0 :

$$
\begin{array}{ccc}\n\text{Bord}_d^X \\
\uparrow & \searrow^F \\
\text{Bord}_d & \xrightarrow{F_0} \mathcal{T}\n\end{array}
$$

Two equivalent ways of encoding this notion:

$$
\boxed{\digamma\colon\mathbf{Bord}^X_d\to\mathcal{T}\ \bigg|\ F\colon 1\to\sigma^{d+1}_X}
$$

• Notation: The $(d+1)$ -dimensional gauge theory associated to X as in [Freed-Moore-Teleman] is σ_X^{d+1} : **Bord**_{d+1} \rightarrow **Alg** (*T*).

つひい

Let X be a $(\pi$ -finite) groupoid (space). Given a field theory F_0 , one can ask if background fields can be inserted, i.e. if there is a family of theories over X with fiber F_0 :

$$
\begin{array}{ccc}\n\text{Bord}_d^X \\
\uparrow & \searrow^F \\
\text{Bord}_d & \xrightarrow{F_0} \mathcal{T}\n\end{array}
$$

Two equivalent ways of encoding this notion:

$$
\boxed{\digamma\colon\mathbf{Bord}^X_d\to\mathcal{T}\ \bigg|\ F\colon 1\to\sigma^{d+1}_X}
$$

- Notation: The $(d+1)$ -dimensional gauge theory associated to X as in [Freed-Moore-Teleman] is σ_X^{d+1} : **Bord**_{d+1} \rightarrow **Alg** (*T*).
- The RHS is an (op)lax natural transformation as in [Johnson-Freyd-Scheimbauer].

• For *G* a finite group, families of theories over the groupoid $X = BG$ are equivalent to theories with an action of *G*.

イロト

 QQQ

- \bullet For *G* a finite group, families of theories over the groupoid $X = BG$ are equivalent to theories with an action of *G*.
- For example, fix $d = 1$. Functors

$$
\digamma\colon \text{Bord}_1^{\mathcal{B}G} \to \mathcal{T} = \text{Vect}
$$

are classified by functors $BG \rightarrow \textbf{Vect}$, which are representations of *G*.

 QQ

- \bullet For *G* a finite group, families of theories over the groupoid $X = BG$ are equivalent to theories with an action of *G*.
- For example, fix $d = 1$. Functors

$$
F\colon \text{Bord}_1^{\mathcal{B}G} \to \mathcal{T} = \text{Vect}
$$

are classified by functors $BG \rightarrow \textbf{Vect}$, which are representations of *G*. On the other hand, the theory σ_{BG}^2 is a functor valued in the Morita

category of algebras:

$$
Bord2 \xrightarrow{\sigma_{BG}^2} Alg \xrightarrow{\mathcal{L}^2 \rightarrow \mathcal{L} \rightarrow \mathcal{L}}
$$

$$
\ast\longmapsto\left(\mathbb{C}\left[G\right] ,\ast\right)
$$

- \bullet For *G* a finite group, families of theories over the groupoid $X = BG$ are equivalent to theories with an action of *G*.
- For example, fix $d = 1$. Functors

$$
\digamma\colon \mathbf{Bord}_1^{BG}\to \mathcal{T}=\mathbf{Vect}
$$

are classified by functors $BG \rightarrow$ Vect, which are representations of *G*.

On the other hand, the theory σ_{BG}^2 is a functor valued in the Morita category of algebras: the groupoid $X = BG$

S.

S.

dre representations of G.

corvalued in the Morita

$$
Bord2 \xrightarrow{\sigma_{BG}^2} Alg \xrightarrow{\qquad} I \longrightarrow \n\mathcal{O}_{BC}^{-2}
$$
\n
$$
\ast \longmapsto (\mathbb{C}[G], \ast) \xrightarrow{\qquad} \mathcal{C} \longrightarrow \n\mathcal{C} \cup \{\text{C}\}
$$

A theory <u>defined relative</u> to the theory σ_{BG}^2 is a morphism in the Morita category from C to the group algebra, i.e. a module over the group algebra. Example: $X = BG$

• For *G* a finite group, families of theo

are equivalent to theories with an act

• For example, fix $d = 1$. Functors
 $F: \text{Bord}_1^{BG} \rightarrow$

are classified by functors $BG \rightarrow \text{Vect}$

• On the other hand, the th

Jackson Van Dyke, TUM Projective TQFTs July 31, 2024 10 / 24

Let X be a $(\pi$ -finite) groupoid (space), and now consider *projectivity data on X*:

$$
\begin{array}{ccc}\nB^d \mathbb{C}^\times & \to \widetilde{X} \\
& \downarrow & \\
& X \stackrel{\alpha}{\to} B^{d+1} \mathbb{C}^\times\n\end{array}
$$

4 ロ ▶ 4 冊

Let X be a $(\pi$ -finite) groupoid (space), and now consider *projectivity data on X*:

$$
\begin{array}{ccc}\nB^d \mathbb{C}^\times & \to & \widetilde{X} \\
& \downarrow & & \\
& X \stackrel{\alpha}{\to} B^{d+1} \mathbb{C}^\times\n\end{array}
$$

Projective/anomalous *d*-dimensional TQFT with background *X*-fields:

4 **D F**

Let X be a $(\pi$ -finite) groupoid (space), and now consider *projectivity data on X*:

$$
\begin{array}{ccc}\nB^d \mathbb{C}^\times & \to & \widetilde{X} \\
& \downarrow & & \\
& X \stackrel{\alpha}{\to} B^{d+1} \mathbb{C}^\times\n\end{array}
$$

Projective/anomalous *d*-dimensional TQFT with background *X*-fields:

 QQ

Let *X* be a $(\pi$ -finite) groupoid (space), and now consider *projectivity data*
 on X: $\begin{matrix} \sim & \sim & \infty & \mathbf{R} \end{matrix}$ $\begin{matrix} \sim & \infty & \mathbf{R} \end{matrix}$ *on X*:

$$
B^{d}\mathbb{C}^{\times} \to \widetilde{X} \qquad \qquad \mathsf{X} : \mathbf{B}_{\mathsf{add}} \longrightarrow \widetilde{Y} \qquad \qquad \uparrow
$$

$$
\downarrow c \qquad \qquad \times \longrightarrow \mathsf{B}^{d+1}\mathbb{C}^{\times}
$$

Projective/anomalous *d*-dimensional TQFT with background *X*-fields:

Theorem (VD23) *F* : $1_X \rightarrow \alpha$ $F: 1 \rightarrow \sigma_{X,c}$ $F:$ **Bord** $\frac{\mathcal{X}}{d} \to \mathcal{T}$ $F: 1 \to \sigma_{\widetilde{X}}$

E.g. $X = BG$, $\widetilde{X} = B\widetilde{G}$ for \widetilde{G} a central extension of G classified by α .

We will focus on the analogue of a module over the twisted group algebra:

$$
\sigma^{d+1}_{X,c} \colon \mathbf{Bord}_{d+1} \to \mathbf{Alg}(\mathcal{T}) \qquad \qquad \mathcal{F} \colon 1 \to \sigma_{X,c}
$$

- Caveat: For some of the examples we will consider, the theory $\sigma_{X,c}^{d+1}$ has not been formally constructed.
- In these cases, one can consider the analogue of a projective representation instead: $1 \rightarrow \alpha$ where everything is rigorous. See $[VD23, Hypothesis Q]$ for more details.

• The theory of states defines a 1-dimensional QFT GQ.

4 ロ ▶ 4 何

• The theory of states defines a 1-dimensional QFT GQ.

4 ロ ▶ 4 何

Recasting quantization

- The theory of states defines a 1-dimensional QFT GQ.
- The classical symmetry group $G = Sp_{2n}(\mathbb{R})$ acting projectively on $\mathcal H$ is equivalent to the theory living relative to twisted *G*-gauge theory:

Recasting quantization

- The theory of states defines a 1-dimensional QFT GQ.
- The classical symmetry group $G = Sp_{2n}(\mathbb{R})$ acting projectively on \mathcal{H} is equivalent to the theory living relative to twisted *G*-gauge theory:

つひひ

$$
\begin{array}{ccc}\nU(1) \rightarrow U(\mathcal{H}) \rightarrow U(\mathcal{H})/U(1) \\
\updownarrow & \uparrow & \uparrow \\
\mathbb{Z}/2 \longrightarrow Mp \xrightarrow{\qquad \sim & \searrow & \searrow \\
\end{array}
$$

$$
B \text{ Mp}
$$

\n
$$
B \text{ Sp} \xrightarrow{w_2} B^2 \mathbb{Z}/2
$$

K ロ ▶ | K 母 ▶ | K 舌

Þ

Quantum mechanics

Interlude: Families, symmetries, and anomalies

3 Fusion categories

Rozansky-Witten theory

4 **D F**

 QQ

• Analogue of classical phase space: finite abelian group Λ equipped with a quadratic form $q: \Lambda \to \mathbb{C}^{\times}$.

- Analogue of classical phase space: finite abelian group Λ equipped with a quadratic form $q: \Lambda \to \mathbb{C}^{\times}$.
	- Has a natural group of symmetries $O(\Lambda, q)$.

- Analogue of classical phase space: finite abelian group Λ equipped with a quadratic form $q: \Lambda \to \mathbb{C}^{\times}$.
	- Has a natural group of symmetries $O(\Lambda, q)$.
- Analogue of deformation quantization: braided fusion category

Figure 6: Consider the equation
$$
q: \Lambda \to \mathbb{C}^{\times}
$$
.

\nThus a natural group of symmetries $O(\Lambda, q)$.

\nFigure 6: The equation $q: \Lambda \to \mathbb{C}^{\times}$.

\nFigure 7: The equation $q: \Lambda \to \mathbb{C}^{\times}$.

\nFigure 8: The equation $q: \Lambda \to \mathbb{C}^{\times}$.

\nFigure 9: The equation $q: \Lambda \to \mathbb{C}^{\times}$.

\nExample 1: The equation $q: \Lambda \to \mathbb{C}^{\times}$.

\nExample 1: The equation $q: \Lambda \to \mathbb{C}^{\times}$.

\nExample 1: The equation $q: \Lambda \to \mathbb{C}^{\times}$.

\nExample 2: The equation $q: \Lambda \to \mathbb{C}^{\times}$.

\nExample 3: The equation $q: \Lambda \to \mathbb{C}^{\times}$.

\nExample 4: The equation $q: \Lambda \to \mathbb{C}^{\times}$.

\nExample 5: The equation $q: \Lambda \to \mathbb{C}^{\times}$.

\nExample 6: The equation $q: \Lambda \to \mathbb{C}^{\times}$.

\nExample 7: The equation $q: \Lambda \to \mathbb{C}^{\times}$.

\nExample 8: The equation $q: \Lambda \to \mathbb{C}^{\times}$.

\nExample 9: The equation $q: \Lambda \to \mathbb{C}^{\times}$.

\nExample 1: The equation $q: \Lambda \to \mathbb{C}^{\times}$.

\nExample 1: The equation $q: \Lambda \to \mathbb{C}^{\times}$.

\nExample 2: The equation $q: \Lambda \to \mathbb{C}^{\times}$.

\nExample 3: The equation $q: \Lambda \to \mathbb{C}^{\times}$.

\nExample 4: The equation $q: \Lambda \to \mathbb{C}^{\times}$.

\nExample 5: The equation $q: \Lambda \to \mathbb{C}^{\times}$.

\nExample 6: The equation $q: \Lambda \to \mathbb{C}^{\times}$.

\nExample 1

- Analogue of classical phase space: finite abelian group Λ equipped with a quadratic form $q: \Lambda \to \mathbb{C}^{\times}$.
	- Has a natural group of symmetries $O(\Lambda, q)$.
- Analogue of deformation quantization: braided fusion category

$$
(\mathbf{Vect}[\Lambda], *, \beta_q) \qquad \beta_{\mathbb{C}_{\ell}, \mathbb{C}_{k}} : \mathbb{C}_{\ell} * \mathbb{C}_{k} \xrightarrow{\langle \ell, k \rangle_q \mathrm{id}} \mathbb{C}_{k} * \mathbb{C}_{\ell} .
$$

• Retains an action of $O(\Lambda)$.

- Analogue of classical phase space: finite abelian group Λ equipped with a quadratic form $q: \Lambda \to \mathbb{C}^{\times}$.
	- Has a natural group of symmetries $O(\Lambda, q)$.
- Analogue of deformation quantization: braided fusion category

$$
\mathcal{A} = (\text{Vect}[\Lambda], *, \beta_q) \qquad \beta_{\mathbb{C}_{\ell}, \mathbb{C}_{k}} : \mathbb{C}_{\ell} * \mathbb{C}_{k} \xrightarrow{\langle \ell, k \rangle_q \text{id}} \mathbb{C}_{k} * \mathbb{C}_{\ell} .
$$

- Retains an action of $O(\Lambda)$.
- Analogue of geometric quantization: fusion category

Vect [*L*] where we have chosen $\Lambda \simeq L \oplus L^{\vee}$ such that $q = ev$. • Has a natural group of symmetries O (Λ ,

Analogue of deformation quantization: bra
 $\mathcal{A} = (\text{Vect} [\Lambda], *, \beta_q)$ $\beta_{\mathbb{C}_{\ell}, \mathbb{C}_{k}} : \mathbb{C}_{\ell} *$

• Retains an action of O (Λ).

Analogue of geometric quantization: fusi e TV : $v \mapsto e$ $5' \mapsto 1$

 3602 $\frac{3^{3}C^{2}}{16}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ 3 age $B^2C^2 \leftarrow BA + b_{f-f}$ (to Br ϵ_2 cb of \approx (e) \longrightarrow detomas Mart be close of $U = V$ caro [1] h $\frac{1}{\sqrt{2}}$ t o solar

- Analogue of classical phase space: finite abelian group Λ equipped with a quadratic form $q: \Lambda \to \mathbb{C}^{\times}$.
	- Has a natural group of symmetries $O(\Lambda, q)$.
- Analogue of deformation quantization: braided fusion category

$$
(\text{Vect}[\Lambda], *, \beta_q) \qquad \beta_{\mathbb{C}_{\ell}, \mathbb{C}_{k}} : \mathbb{C}_{\ell} * \mathbb{C}_{k} \xrightarrow{\langle \ell, k \rangle_q \text{id}} \mathbb{C}_{k} * \mathbb{C}_{\ell} .
$$

- Retains an action of $O(\Lambda)$.
- Analogue of geometric quantization: fusion category

Vect [*L*]

where we have chosen $\Lambda \simeq L \oplus L^{\vee}$ such that $q = ev$.

• The group $O(\Lambda)$ only acts projectively on **Vect** [L].

Recasting the previous slide in terms of TQFTs:

There is a (framed, fully-extended) Turaev-Viro theory, which sends the point to Vect [*L*], in the Morita 3-category of fusion categories [Douglas-Schommer-Pries-Snyder].

Recasting the previous slide in terms of TQFTs:

- There is a (framed, fully-extended) Turaev-Viro theory, which sends the point to Vect [*L*], in the Morita 3-category of fusion categories [Douglas-Schommer-Pries-Snyder].
- Using the obstruction theory of Etingof-Nikschych-Ostrik]:

Theorem (VD23)

The Turaev-Viro theory for Vect [*L*] *can be upgraded to a theory defined relative to a twisted gauge theory for* $O(\Lambda)$ *:*

$$
\text{TV} \colon 1 \to \sigma_B^{\mathbf{4}}_{O(\Lambda),c} \subset \mathbf{C}_4
$$

$$
\frac{371}{400} \int \frac{v}{v} dv \, dv^2 \qquad \text{Aut} \quad (U_{xx}f[L1) = \frac{31}{40} \int \frac{81}{51} \text{Pic} \left(\frac{x}{2}(z)\right)
$$
\n
$$
G = \frac{C2}{20} \int \frac{1}{v^2} dv
$$

K ロ ▶ K 伊 ▶ K

э

∍

$$
B^{2}\mathbb{C}^{\times} \longrightarrow \text{Aut}(\text{TV}) \longrightarrow \pi_{\leq 1} \text{Aut}(\text{TV}) \quad \bigcup_{\text{tr}(h)} \bigcup_{\text{tr}(h)} \mathcal{L}_{(h)}
$$
\n
$$
B^{2}\mathbb{C}^{\times} \longrightarrow \widetilde{O} \longrightarrow O(h) \qquad \text{Sp}
$$

$$
B\widetilde{O}
$$

\n
$$
B\widetilde{O}(V) \xrightarrow{O_4} B^4 \mathbb{C}^{\times}
$$

B \rightarrow \mathcal{A} **D** 299

K ロ ト K 伊 ト K 毛

$$
B^{2}\mathbb{C}^{\times} \longrightarrow \text{Aut}(\text{TV}) \longrightarrow \pi_{\leq 1} \text{Aut}(\text{TV})
$$
\n
$$
\uparrow \qquad \uparrow \qquad \uparrow \qquad \qquad \uparrow
$$
\n
$$
B^{2}\mathbb{C}^{\times} \longrightarrow \widetilde{O} \longrightarrow \widetilde{O}(\Lambda)
$$
\n
$$
B\widetilde{O} \qquad \qquad \downarrow \qquad \qquad \uparrow \qquad \qquad \uparrow
$$
\n
$$
B\widetilde{O} \qquad \qquad \downarrow \qquad \qquad \uparrow
$$
\n
$$
B\widetilde{O}(V) \longrightarrow B^{4}\mathbb{C}^{\times}
$$
\n
$$
\downarrow \qquad \qquad 1 \longrightarrow \sigma_{O(\Lambda)}^{4} \longrightarrow 1
$$

 299

 $\sigma_{\widetilde{O}}^4$

TV

II

Quantum mechanics

Interlude: Families, symmetries, and anomalies

Fusion categories

4 Rozansky-Witten theory $1 \sim M$

4 **D F**

 QQ

• The classical phase space: 2-shifted symplectic stack (M, ω) as in [Calaque, Pantev, Toën, Vaquié, Vezzosi].

4 0 8

Shifted deformation quantization

- The classical phase space: 2-shifted symplectic stack (M, ω) as in [Calaque, Pantev, Toën, Vaquié, Vezzosi].
- The deformation quantization can be thought of as a braided deformation of the derived category QC (*M*) of quasi-coherent sheaves.

Shifted deformation quantization

- The classical phase space: 2-shifted symplectic stack (M, ω) as in [Calaque, Pantev, Toën, Vaquié, Vezzosi].
- The deformation quantization can be thought of as a braided deformation of the derived category QC (*M*) of quasi-coherent sheaves.
	- Think: the deformation quantization of k -shifted is an \mathbb{E}_{k+1} -algebra, modules over this form an E*^k* -category.

- The classical phase space: 2-shifted symplectic stack (M, ω) as in [Calaque, Pantev, Toën, Vaquié, Vezzosi].
- The deformation quantization can be thought of as a braided deformation of the derived category QC (*M*) of quasi-coherent sheaves.
	- **•** Think: the deformation quantization of *k*-shifted is an \mathbb{E}_{k+1} -algebra, modules over this form an E*^k* -category.
- This will be the assignment of the Rozansky-Witten theory to the circle. [Roberts-Willerton]

- The classical phase space: 2-shifted symplectic stack (M, ω) as in [Calaque, Pantev, Toën, Vaquié, Vezzosi].
- The deformation quantization can be thought of as a braided deformation of the derived category QC (*M*) of quasi-coherent sheaves.
	- **•** Think: the deformation quantization of *k*-shifted is an \mathbb{E}_{k+1} -algebra, modules over this form an E*^k* -category.
- This will be the assignment of the Rozansky-Witten theory to the circle. [Roberts-Willerton]
	- Compare: The braided fusion category **Vect** $[\Lambda]$ was assigned to the circle by Tuaev-Viro.

- The classical phase space: 2-shifted symplectic stack (M, ω) as in [Calaque, Pantev, Toën, Vaquié, Vezzosi].
- The deformation quantization can be thought of as a braided deformation of the derived category QC (*M*) of quasi-coherent sheaves.
	- **•** Think: the deformation quantization of *k*-shifted is an \mathbb{E}_{k+1} -algebra, modules over this form an E*^k* -category.
- This will be the assignment of the Rozansky-Witten theory to the circle. [Roberts-Willerton]
	- Compare: The braided fusion category **Vect** $[\Lambda]$ was assigned to the circle by Tuaev-Viro.

The geometric quantization of a shifted symplectic stack is less well-studied, but a theory is developed in [Safronov].

イロト

 QQ

- The geometric quantization of a shifted symplectic stack is less well-studied, but a theory is developed in [Safronov].
- The explicit construction of this geometric quantization again typically appeals to a polarization, and therefore has more subtle equivariance properties than the deformation quantization.

- The geometric quantization of a shifted symplectic stack is less well-studied, but a theory is developed in [Safronov].
- The explicit construction of this geometric quantization again typically appeals to a polarization, and therefore has more subtle equivariance properties than the deformation quantization.
- The output should be a certain 2-category, which is closely related to existing constructions of Rozansky-Witten theory. Rozansky-Witten, Roberts-Willerton, Kapustin-Rozansky-Saulina, Brunner-Carqueville-Fragkos-Roggenkamp, Gammage-Hilburn-Mazel-Gee]

(□) (_□

- The geometric quantization of a shifted symplectic stack is less well-studied, but a theory is developed in [Safronov].
- The explicit construction of this geometric quantization again typically appeals to a polarization, and therefore has more subtle equivariance properties than the deformation quantization.
- The output should be a certain 2-category, which is closely related to existing constructions of Rozansky-Witten theory. Rozansky-Witten, Roberts-Willerton, Kapustin-Rozansky-Saulina, Brunner-Carqueville-Fragkos-Roggenkamp, Gammage-Hilburn-Mazel-Gee]
- The theory should fit into the framework of the AKSZ construction. [Alexandrov-Kontsevich-Schwarz-Zaboronsky, Qiu-Zabzine, Scheimbauer-Calaque-Haugseng, Stefanich, Riva]

≃

K ロ ▶ K 伊 ▶ K

$$
K \longrightarrow \text{Aut}(\text{RW}) \longrightarrow \pi_{\leq 1} \text{Aut}(\text{RW})
$$

$$
\parallel \qquad \uparrow \qquad \uparrow \qquad \uparrow
$$

$$
K \longrightarrow \widetilde{\text{Sp}} \longrightarrow \text{Sp}(V)
$$

≃

K ロ ▶ K 伊 ▶ K

Table of analogies (reprise²)

$$
K \longrightarrow \text{Aut}(\text{RW}) \longrightarrow \pi_{\leq 1} \text{Aut}(\text{RW})
$$

$$
\parallel \qquad \uparrow \qquad \uparrow \qquad \uparrow
$$

$$
K \longrightarrow \widetilde{\text{Sp}} \longrightarrow \text{Sp}(V)
$$

4 **D F**

 (v_y) $c\ell(v_y)$ $M\simeq1$ l $H^2(Sso)$ $(1, 2)$ U us (1] U mo l (1) U^4 (BSO)

 $\Lambda = V$ S. F_p $y \in H^4(B^2\Lambda, C^{\times})$

 $= H^{2}(B^{2}A, B^{2}C^{2})$

- The analogue of Crane-Yetter in the RW context.
	- One strategy for accessing this projective Sp-action.
- General relationship between the prequantum *k*-gerbe and the anomaly $(k + 1)$ -gerbe.
	- One strategy for understanding the impact of changing the polarization on the shifted geometric quantization.

Thank you!

B

э × \mathcal{A} **D**

K ロ ▶ K 伊 ▶ K

Thank you!

B

э × \mathcal{A} **D**

K ロ ▶ K 伊 ▶ K