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Alternative title

Projective /anomalous TQFTs

Summary:

@ Naturally occurring classical symmetry groups typically act
projectively on the associated quantized theories.

@ In many examples this projectivity can be understood as appearing via
the homotopy theory of the higher automorphism group of the

quantum theory itself. @Aﬂé@")
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Context and motivation

@ Projective TQFTS in general are relevant to the classification of
topological orders: a gapped quantum system is well-approximated at
low energy by a projective field theory which is topological [Freed].
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Context and motivation

@ Projective TQFTS in general are relevant to the classification of
topological orders: a gapped quantum system is well-approximated at
low energy by a projective field theory which is topological [Freed].

@ The discussion concerning Rozansky-Witten theory is highly relevant
to the B-side (spectral side) of the relative Langlands program
[Ben-Zvi-Sakellaridis-Venkatesh].

o Also see [Teleman| and
[Braverman-Dhillon-Finkelberg-Raskin-Travkin-Johnson-Freyd].

o Relatedly, RW is the B-side of 3d mirror symmetry. See e.g.
[Raskin-Hilburn, Gammage-Hilburn-Mazel-Gee].
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Deformation and geometric quantization

o Classical phase space: symplectic vector space (V,w), say over R.
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Deformation and geometric quantization

o Classical phase space: symplectic vector space (V,w), say over R.
o This has a natural group of symmetries Sp (V') = Sp,, (R).

e Deformation quantization (observables): The Weyl algebra:
A=TV)/(lu,v] —w(uv)) = (O(V),*) 2R [x,p] /([xi,pi] = 1)

o The group Sp,, (R) still acts on A.

o Geometric quantization (states): The Weil representation:
H=L12(¢)

where we have chosen a polarization V ~ ¢ & (V.
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Deformation and geometric quantization

o Classical phase space: symplectic vector space (V,w), say over R.
o This has a natural group of symmetries Sp (V') = Sp,, (R).

e Deformation quantization (observables): The Weyl algebra:
A=TV)/(lu,v] —w(uv)) = (O(V),*) 2R [x,p] /([xi,pi] = 1)

o The group Sp,, (R) still acts on A.

o Geometric quantization (states): The Weil representation:
H=L12(¢)

where we have chosen a polarization V ~ ¢ & (V.

e The group Sp,, (R) only acts projectively on H. Equivalently, a central
extension, classified by wy € H? (B Sp,, (R)), acts linearly on H:

)7 Tyl Z/2 < Mp = Spy, (R)
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Table of analogies

=1(QM) || (V,w) | O(V),*w | L2(£) | wa € H?(BSp,, (R))
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We are entering:

9 Interlude: Families, symmetries, and anomalies
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Families

Let X be a groupoid (space).
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Let X be a groupoid (space). Given a field theory Fp, one can
ask if background fields can be inserted, i.e. if there is a family of theories
over X with fiber Fy:
Bordff
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Bordy — T
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ask if background fields can be inserted, i.e. if there is a family of theories
over X with fiber Fy:

X

Bordj
~._F
T

Bordy — T
Fo

Two equivalent ways of encoding this notion:

F:Bord) =T | F:1— o5

e Notation: The (d 4 1)-dimensional gauge theory associated to X as
in [Freed-Moore-Teleman] is O’;j(+12 Bord,1 — Alg (7).
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Families

Let X be a groupoid (space). Given a field theory Fp, one can
ask if background fields can be inserted, i.e. if there is a family of theories
over X with fiber Fy:

X

Bordj
~._F
T

Bordy — T
Fo

Two equivalent ways of encoding this notion:

F:Bord) =T | F:1— o5

e Notation: The (d 4 1)-dimensional gauge theory associated to X as
in [Freed-Moore-Teleman] is O’;j(+12 Bord,1 — Alg (7).

@ The RHS is an (op)lax natural transformation as in
[Johnson-Freyd-Scheimbauer].
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Example: X = BG

@ For G a finite group, families of theories over the groupoid X = BG
are equivalent to theories with an action of G.
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are equivalent to theories with an action of G.
@ For example, fix d = 1. Functors

F: Bord?¢ — T = Vect

are classified by functors BG — Vect, which are representations of G.
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Example: X = BG

@ For G a finite group, families of theories over the groupoid X = BG
are equivalent to theories with an action of G.
@ For example, fix d = 1. Functors

F: Bord?¢ — T = Vect

are classified by functors BG — Vect, which are representations of G.
@ On the other hand, the theory 023G is a functor valued in the Morita

category of algebras:
o2 k 2—’ &é%
Bord, —% Alg

x — (C[G],*)
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Example: X = BG

@ For G a finite group, families of theories over the groupoid X = BG
are equivalent to theories with an action of G.
@ For example, fix d = 1. Functors

F:Bord?® - T =Vect

@ On the other hand, the theory 023G is a functorwalued in the Morita
category of algebras: S

Bord, 725 Alg | —= 0’@2
*: € — o\
« —— (C[G], %) M

@ A theory defined relative to the theory azBG is a morphism in the
T
_—Mlorita category from C to the-group algebra, i.e. a

module over the group algebra.
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Anomalies

Let X be a groupoid (space), and now consider projectivity data
on X:
BIC* — X
l
X % Bd-l—l(cx
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Anomalies

Let X be a groupoid (space), and now consider projectivity data
on X:

BC* — X
{
X % Bd+1C><

Projective/anomalous d-dimensional TQFT with background X-fields:

Theorem (VD23)

s Filxsa |F:loox,.

F:Bord§—>7‘ F:1—=o0g
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Anomalies

Let X be a groupoid (space), and now consider projectivity data
on X: X
Cd ] —
BIC* — X X Bal, — T
S X s @S

Projective/anomalous d-dimensional TQFT with background X-fields:
Theorem (VD23)

s Filxsa |F:loox,.

F:Bord§—>7‘ F:1—=o0g

E.g. X =BG, X = BG for G a central extension of G classified by a.

projective rep | mod over the twisted gp alg
rep of the ext'n | mod over gp alg of the ext'n
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Anomalies

@ We will focus on the analogue of a module over the twisted group

algebra:
d+1. )
Ox e - Bordd+1—>Alg(T) F: 1_>UX,c

@ Caveat: For some of the examples we will consider, the theory af&l
has not been formally constructed.

@ In these cases, one can consider the analogue of a projective
representation instead: 1 — «
where everything is rigorous. See [\VD23, Hypothesis Q| for more
details.
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Recasting quantization

@ The theory of states defines a 1-dimensional QFT GQ.
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Recasting quantization

@ The theory of states defines a 1-dimensional QFT GQ.

@ The classical symmetry group G = Sp,,, (R) acting projectively on H
is equivalent to the theory living relative to twisted G-gauge theory:

U(1) — U(H) — U(H)/U(Q) S /-
I D’_ g ¢ |
L= 7, G'/H

B Mp
1 To = T,
BSp —2— B?7/2 (\ 5 - [2)”

Z]2 — Mp 3 Sp
ce L)
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Recasting quantization

@ The theory of states defines a 1-dimensional QFT GQ.

@ The classical symmetry group G = Sp,,, (R) acting projectively on H
is equivalent to the theory living relative to twisted G-gauge theory:

U(l) — U(H) — U(H)/U(2)

T~ 2

i) T ~_ 7T U(H)
Z/2 — Mp —— Sp v 1
([?7‘] cq O—%G,W2
B Mp 1T
! Psp) 1 o

BSp —2— B?7/2
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Table of analogies

d=1(QM) || (V,w) | O(V),*s | L2(¢) | wa € H?(BSp,, (R))
d=3(TV)
d =3 (RW)
" F OAF
U@l) — U(H) — U(H)/U(1) =,
0 T T 7 TU(H)
7]2 > Mp Sp - 1
GQ 02
BG,w»
BE/Ip 1
1 --—- 2
BSp "2 B27,/2 " 7Be
(€6]
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We are entering:

© Fusion categories
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Fusion categorical analogue of deformation quantization

@ Analogue of classical phase space: finite abelian group A equipped
with a quadratic form g: A — C*.
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Fusion categorical analogue of deformation quantization

@ Analogue of classical phase space: finite abelian group A equipped
with a quadratic form g: A — C*.
o Has a natural group of symmetries O (A, q).

@ Analogue of deformation quantization: braided fusion category
(k) id

(Vect [A], %, Bq) Be,c: CoxCp —— C xCy .
W ¥

-~ —) = Z:;L;) @Q_H(
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Fusion categorical analogue of deformation quantization

@ Analogue of classical phase space: finite abelian group A equipped
with a quadratic form g: A — C*.
o Has a natural group of symmetries O (A, q).

@ Analogue of deformation quantization: braided fusion category

(0,k). id
(Vect [A], %, Bq) Be,cp: Cox Cp —— Cr xCy .

o Retains an action of O (A).
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Fusion categorical analogue of deformation quantization

@ Analogue of classical phase space: finite abelian group A equipped
with a quadratic form g: A — C*.
o Has a natural group of symmetries O (A, q).

@ Analogue of deformation quantization: braided fusion category

(0,k). id
A- (Vect [A], %, Bq) Be,c,: Cox Cy — s CyxCy .

o Retains an action of O (A).

@ Analogue of geometric quantization: fusion category

Zlt)e A (Vectll] x)°C U v

where we have chosen A ~ L @ L such that g = ev. Edi
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Fusion categorical analogue of deformation quantization

@ Analogue of classical phase space: finite abelian group A equipped
with a quadratic form g: A — C*.
o Has a natural group of symmetries O (A, q).

@ Analogue of deformation quantization: braided fusion category

(0,k). id
(Vect [A], %, Bq) Be,cp: Cox Cp —— Cr xCy .

o Retains an action of O (A).

@ Analogue of geometric quantization: fusion category
Vect [L]

where we have chosen A ~ L @ L such that g = ev.
o The group O (A) only acts projectively on Vect [L].
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The fusion categorical anomaly

Recasting the previous slide in terms of TQFTs:

@ Thereis a ( fully-extended) Turaev-Viro theory, which sends
the point to Vect [L], in the Morita 3-category of fusion categories
[Douglas-Schommer-Pries-Snyder].
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The fusion categorical anomaly

Recasting the previous slide in terms of TQFTs:

@ Thereis a ( fully-extended) Turaev-Viro theory, which sends
the point to Vect [L], in the Morita 3-category of fusion categories
[Douglas-Schommer-Pries-Snyder].

@ Using the obstruction theory of [Etingof-Nikschych-Ostrik]:

Theorem (VD23)

The Turaev-Viro theory for Vect [L] can be upgraded to a theory defined
relative to a twisted gauge theory for O (N):

y

TV:1— 03‘40(/\)764
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Table of analogies (reprise)

d=1(@QM) || (V,w) | O(V), % | L2(0) | wo € H2(BSp,, (R))
d=3(TV) || (A q) | Vect[A], B, | Vect[L] | 04 € H*(BO(NA))
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Table of analogies (reprise)

QM) || (V,w) | O(V), % | L2(£) | wo € H?(BSpy, (R))
Vect[N], B, | Vect[L] | Os4 € H*(BO(N))

3

<
>
S

Q| | &
Il
wW|lw|+

B2C* — Aut(TV) — 7<1 Aut(TV) U(‘*’%(,)

H 1ot 1

B2C* o) 0 (A) 5p
BO
1
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We are entering:

@ Rozansky-Witten theory A r~> M
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Shifted deformation quantization

@ The classical phase space: 2-shifted symplectic stack (M,w) as in
[Calaque, Pantev, Toén, Vaquié, Vezzosi].

Jackson Van Dyke, TUM Projective TQFTs July 31, 2024 20/24
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[Calaque, Pantev, Toén, Vaquié, Vezzosi].

@ The deformation quantization can be thought of as a braided
deformation of the derived category QC (M) of quasi-coherent
sheaves.
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[Calaque, Pantev, Toén, Vaquié, Vezzosi].

@ The deformation quantization can be thought of as a braided
deformation of the derived category QC (M) of quasi-coherent
sheaves.

e Think: the deformation quantization of k-shifted is an 4 1-algebra,
modules over this form an E-category.

@ This will be the assignment of the Rozansky-Witten theory to the
circle. [Roberts-Willerton]

o Compare: The braided fusion category Vect [A] was assigned to the
circle by Tuaev-Viro.
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Rozansky-Witten theory

@ The geometric quantization of a shifted symplectic stack is less
well-studied, but a theory is developed in [Safronov|.
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Rozansky-Witten theory

@ The geometric quantization of a shifted symplectic stack is less
well-studied, but a theory is developed in [Safronov|.

@ The explicit construction of this geometric quantization again
typically appeals to a polarization, and therefore has more subtle
equivariance properties than the deformation quantization.
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@ The geometric quantization of a shifted symplectic stack is less
well-studied, but a theory is developed in [Safronov|.

@ The explicit construction of this geometric quantization again
typically appeals to a polarization, and therefore has more subtle
equivariance properties than the deformation quantization.

@ The output should be a certain 2-category, which is closely related to
existing constructions of Rozansky-Witten theory. [Rozansky-Witten,
Roberts-Willerton, Kapustin-Rozansky-Saulina,
Brunner-Carqueville-Fragkos-Roggenkamp,
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Rozansky-Witten theory

@ The geometric quantization of a shifted symplectic stack is less
well-studied, but a theory is developed in [Safronov|.

@ The explicit construction of this geometric quantization again
typically appeals to a polarization, and therefore has more subtle
equivariance properties than the deformation quantization.

@ The output should be a certain 2-category, which is closely related to
existing constructions of Rozansky-Witten theory. [Rozansky-Witten,
Roberts-Willerton, Kapustin-Rozansky-Saulina,
Brunner-Carqueville-Fragkos-Roggenkamp,
Gammage-Hilburn-Mazel-Gee]

@ The theory should fit into the framework of the AKSZ construction.
[Alexandrov-Kontsevich-Schwarz-Zaboronsky, Qiu-Zabzine,
Scheimbauer-Calaque-Haugseng, Stefanich, Riva]
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Table of analogies (reprise?)

QM) || (V,w) | O(V), % | L2(€) | wo € H*(BSpy, (R))
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Table of analogies (reprise?)

QM) || (V,w) | O(V), % | L2(€) | wo € H*(BSpy, (R))
Vect[A], B, | Vect[L] | O4 € H*(BO(N))
RW) || (M,w) | QC(M), 5, | RW(x) | 7€ H*(BSp(M))

3
=
>
Q

N—r

Q| o |
Il
wW|lw|+

K — Aut(RW) — 7<1 Aut (RW)
|

K Sp ; Sp (V)
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Table of analogies (reprise?)

r ., e () Egens.
d=1(QM) || (V,w) | O(V),=*, L2(¢) | wa € H?(BSp,, (R))
d—=3(TV) | (Aq) | Vect[A], B, | Vect[l] | Osc H*(BO(N))
d—3(RW) | (M,w) | QC(M),B, | RW (%) | 7€ H*(BSp(M))

‘8 W
A (v ) L ¢ T
agAut(RW)
K — Aut(RW) — 7<1 Aut (RW) B 1
H (| W/ o
K Sp » Sp(V) / 0
1 - > ng
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(V) cf (y7) M H*(Rse)
(/(/;? e (] Vi [ ] b (Bso)

L = 2 x
/ -\/,S/FL_F g €HY(BA, C7)
~ (B L 3)

W ()



My current work in this direction

@ The analogue of Crane-Yetter in the RW context.
o One strategy for accessing this projective Sp-action.
@ General relationship between the prequantum k-gerbe and the
anomaly (k + 1)-gerbe.

o One strategy for understanding the impact of changing the polarization
on the shifted geometric quantization.
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Thank you!
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