Geometric quantization, fusion categories, and Rozansky–Witten theory

Jackson Van Dyke TU Munich

July 31, 2024

Projective/anomalous TQFTs

Projective/anomalous TQFTs

Summary:

• Naturally occurring classical symmetry groups typically act *projectively* on the associated quantized theories.

Projective/anomalous TQFTs

Summary:

- Naturally occurring classical symmetry groups typically act *projectively* on the associated quantized theories.
- In many examples this projectivity can be understood as appearing via the homotopy theory of the higher automorphism group of the quantum theory itself.

To Anto(F) 7 G > Aut (F)

• Projective TQFTS in general are relevant to the classification of topological orders: a gapped quantum system is well-approximated at low energy by a *projective* field theory which is topological [Freed].

- Projective TQFTS in general are relevant to the classification of topological orders: a gapped quantum system is well-approximated at low energy by a *projective* field theory which is topological [Freed].
- The discussion concerning Rozansky-Witten theory is highly relevant to the B-side (spectral side) of the relative Langlands program [Ben-Zvi-Sakellaridis-Venkatesh].

- Projective TQFTS in general are relevant to the classification of topological orders: a gapped quantum system is well-approximated at low energy by a *projective* field theory which is topological [Freed].
- The discussion concerning Rozansky-Witten theory is highly relevant to the B-side (spectral side) of the relative Langlands program [Ben-Zvi-Sakellaridis-Venkatesh].
 - Also see [Teleman] and

[Braverman-Dhillon-Finkelberg-Raskin-Travkin-Johnson-Freyd].

- Projective TQFTS in general are relevant to the classification of topological orders: a gapped quantum system is well-approximated at low energy by a *projective* field theory which is topological [Freed].
- The discussion concerning Rozansky-Witten theory is highly relevant to the B-side (spectral side) of the relative Langlands program [Ben-Zvi-Sakellaridis-Venkatesh].
 - Also see [Teleman] and [Braverman-Dhillon-Finkelberg-Raskin-Travkin-Johnson-Freyd].
 - Relatedly, **RW** is the B-side of 3d mirror symmetry. See e.g. [Raskin-Hilburn, Gammage-Hilburn-Mazel-Gee].

2 Interlude: Families, symmetries, and anomalies

Quantum mechanics

2 Interlude: Families, symmetries, and anomalies

3 Fusion categories

4 Rozansky-Witten theory

• Classical phase space: symplectic vector space (V, ω) , say over \mathbb{R} .

- Classical phase space: symplectic vector space (V, ω), say over \mathbb{R} .
 - This has a natural group of symmetries $Sp(V) = Sp_{2n}(\mathbb{R})$.

- Classical phase space: symplectic vector space (V, ω) , say over \mathbb{R} .
 - This has a natural group of symmetries $Sp(V) = Sp_{2n}(\mathbb{R})$.
- Deformation quantization (observables): The Weyl algebra:

 $A = T(V) / ([u, v] - \omega(u, v))$

- Classical phase space: symplectic vector space (V, ω) , say over \mathbb{R} .
 - This has a natural group of symmetries $Sp(V) = Sp_{2n}(\mathbb{R})$.
- Deformation quantization (observables): The Weyl algebra:

$$A = T(V) / ([u, v] - \omega(u, v)) = (\mathcal{O}(V), *_{\omega})$$

- Classical phase space: symplectic vector space (V, ω), say over $\mathbb R$.
 - This has a natural group of symmetries $Sp(V) = Sp_{2n}(\mathbb{R})$.
- Deformation quantization (observables): The Weyl algebra:

$$\mathsf{A} = \mathsf{T}(\mathsf{V}) / \left([u, v] - \omega(u, v) \right) = \left(\mathcal{O}(\mathsf{V}), *_{\omega} \right) \simeq \mathbb{R}\left[\underline{x}, \underline{p} \right] / \left([x_i, p_i] - 1 \right)$$

- Classical phase space: symplectic vector space (V, ω), say over $\mathbb R$.
 - This has a natural group of symmetries $Sp(V) = Sp_{2n}(\mathbb{R})$.
- Deformation quantization (observables): The Weyl algebra:

$$\mathsf{A} = \mathsf{T}(\mathsf{V}) / ([u, v] - \omega(u, v)) = (\mathcal{O}(\mathsf{V}), *_{\omega}) \simeq \mathbb{R}[\underline{x}, \underline{p}] / ([x_i, p_i] - 1)$$

• The group $\operatorname{Sp}_{2n}(\mathbb{R})$ still acts on A.

- Classical phase space: symplectic vector space (V, ω) , say over \mathbb{R} .
 - This has a natural group of symmetries $Sp(V) = Sp_{2n}(\mathbb{R})$.
- Deformation quantization (observables): The Weyl algebra:

$$\mathsf{A} = \mathsf{T}(\mathsf{V}) / ([\mathsf{u},\mathsf{v}] - \omega(\mathsf{u},\mathsf{v})) = (\mathcal{O}(\mathsf{V}), *_{\omega}) \simeq \mathbb{R}[\underline{\mathsf{x}},\underline{\mathsf{p}}] / ([\mathsf{x}_i,\mathsf{p}_i] - 1)$$

- The group $\operatorname{Sp}_{2n}(\mathbb{R})$ still acts on A.
- Geometric quantization (states): The Weil representation:

$$\mathcal{H}=L^{2}\left(\ell
ight)$$

where we have chosen a polarization $V \simeq \ell \oplus \ell^{\vee}$.

- Classical phase space: symplectic vector space (V, ω), say over $\mathbb R$.
 - This has a natural group of symmetries $Sp(V) = Sp_{2n}(\mathbb{R})$.
- Deformation quantization (observables): The Weyl algebra:

$$A = T(V) / ([u, v] - \omega(u, v)) = (\mathcal{O}(V), *_{\omega}) \simeq \mathbb{R} [\underline{x}, \underline{p}] / ([x_i, p_i] - 1)$$

- The group $\operatorname{Sp}_{2n}(\mathbb{R})$ still acts on A.
- Geometric quantization (states): The Weil representation:

$$\mathcal{H}=L^{2}\left(\ell
ight)$$

where we have chosen a polarization $V \simeq \ell \oplus \ell^{\vee}$.

The group Sp_{2n} (ℝ) only acts *projectively* on *H*. Equivalently, a central extension, classified by w₂ ∈ H² (B Sp_{2n} (ℝ)), acts linearly on *H*:

$$\mathbb{Z}/2 \hookrightarrow \mathsf{Mp} \twoheadrightarrow \mathsf{Sp}_{2n}\left(\mathbb{R}\right)$$

$d = 1 \; (QM)$	(V,ω)	$\mathcal{O}(V), *_{\omega}$	$L^{2}(\ell)$	$w_2 \in H^2\left(B\operatorname{Sp}_{2n}(\mathbb{R}) ight)$
<i>d</i> = 3 (TV)				
d = 3 (RW)				

Image: A mathematical states of the state

Quantum mechanics

Interlude: Families, symmetries, and anomalies

3 Fusion categories

4 Rozansky-Witten theory

Let X be a $(\pi$ -finite) groupoid (space).

3

・ロト ・ 日 ト ・ 目 ト ・

Let X be a $(\pi$ -finite) groupoid (space). Given a field theory F_0 , one can ask if background fields can be inserted, i.e. if there is a family of theories over X with fiber F_0 :

Let X be a $(\pi$ -finite) groupoid (space). Given a field theory F_0 , one can ask if background fields can be inserted, i.e. if there is a family of theories over X with fiber F_0 :

Two equivalent ways of encoding this notion:

$$F: \mathbf{Bord}_d^X o \mathcal{T} \mid F: 1 o \sigma_X^{d+1}$$

 Notation: The (d + 1)-dimensional gauge theory associated to X as in [Freed-Moore-Teleman] is σ^{d+1}_X: Bord_{d+1} → Alg (T).

Let X be a $(\pi$ -finite) groupoid (space). Given a field theory F_0 , one can ask if background fields can be inserted, i.e. if there is a family of theories over X with fiber F_0 :

Two equivalent ways of encoding this notion:

$$F: \mathbf{Bord}_d^X \to \mathcal{T} \mid F: 1 \to \sigma_X^{d+1}$$

- Notation: The (d + 1)-dimensional gauge theory associated to X as in [Freed-Moore-Teleman] is σ^{d+1}_X: Bord_{d+1} → Alg (T).
- The RHS is an (op)lax natural transformation as in [Johnson-Freyd-Scheimbauer].

Jackson Van Dyke, TUM

• For G a finite group, families of theories over the groupoid X = BG are equivalent to theories with an action of G.

- For G a finite group, families of theories over the groupoid X = BG are equivalent to theories with an action of G.
- For example, fix d = 1. Functors

$$\textit{F}: \textbf{Bord}_1^{\textit{BG}} \to \mathcal{T} = \textbf{Vect}$$

are classified by functors $BG \rightarrow \mathbf{Vect}$, which are representations of G.

- For G a finite group, families of theories over the groupoid X = BG are equivalent to theories with an action of G.
- For example, fix d = 1. Functors

$$\textit{F} \colon \textbf{Bord}_1^{\textit{BG}} \to \mathcal{T} = \textbf{Vect}$$

are classified by functors $BG \rightarrow \mathbf{Vect}$, which are representations of G.

• On the other hand, the theory σ_{BG}^2 is a functor valued in the Morita category of algebras:

$$\mathsf{Bord}_2 \xrightarrow{\sigma_{BG}^2} \mathsf{Alg}$$

$$* \longmapsto (\mathbb{C}[G], *)$$

- For G a finite group, families of theories over the groupoid X = BG are equivalent to theories with an action of G.
- For example, fix d = 1. Functors

$$\textit{F} \colon \textit{Bord}_1^{\textit{BG}} \to \mathcal{T} = \textit{Vect}$$

are classified by functors $BG \rightarrow \mathbf{Vect}$, which are representations of G.

• On the other hand, the theory σ_{BG}^2 is a functor valued in the Morita category of algebras:

$$Bord_{2} \xrightarrow{\sigma_{BG}^{2}} Alg \qquad | \longrightarrow \mathcal{O}_{BG}^{2}$$
$$* \longmapsto (\mathbb{C}[G], *) \xrightarrow{\forall : \mathcal{C}} \mathcal{O}_{A}^{2} \mathbb{C}[\mathcal{O}]$$

• A theory defined relative to the theory σ_{BG}^2 is a morphism in the Morita category from \mathbb{C} to the group algebra, i.e. a module over the group algebra.

Jackson Van Dyke, TUM

Let X be a $(\pi$ -finite) groupoid (space), and now consider *projectivity data* on X:

$$\begin{array}{ccc} B^{d}\mathbb{C}^{\times} \longrightarrow \widetilde{X} \\ \downarrow \\ X \xrightarrow{\alpha} B^{d+1}\mathbb{C}^{\times} \end{array}$$

(日) (四) (日) (日) (日)

Let X be a $(\pi$ -finite) groupoid (space), and now consider *projectivity data* on X:

$$egin{array}{ccc} B^d \mathbb{C}^ imes & \to \widetilde{X} & \ & \downarrow & \ & X \stackrel{lpha}{ o} & B^{d+1} \mathbb{C}^ imes \end{array}$$

Projective/anomalous *d*-dimensional TQFT with background *X*-fields:

Let X be a $(\pi$ -finite) groupoid (space), and now consider *projectivity data* on X:

$$egin{array}{ccc} B^d \mathbb{C}^ imes o \widetilde{X} & \ & \downarrow & \ & X o B^{d+1} \mathbb{C}^ imes \end{array} \ \end{array}$$

Projective/anomalous *d*-dimensional TQFT with background *X*-fields:

Let X be a (π -finite) groupoid (space), and now consider *projectivity data* on X:

Projective/anomalous *d*-dimensional TQFT with background *X*-fields:

Theorem (VD23)TFAE: $F: 1_X \to \alpha$ $F: 1 \to \sigma_{X,c}$ $F: \mathbf{Bord}_d^{\widetilde{X}} \to \mathcal{T}$ $F: 1 \to \sigma_{\widetilde{X}}$

E.g. X = BG, $\widetilde{X} = B\widetilde{G}$ for \widetilde{G} a central extension of G classified by α .

projective rep	mod over the twisted gp alg		
rep of the ext'n	mod over gp alg of the ext'n		

• We will focus on the analogue of a module over the twisted group algebra:

$$\sigma_{X,c}^{d+1} \colon \operatorname{Bord}_{d+1} \to \operatorname{Alg}\left(\mathcal{T}\right) \qquad \qquad F \colon 1 \to \sigma_{X,c}$$

- Caveat: For some of the examples we will consider, the theory $\sigma_{X,c}^{d+1}$ has not been formally constructed.
- In these cases, one can consider the analogue of a projective representation instead: $1 \rightarrow \alpha$ where everything is rigorous. See [VD23, Hypothesis Q] for more details.

• The theory of states defines a 1-dimensional QFT GQ.

• The theory of states defines a 1-dimensional QFT GQ.

Recasting quantization

- The theory of states defines a 1-dimensional QFT GQ.
- The classical symmetry group G = Sp_{2n}(ℝ) acting projectively on H is equivalent to the theory living relative to twisted G-gauge theory:

Recasting quantization

- The theory of states defines a 1-dimensional QFT GQ.
- The classical symmetry group G = Sp_{2n}(ℝ) acting projectively on H is equivalent to the theory living relative to twisted G-gauge theory:

d=1 (QM)	(V, ω)	$\mathcal{O}(V), *_{\omega}$	$L^{2}(\ell)$	$w_2 \in H^2\left(B\operatorname{Sp}_{2n}(\mathbb{R})\right)$
<i>d</i> = 3 (TV)				
d = 3 (RW)				

$$\begin{array}{c} \mathsf{U}(1) \longrightarrow \mathsf{U}(\mathcal{H}) \longrightarrow \mathsf{U}(\mathcal{H}) / \mathsf{U}(1) \\ \uparrow & \uparrow & \uparrow \\ \mathbb{Z}/2 \longrightarrow \mathsf{Mp} \longrightarrow \mathsf{Sp} \end{array}$$

$$\begin{array}{c} B \text{ Mp} \\ \downarrow \\ B \text{ Sp} \xrightarrow{w_2} B^2 \mathbb{Z}/2 \end{array}$$

Quantum mechanics

2 Interlude: Families, symmetries, and anomalies

3 Fusion categories

4 Rozansky-Witten theory

 Analogue of classical phase space: finite abelian group Λ equipped with a quadratic form q: Λ → C[×].

- Analogue of classical phase space: finite abelian group Λ equipped with a quadratic form q: Λ → C[×].
 - Has a natural group of symmetries $O(\Lambda, q)$.

- Analogue of classical phase space: finite abelian group Λ equipped with a quadratic form q: Λ → C[×].
 - Has a natural group of symmetries $O(\Lambda, q)$.
- Analogue of deformation quantization: braided fusion category

- Analogue of classical phase space: finite abelian group Λ equipped with a quadratic form q: Λ → C[×].
 - Has a natural group of symmetries $O(\Lambda, q)$.
- Analogue of deformation quantization: braided fusion category

$$(\mathbf{Vect} [\Lambda], *, \beta_q) \qquad \beta_{\mathbb{C}_{\ell}, \mathbb{C}_k} \colon \mathbb{C}_{\ell} * \mathbb{C}_k \xrightarrow{\langle \ell, k \rangle_q \, \mathrm{id}} \mathbb{C}_k * \mathbb{C}_{\ell} \ .$$

• Retains an action of $O(\Lambda)$.

- Analogue of classical phase space: finite abelian group Λ equipped with a quadratic form q: Λ → C[×].
 - Has a natural group of symmetries $O(\Lambda, q)$.
- Analogue of deformation quantization: braided fusion category

$$\mathcal{A} = (\operatorname{\mathsf{Vect}}[\Lambda], *, \beta_q) \qquad \beta_{\mathbb{C}_{\ell}, \mathbb{C}_k} \colon \mathbb{C}_{\ell} * \mathbb{C}_k \xrightarrow{\langle \ell, k \rangle_q \operatorname{id}} \mathbb{C}_k * \mathbb{C}_{\ell} .$$

- Retains an action of $O(\Lambda)$.
- Analogue of geometric quantization: fusion category

 $\mathcal{Z}(\mathsf{Vact}[L]) \simeq \mathcal{A} \qquad (\mathsf{Vect}[L], \checkmark) = \mathsf{C} \qquad \forall \vdash \mathsf{V} : \checkmark \vdash \mathsf{C}$ where we have chosen $\Lambda \simeq L \oplus L^{\vee}$ such that $q = \mathsf{ev}$.

3 by $B^{3}C$ C $BA_{1}b_{1}(100)$ 2 by $BA_{1}b_{2}Br$ $(Z(C)) = T_{2}$ " $Br E_{2} C A Z(C)$ deformands Marthe class of R = Vane [1]

hat also up to safer

- Analogue of classical phase space: finite abelian group Λ equipped with a quadratic form q: Λ → C[×].
 - Has a natural group of symmetries $O(\Lambda, q)$.
- Analogue of deformation quantization: braided fusion category

$$(\mathbf{Vect} [\Lambda], *, \beta_q) \qquad \beta_{\mathbb{C}_{\ell}, \mathbb{C}_k} \colon \mathbb{C}_{\ell} * \mathbb{C}_k \xrightarrow{\langle \ell, k \rangle_q \, \mathrm{id}} \mathbb{C}_k * \mathbb{C}_{\ell} \ .$$

- Retains an action of $O(\Lambda)$.
- Analogue of geometric quantization: fusion category

Vect [*L*]

where we have chosen $\Lambda \simeq L \oplus L^{\vee}$ such that q = ev.

• The group O (Λ) only acts projectively on **Vect** [*L*].

Recasting the previous slide in terms of TQFTs:

• There is a (framed, fully-extended) Turaev-Viro theory, which sends the point to **Vect** [*L*], in the Morita 3-category of fusion categories [Douglas-Schommer-Pries-Snyder].

Recasting the previous slide in terms of TQFTs:

- There is a (framed, fully-extended) Turaev-Viro theory, which sends the point to **Vect** [*L*], in the Morita 3-category of fusion categories [Douglas-Schommer-Pries-Snyder].
- Using the obstruction theory of [Etingof-Nikschych-Ostrik]:

Theorem (VD23)

The Turaev-Viro theory for Vect [L] can be upgraded to a theory defined relative to a twisted gauge theory for $O(\Lambda)$:

$$\mathbf{TV}: 1 \to \sigma^{\boldsymbol{\mathcal{4}}}_{BO(\Lambda),c} = \mathcal{O}_{\boldsymbol{\mathcal{4}}}$$

d = 1 (QM)	(V,ω)	$\mathcal{O}\left(V ight),*_{\omega}$	$L^{2}\left(\ell ight)$	$w_2 \in H^2\left(B\operatorname{Sp}_{2n}(\mathbb{R}) ight)$
<i>d</i> = 3 (TV)	(Λ, q)	Vect [Λ], β_q	Vect [<i>L</i>]	$O_4\in H^4\left(B\mathrm{O}\left(\Lambda ight) ight)$
d = 3 (RW)				

 $3-gp \quad \text{ord} \\ Fund \\ Fund \\ Fund \\ \text{Fund} \\ \text{Fund}$

d = 1 (QM)	(V,ω)	$\mathcal{O}(V), *_{\omega}$	$L^{2}\left(\ell ight)$	$w_2 \in H^2\left(B\operatorname{Sp}_{2n}(\mathbb{R}) ight)$
<i>d</i> = 3 (TV)	(Λ, q)	Vect [Λ], β_q	Vect [<i>L</i>]	$O_4\in H^4\left(B\mathrm{O}\left(\Lambda ight) ight)$
d = 3 (RW)				

$$\begin{array}{c} B\widetilde{O} \\ \downarrow \\ BO(V) \xrightarrow{O_4} B^4 \mathbb{C}^{\times} \end{array}$$

3

Image: A mathematical states of the state

d = 1 (QM)	(V,ω)	$\mathcal{O}(V), *_{\omega}$	$L^{2}(\ell)$	$w_2 \in H^2\left(B\operatorname{Sp}_{2n}(\mathbb{R}) ight)$
<i>d</i> = 3 (TV)	(Λ, q)	Vect [Λ], β_q	Vect [<i>L</i>]	$O_4\in H^4\left(B\mathrm{O}\left(\Lambda ight) ight)$
d = 3 (RW)				

Quantum mechanics

2 Interlude: Families, symmetries, and anomalies

3 Fusion categories

 The classical phase space: 2-shifted symplectic stack (M, ω) as in [Calaque, Pantev, Toën, Vaquié, Vezzosi].

Shifted deformation quantization

- The classical phase space: 2-shifted symplectic stack (M, ω) as in [Calaque, Pantev, Toën, Vaquié, Vezzosi].
- The deformation quantization can be thought of as a braided deformation of the derived category **QC**(*M*) of quasi-coherent sheaves.

Shifted deformation quantization

- The classical phase space: 2-shifted symplectic stack (M, ω) as in [Calaque, Pantev, Toën, Vaquié, Vezzosi].
- The deformation quantization can be thought of as a braided deformation of the derived category **QC**(*M*) of quasi-coherent sheaves.
 - Think: the deformation quantization of k-shifted is an \mathbb{E}_{k+1} -algebra, modules over this form an \mathbb{E}_k -category.

- The classical phase space: 2-shifted symplectic stack (M, ω) as in [Calaque, Pantev, Toën, Vaquié, Vezzosi].
- The deformation quantization can be thought of as a braided deformation of the derived category **QC**(*M*) of quasi-coherent sheaves.
 - Think: the deformation quantization of k-shifted is an \mathbb{E}_{k+1} -algebra, modules over this form an \mathbb{E}_k -category.
- This will be the assignment of the Rozansky-Witten theory to the circle. [Roberts-Willerton]

- The classical phase space: 2-shifted symplectic stack (M, ω) as in [Calaque, Pantev, Toën, Vaquié, Vezzosi].
- The deformation quantization can be thought of as a braided deformation of the derived category **QC**(*M*) of quasi-coherent sheaves.
 - Think: the deformation quantization of *k*-shifted is an \mathbb{E}_{k+1} -algebra, modules over this form an \mathbb{E}_k -category.
- This will be the assignment of the Rozansky-Witten theory to the circle. [Roberts-Willerton]
 - Compare: The braided fusion category Vect [Λ] was assigned to the circle by Tuaev-Viro.

- The classical phase space: 2-shifted symplectic stack (M, ω) as in [Calaque, Pantev, Toën, Vaquié, Vezzosi].
- The deformation quantization can be thought of as a braided deformation of the derived category **QC**(*M*) of quasi-coherent sheaves.
 - Think: the deformation quantization of *k*-shifted is an \mathbb{E}_{k+1} -algebra, modules over this form an \mathbb{E}_k -category.
- This will be the assignment of the Rozansky-Witten theory to the circle. [Roberts-Willerton]
 - Compare: The braided fusion category Vect [Λ] was assigned to the circle by Tuaev-Viro.

• The geometric quantization of a shifted symplectic stack is less well-studied, but a theory is developed in [Safronov].

- The geometric quantization of a shifted symplectic stack is less well-studied, but a theory is developed in [Safronov].
- The explicit construction of this geometric quantization again typically appeals to a polarization, and therefore has more subtle equivariance properties than the deformation quantization.

- The geometric quantization of a shifted symplectic stack is less well-studied, but a theory is developed in [Safronov].
- The explicit construction of this geometric quantization again typically appeals to a polarization, and therefore has more subtle equivariance properties than the deformation quantization.
- The output should be a certain 2-category, which is closely related to existing constructions of Rozansky-Witten theory. [Rozansky-Witten, Roberts-Willerton, Kapustin-Rozansky-Saulina, Brunner-Carqueville-Fragkos-Roggenkamp, Gammage-Hilburn-Mazel-Gee]

- The geometric quantization of a shifted symplectic stack is less well-studied, but a theory is developed in [Safronov].
- The explicit construction of this geometric quantization again typically appeals to a polarization, and therefore has more subtle equivariance properties than the deformation quantization.
- The output should be a certain 2-category, which is closely related to existing constructions of Rozansky-Witten theory. [Rozansky-Witten, Roberts-Willerton, Kapustin-Rozansky-Saulina, Brunner-Carqueville-Fragkos-Roggenkamp, Gammage-Hilburn-Mazel-Gee]
- The theory should fit into the framework of the AKSZ construction. [Alexandrov-Kontsevich-Schwarz-Zaboronsky, Qiu-Zabzine, Scheimbauer-Calaque-Haugseng, Stefanich, Riva]

d = 1 (QM)	(V,ω)	$\mathcal{O}(V), *_{\omega}$	$L^{2}(\ell)$	$w_2 \in H^2\left(B\operatorname{Sp}_{2n}(\mathbb{R}) ight)$
<i>d</i> = 3 (TV)	(Λ, q)	Vect [Λ], β_q	Vect [<i>L</i>]	$O_4\in H^4\left(B\mathrm{O}\left(\Lambda ight) ight)$
d = 3 (RW)	(M,ω)	$\mathbf{QC}(M), \beta_{\omega}$	RW (*)	$?\in H^{4}\left(B\operatorname{Sp}\left(M ight) ight)$

d = 1 (QM)	(V,ω)	$\mathcal{O}\left(V ight),*_{\omega}$	$L^{2}(\ell)$	$w_2 \in H^2\left(B\operatorname{Sp}_{2n}(\mathbb{R}) ight)$
<i>d</i> = 3 (TV)	(Λ, q)	Vect [Λ], β_q	Vect [L]	$O_4\in H^4\left(B\mathrm{O}\left(\Lambda ight) ight)$
d = 3 (RW)	(M,ω)	$\mathbf{QC}(M), \beta_{\omega}$	RW (*)	$?\in H^{4}\left(B\operatorname{Sp}\left(M ight) ight)$

$$\begin{array}{c} \mathcal{K} \longrightarrow \operatorname{Aut}\left(\mathbf{RW}\right) \longrightarrow \pi_{\leq 1} \operatorname{Aut}\left(\mathbf{RW}\right) \\ \| & \uparrow & \uparrow \\ \mathcal{K} \longrightarrow \widetilde{\mathsf{Sp}} \longrightarrow \operatorname{Sp}\left(\mathcal{V}\right) \end{array}$$

Table of analogies (reprise²)

$$\begin{array}{c} \mathcal{K} \longrightarrow \operatorname{Aut}\left(\mathbf{RW}\right) \longrightarrow \pi_{\leq 1} \operatorname{Aut}\left(\mathbf{RW}\right) \\ \| & \uparrow & \uparrow \\ \mathcal{K} \longrightarrow \widetilde{\operatorname{Sp}} \longrightarrow \operatorname{Sp}\left(\mathcal{V}\right) \end{array}$$

Projective TQFTs

 $d(N, \gamma)$ $\mathcal{M} \succeq \Lambda \mathcal{k}$ (v,y)H2(BSO) 644 (BSO) tro [n] V200 [c] (Λ, q)

 $\mathcal{Z} \in H^4(\mathbb{B}^2\Lambda, \mathbb{C}^{\times})$ $\Lambda = V.S.$

 $\simeq H^{2}(B^{2}\Lambda, B^{2}C^{2})$

- The analogue of Crane-Yetter in the **RW** context.
 - One strategy for accessing this projective Sp-action.
- General relationship between the prequantum k-gerbe and the anomaly (k + 1)-gerbe.
 - One strategy for understanding the impact of changing the polarization on the shifted geometric quantization.

Thank you!

Image: A mathematical states of the state

Thank you!

Image: A mathematical states of the state