Localization in Supersymmetric Quantum Field Theories

Martí Rosselló

References

- M. F. Atiyah and R. Bott: The Moment Map and Equivariant Cohomology, Topology 23 (1984), 1.
- V. W. Guillemin and S. Sternberg, Supersymmetry and equivariant de Rham theory. Mathematics Past and Present. Springer-Verlag, Berlin, 1999.
- D. McDuff, D. Salamon, Introduction to symplectic topology. Oxford Mathematical Monographs, 1999.
- M. Mariño, Lectures on localization and matrix models in supersymmetric Chern-Simons-matter theories, arXiv:1104.0783.
- Vasily Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun.Math.Phys. 313 (2012) 71-129 arXiv:0712.2824.
- V. Pestun, M. Zabzine et al. Localization techniques in quantum field theories, J.Phys. A50 (2017) no.44, 440301 arXiv:1608.02952.
- R. J. Szabo, Equivariant localization of path integrals, arXiv:hepth/9608068.

Outline

1. Introduction
2. Equivariant cohomology and localization
3. Supersymmetry and QFT
4. Supersymmetric localization

1. Introduction

Introduction

Main object of study in physics

Usually computed perturbatively

How to obtain exact results?

Introduction

The integration over manifolds with a group action can display

Localization

I.e., the value of an integral is given by a modified integral on a subset.

We'll see that this is a phenomenon which appears when studying the equivariant cohomology of a manifold with a group action

For (some) supersymmetric quantum field theories

Supersymmetric Localization

Historical introduction

First localization result: Duistermaat-Heckman (1982)

$$
\int_{M} e^{-i t f} \frac{\omega^{n}}{n!}=\sum_{p} \frac{e^{-i t f(P)}}{(i t)^{n} e(P)}
$$

Stationary-phase approximation is exact
(Conditions: global Hamiltonian torus action over symplectic manifold)

Historical introduction

Atiyah-Bott (1982) showed that it was a particular case of more general localization property of equivariant cohomology.

Berline-Vergne (1982) used it to derive an integration formula for Killing vectors in compact Riemannian manifolds.

Several generalizations to infinite dimensions for particular cases (Atiyah, Witten, Bismut , Picken...).

2. Equivariant cohomology and localization

Cohomology

(de Rham)

Idea: On a smooth manifold, closed forms which are not exact
\mathcal{M} n-dim Manifold, $\Omega^{k}(M)$ Space of k-forms $\quad \Omega^{\bullet}(M)=\bigoplus_{k=0} \Omega^{k}(M)$

Three operations:

$$
\begin{aligned}
& \wedge: \Omega^{k}(M) \times \Omega^{l}(M) \rightarrow \Omega^{k+l}(M) \\
& d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M) \\
& \iota_{X}: \Omega^{k}(M) \rightarrow \Omega^{k-1}(M)
\end{aligned}
$$

Cohomology ring

$$
H^{\bullet}(M)=\bigoplus_{k=0}^{n} H^{k}(M)
$$

Three sets:

$$
Z^{k}(M)=\left\{\omega \in \Omega^{k}(M): d \omega=0\right\}
$$

$B^{k}(M)=\left\{\omega \in \Omega^{k}(M): \omega \in d\left(\Omega^{k-1}(M)\right)\right\}$
$H^{k}(M)=Z^{k}(M) / B^{k}(M)$

Integration
$\int_{\mathcal{M}} d \omega=\int_{\partial \mathcal{M}} \omega$
(For the case of no boundary, we only care about the cohomology class)

Topological definition

G compact Lie group acting on a smooth manifold M by

$$
\begin{array}{ccc}
G \times M & \rightarrow & M \\
(g, p) & \mapsto & g \cdot p
\end{array}
$$

The action is called free if $\quad \forall p \in M, g \cdot p=p \Rightarrow g=e$
That is, if no element of G different from the identity leaves some point fixed.
If G acts freely, M / G is also a smooth manifold. Then, one can define its equivariant cohomology as the usual cohomology:

$$
H_{G}^{\bullet}(M)=H^{\bullet}(M / G)
$$

Ex: with left multiplication
When not free?

$$
H_{G}^{\bullet}(G)=H^{\bullet}(p t .)
$$

Example

Topological definition

When the action is not free, M / G can be pathological (not a manifold)

$$
H_{G}^{\bullet}(M) \text { is the right substitute for } H^{\bullet}(M / G)
$$

Equivariant cohomology is the generalization of the usual cohomology

Topological definition

Recall, two homotopical manifolds have the same cohomology. Hence, we want to find a homotopy equivalent space on which the group acts freely: Take $E G$ such that

1. The space $E G$ is contractible
2. The group G acts freely on $E G$
and define

$$
H_{G}^{\bullet}(M)=H_{\substack{\bullet \\(g \cdot p, q) \sim(p, g \cdot q)}}^{\substack{\times_{G}}}=H^{\bullet}((M \times E G) / G)
$$

Topological definition

Equivariant cohomology:

$$
H_{G}^{\bullet}(M)=H^{\bullet}\left(M \times_{G} E G\right)=H^{\bullet}((M \times E G) / G)
$$

- $E G$ exists and is called the universal bundle associated to G
- The definition of the equivariant cohomology does not depend on the choice of $E G$
- The quotient $E G / G=B G$ is called the classifying space

Example: $H_{G}^{\bullet}(p t)=.H^{\bullet}(E G / G)=H^{\bullet}(B G)$

Topological definition

Equivariant cohomology:

$$
H_{G}^{\bullet}(M)=H^{\bullet}\left(M \times_{G} E G\right)=H^{\bullet}((M \times E G) / G)
$$

Example: $G=S^{1}=\{z \in \mathbb{C}:|z|=1\}$ acts freely on $S^{2 n+1} \subset \mathbb{C}^{n+1}$

$$
\text { by } z \cdot\left(w_{0}, \ldots, w_{n}\right)=\left(z w_{0}, \ldots, z w_{n}\right)
$$

Then, $S^{2 n+1} / S^{1}=\mathbb{C} P^{n}$ would be the classifying space if $S^{2 n+1}$ was contractible. However, we can take the limit $n \rightarrow \infty$ and get

$$
\begin{aligned}
E S^{1} & =S^{\infty} & \text { where } & S^{\infty}
\end{aligned}=\lim _{n \rightarrow \infty} S^{2 n+1}{ }^{2}=\mathbb{C} P^{1}=\mathbb{C} P^{\infty}=\lim _{n \rightarrow \infty} S^{2 n+1} / S^{1}
$$

Cartan model

One can define

$$
\Omega_{G}^{\bullet}(M)=\left(\Omega^{\bullet}(M) \otimes S \mathfrak{g}^{*}\right)^{G}
$$

and the exterior equivariant derivative on it

$$
d_{G}=d \otimes 1+\iota_{\alpha} \otimes \phi^{\alpha}
$$

There is an isomorphism

$$
H_{G}^{\bullet}(M)=\left(\Omega_{G}^{\bullet}(M), d_{G}\right)
$$

Cartan model

Idea

$$
M \times{ }_{G} E G
$$

is a twisted product so its cohomology has to be a twisted cohomology

$$
\Omega_{G}^{\bullet}(M)=\left(\Omega^{\bullet}(M) \otimes S \mathfrak{g}^{*}\right)^{G}
$$

Localization via an example: S^{1}

Consider:
Symplectic manifold $\quad(M, \omega)$

Hamiltonian map $\quad H: M \rightarrow \mathbb{R}$ which generates a

Circle action $\quad S^{1} \times M \rightarrow M$
I.e., $\quad S^{1} \rightarrow \operatorname{Ham}(M): t \rightarrow \psi_{t} \quad \partial_{t} \psi_{t}=X_{\psi_{t}} \quad \psi_{0}=\mathrm{id}=\psi_{1}$

$$
\iota_{X} \omega=d H
$$

Localization via an example: S^{1}

Also,
Invariant k-forms

$$
\alpha \in \Omega_{S^{1}}^{k}(M) \quad \mathcal{L}_{X} \alpha=d \iota_{X} \alpha+\iota_{X} d \alpha=0
$$

Equivariant k-forms

$$
\begin{gathered}
\alpha \in \Omega_{S^{1}}^{k}(M)[\hbar] \quad \alpha=\alpha_{k}+\hbar \alpha_{k-2}+\hbar^{2} \alpha_{k-4}+\ldots \\
\operatorname{deg}(\hbar)=2
\end{gathered}
$$

Equivariant exterior differential

$$
\begin{aligned}
d_{\hbar}=d+\iota_{X} \hbar \quad d_{\hbar}^{2}= & 0 \\
& d^{2}=0, \iota_{X}^{2}=0
\end{aligned}
$$

In particular, $\quad \tau \in \Omega_{S^{1}}^{2 n}(M)[\hbar] \quad d_{\hbar} \tau=0 \Longleftrightarrow d \tau_{2 k-2}+\iota_{X} \tau_{2 k}=0, \forall k$

Localization via an example: S^{1}

Localization Lemma Assume that the action has isolated fixed points and

$$
\tau=\tau_{2 n}+\hbar \tau_{2 n-2}+\cdots+\hbar^{n} \tau_{0}
$$

is a d_{\hbar}-closed $2 n$-form such that τ_{0} vanishes on the fixed points of the action. Then τ is d_{\hbar}-exact. In particular,

$$
\int_{M} \tau_{2 n}=0
$$

Idea: integral only cares about the fixed points! (on the bottom component of the form τ_{0}) Also,

$$
\tau d_{\hbar} \text {-exact } \Rightarrow \tau d \text {-exact }
$$

$$
d_{\hbar} \tau=0 \Longleftrightarrow d \tau_{2 k-2}+\iota_{X} \tau_{2 k}=0, \forall k
$$

Localization via an example: S^{1}

Lemma Assume that the circle action is Hamiltonian and the critical points of H are all nondegenerate. Then for every fixed point p there exists an equivariant differential form

$$
\tau_{p}=\tau_{p, 2 n}+\hbar \tau_{p, 2 n-2}+\cdots+\hbar^{n} \tau_{p, 0} \in \Omega_{S^{1}}^{2 n}(M)[\hbar]
$$

which is supported in an arbitrarily small neighbourhood of p and satisfies

$$
\int_{M} \tau_{p, 2 n}=1, \quad \tau_{p, 0}(p)=e(p), \quad d_{\hbar} \tau_{p}=0
$$

Euler class = product of weights of the action

Idea: For each fixed point there is a volume form such that the integral over the whole manifold is localized around the fixed point, at the point has bottom value the Euler class and is closed

Localization via an example: S^{1}

Lemma Assume that the circle action is Hamiltonian and the critical points of H are all nondegenerate. Then for every fixed point p there exists an equivariant differential form

$$
\tau_{p}=\tau_{p, 2 n}+\hbar \tau_{p, 2 n-2}+\cdots+\hbar^{n} \tau_{p, 0} \in \Omega_{S^{1}}^{2 n}(M)[\hbar]
$$

which is supported in an arbitrarily small neighbourhood of p and satisfies

$$
\int_{M} \tau_{p, 2 n}=1, \quad \tau_{p, 0}(p)=e(p), \quad d_{\hbar} \tau_{p}=0
$$

Actually, this says that the form is the pushforward of $1 \in H^{0}\left(N_{p}\right)$ at each fixed point:

$$
N_{p}=f_{p}\left(\mathbb{C} P^{\infty}\right)
$$

and the pullback is

$$
f_{p}^{*} f_{p_{*}} 1=e(p) \hbar^{n} \in H^{2 n}\left(\mathbb{C} P^{\infty}\right)
$$

Localization via an example: S^{1}

Theorem (Duistermaat-Heckman) Consider a circle action on a closed manifold (M, ω) that is generated by a Morse function $H: M \rightarrow \mathbb{R}$. Then,

$$
\int_{M} e^{-\hbar H} \frac{\omega^{n}}{n!}=\sum_{p} \frac{e^{-\hbar H(p)}}{\hbar^{n} e(p)}
$$

for every $\hbar \in \mathbb{C}$, for p critical points of H and $e(p) \in \mathbb{Z}$ is the product of weights at p.

Localization via an example: S^{1}

Idea of proof:

Consider the closed form $\omega-\hbar H \in \operatorname{ker} d_{\hbar}$
Define

$$
\sigma=\hbar^{n-k}(\omega-\hbar H)^{k}-\sum_{p} \frac{(-H(p))^{k}}{e(p)} \tau_{p} \quad k \geq n
$$

Is equivariantly closed and the degree 0 term vanishes on fixed points. Then, by first Lemma, the integral of its degree $2 n$ term is zero. Then,

$$
\binom{k}{n} \int_{M}(-H)^{k-n} \omega^{n}=\sum_{p} \frac{(-H(p))^{k}}{e(p)}
$$

so, since for $k<n$ one can show that the integral will vanish, one has

$$
\int_{M}(\omega-\hbar H)^{k}=\sum_{p} \frac{-\hbar H(p))^{k}}{\hbar^{n} e(p)}
$$

Localization via an example: S^{1}

We have actually seen

$$
\begin{aligned}
& \left(\Omega_{S^{1}}^{\bullet}(M)[\hbar], d_{\hbar}\right) \text { is } H_{S^{1}}^{\bullet}(M) \\
& \Omega_{G}^{\bullet}(M)=\left(\Omega^{\bullet}(M) \otimes S \mathfrak{g}^{*}\right)^{G}
\end{aligned}
$$

We were working with the bundle

$$
M \times_{S^{1}} E S^{1}
$$

$$
\hbar \in H^{2}\left(\mathbb{C} P^{\infty}\right)
$$

Example

Localization

Theorem (Berline-Vergne, Atiyah-Bott) Let T be a torus acting on a manifold M, and let \mathcal{F} index the components of F of the fixed point set M^{T} of the action of T on M. Let $\phi \in H_{T}^{\bullet}(M)$. Then,

$$
\pi_{*}^{M} \phi=\sum_{F \in \mathcal{F}} \pi_{*}^{F}\left(\frac{l_{F}^{*} \phi}{e\left(\nu_{F}\right)}\right)
$$

Which for the de Rham version gives

$$
\int_{M} \phi=\sum_{F \in \mathcal{F}} \int_{F} \frac{l_{F}^{*} \phi}{e\left(\nu_{F}\right)}
$$

3. Supersymmetry and QFT

Main ingredients:

QFT

Lagrangian
$\mathcal{L}(\phi, \partial \phi, \partial \partial \phi, \ldots ; x)$
${ }_{\text {Action }} \quad S[\phi]=\int_{\mathcal{M}} \mathrm{dx} \mathcal{L}(\phi, \partial \phi, \partial \partial \phi, \ldots ; x)$
Partition function $\quad Z=\int_{\mathcal{F}} \mathcal{D} \phi e^{\lambda S[\phi]}$

QFT

Partition function

$$
Z=\int_{\mathcal{F}} \mathcal{D} \phi e^{\lambda S[\phi]}
$$

Expectation values of operators computed by

$$
\langle\mathcal{O}\rangle=\frac{1}{Z} \int_{\mathcal{F}} \mathcal{D} \phi \mathcal{O} e^{\lambda S[\phi]}
$$

Supersymmetry

$\delta($ fermions $)=$ bosons

$$
\delta(\text { bosons })=\text { fermions }
$$

Bosonic

Supersymmetry operator

$Q^{2}=B$
$Q S[\phi]=0 \quad$ supersymmetric aft

4. Supersymmetric localization

Supersymmetric localization

Writing $Q^{2}=\mathcal{L}_{\phi}$,*
Consider an action invariant under $Q, Q S=0$, and a functional $V(\phi)$ invariant under $\mathcal{L}_{\phi}, Q^{2} V=0$.

The deformation of the action by a Q-exact term does not change the integral

$$
\begin{array}{r}
\frac{d}{d t} \int e^{S+t Q V}=\int\{Q, V\} e^{S+t Q V}=\int\left\{Q, V e^{S+t Q V}\right\}=0 \\
\text { up to b.c. }
\end{array}
$$

For $t \rightarrow \infty$, the integral localizes to the critical set of $Q V$, and for sufficiently nice V, it is given by a 1 -loop superdeterminant.

* This notation is related to $\left\{Q_{\alpha}, \bar{Q}_{\dot{\beta}}\right\}=2\left(\sigma^{\mu}\right)_{\alpha \dot{\beta}} P_{\mu} \quad P_{\mu}=-i \partial_{\mu}$

Supersymmetric localization

Of course, even in this cases, the integral

$$
\int_{\mathcal{M}} d x\left(S+t Q V_{\mathrm{loc}}\right)
$$

can diverge. Then, a way to solve this problem is to consider \mathcal{M} to be a compact manifold.

PROBLEM: we had

$$
\begin{aligned}
Q S[\phi] & =\int_{\mathcal{M}} d x \partial_{\mu}(\ldots)^{\mu}=0 \\
Q S[\phi] & =\int_{\mathcal{M}} d x \nabla_{\mu}(\ldots)^{\mu}=0
\end{aligned}
$$

Need to work with Supersymmetry in curved manifolds

Supersymmetric localization

We have the following analogy

$$
\begin{array}{l|l}
\mathrm{d}_{\hbar} & \mathrm{Q} \\
\mathrm{~d}_{\hbar}^{2}=\mathcal{L}_{X} & \mathrm{Q}^{2}=\mathcal{L}_{\phi} \\
\mathrm{e}\left(\nu_{F}\right) & \text { 1-loop S-Det }
\end{array}
$$

Toy model

Poincaré-Hopf theorem's field theoretical version

Riemannian manifold X of even dimension n
Metric $g_{\mu \nu}$, a vector field V_{μ} on X.
Supercoordinates on the tangent bundle $T X$

Related by supersymmetry:

$$
\begin{array}{ll}
\delta x^{\mu}=\psi^{\mu} & \delta \bar{\psi}_{\mu}=B_{\mu} \\
\delta \psi^{\mu}=0 & \delta B_{\mu}=0
\end{array}
$$

$$
\delta^{2}=0
$$

Toy model

Poincaré-Hopf theorem's field theoretical version

Construct 'action’:

$$
S(t)=\delta \Psi \quad \Psi=\frac{1}{2} \bar{\psi}_{\mu}\left(B^{\mu}+2 i t V^{\mu}+\Gamma_{\tau \nu}^{\sigma} \bar{\psi}_{\sigma} \psi^{\nu} g^{\mu \tau}\right)
$$

So we have the following partition function:

$$
Z_{X}(t)=\frac{1}{(2 \pi)^{n}} \int_{X} d x d \psi d \bar{\psi} d B e^{-S(t)}
$$

Toy model

Poincaré-Hopf theorem's field theoretical version

Use Riemannian geometry technology to get

$$
\begin{gathered}
Z_{X}(t)=\frac{1}{(2 \pi)^{n} / 2} \int_{X} d x d \psi d \chi e^{-S^{\prime}(t)} \\
S^{\prime}(t)=-\frac{t^{2}}{2} g_{\mu \nu} V^{\mu} V^{\nu}+\frac{1}{4} R_{\mu \nu}^{a b} \chi_{a} \chi_{b} \psi^{\mu} \psi^{\nu}+i t \nabla_{\mu} V^{\nu} e_{\nu}^{a} \chi_{a} \psi^{\mu}
\end{gathered}
$$

It is independent of t because

$$
S(t)=S(0)+t \delta V \quad V=i \bar{\psi}_{\mu} V^{\mu}
$$

We can evaluate at $t=0$

$$
Z_{X}(0)=\int_{X} d x \frac{\operatorname{Pf}(R)}{(2 \pi)^{n / 2}}=\chi(X)
$$

Toy model

Poincaré-Hopf theorem's field theoretical version

We can also evaluate $\lim _{t \rightarrow \infty} Z_{X}(t)$
Assuming isolated zeroes, expanding around each saddle point and rescaling the variables, we get

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} Z_{X}(t)=\sum_{p_{k}} \frac{1}{(2 \pi)^{n / 2}} \int_{X} d \xi d \psi d \chi e^{-\frac{1}{2} g_{\mu \nu} H_{\alpha}^{(k) \mu} H_{\beta}^{(k) \nu} \xi^{\alpha} \xi^{\beta}+i H_{\mu}^{(k) \nu} e_{\nu}^{a} \chi_{a} \psi^{\mu}} \\
& \text { where } H_{\sigma}^{(k) \mu}=\left.\partial_{\sigma} V^{\mu}\right|_{p_{k}} \\
& \text { So, } \lim _{t \rightarrow \infty} Z_{X}(t)=\sum_{p_{k}} \frac{\operatorname{det} H^{(k)}}{\left|\operatorname{det} H^{(k)}\right|} \\
& Z_{X}(0)=\lim _{t \rightarrow \infty} Z_{X}(t) \quad \chi(X)=\sum_{p_{k}} \frac{\operatorname{det} H^{(k)}}{\mid \operatorname{det} H^{(k) \mid}} \\
& \text { Poincaré-Hopf theorem }
\end{aligned}
$$

Pestun's localization

Action of $\mathrm{N}=4$ SuperYangMills on a 4-sphere

$$
S_{\mathcal{N}=4}=\frac{1}{g_{Y M}^{2}} \int_{S^{4}} \sqrt{g} d^{4} x\left(\frac{1}{2} F_{M N} F^{M N}-\Psi \Gamma^{M} D_{M} \Psi+\frac{2}{r^{2}} \Phi^{A} \Phi_{A}\right)
$$

Want to compute the expectation value of a Wilson loop

$$
W_{R}(C)=\operatorname{tr}_{R} P \exp \oint_{C}\left(A_{\mu} d x^{\mu}+i \Phi_{0}^{E} d s\right)
$$

Pestun's localization

Get the localization locus

$$
S_{b o s}^{Q}=0 \Rightarrow\left\{\begin{array}{l}
A_{\mu}=0 \quad \mu=1, \ldots, 4 \\
\Phi_{i}=0 \quad i=5, \ldots, 9 \\
\Phi_{0}^{E}=a_{E} \quad \text { constant over } S^{4} \\
K_{i}^{E}=-\omega_{i} a_{E} \\
K_{I}=0
\end{array}\right.
$$

Perform computations
(involve gauge fixing, index theorems, instanton corrections, etc.)

Pestun's localization

Result

$$
\left\langle W_{R}(C)\right\rangle=\frac{1}{Z_{S^{4}}} \frac{1}{\operatorname{vol}(G)} \int_{\mathfrak{g}}[d a] e^{-\frac{8 \pi^{2} r^{2}}{g_{Y}^{2}}(a, a)} Z_{1-\mathrm{loop}}(i a)\left|Z_{\text {inst }}\left(i a, r^{-1}, r^{-1}, q\right)\right|^{2} \operatorname{tr}_{R} e^{2 \pi r i a}
$$

Proves the conjecture that the expectation value of the Wilson loop operator in $N=4 S U(N)$ is given by a Gaussian matrix model

Exact result highly non-trivial
Allows for checks in the AdS/CFT correspondence

SuperObrigado

