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Strong maximal function
• The Hardy–Littlewood maximal function

MHLf (x) = sup
r>0

––

∫
B(0,r)

|f (x − y)|dy = sup
r>0

––

∫
B(0,1)

|f (x − ry)|dy .

• (Hardy–Littlewood) ‖MHLf ‖p ≤ C‖f ‖p for 1 < p ≤ ∞.
• Strong maximal function:

Mstr f (x) = sup
R

––

∫
R

|f (x − y)|dy ,

where R are rectangles centered at the origin with sides parallel to the
coordinates axis. Equivalently,

Mstr f (x) = sup
t1,...,td>0

––

∫
[−1,1]d

|f (x − (t1y1, t2y2, · · · , tdyd))dy

• Mstr f (x) ≤ M1M2 . . .Md f (x).
• (Jessen–Marcinkiewicz–Zygmund, ‘35)

‖Mstr f ‖p ≤ C‖f ‖p, 1 < p ≤ ∞.

• No L1 bound is possible but weak estimate holds for f ∈ L(log+ L)d−1.
• For a arbitrary collection of rectangles no nontrivial Lp, p 6=∞, maximal
estimate holds as can be shown using Besicovitch’s construction.
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Multi-parametric maximal functions
• For t = (t1, t2, · · · , td) ∈ Rd and y ∈ Rd , let

yt = (t1y1, t2y2, · · · , tdyd).

For a given finite positive measure µ,

µt(f ) = ––

∫
f (yt)dµ(y).

• Let δ = (δ1, . . . , δk) ∈ Rk
+ and anisotropic dilation parameter

tj(δ) =
∏k

l=1 δ
aj,l
l , aj,l ≥ 0. Consider

Mf (x) = sup
δ∈Rk

+

|f ∗ µt(δ)|(x).

Theorem (Ricci–Stein, ‘92)

Let µ be a positive measure. If there is a finite positive (dominating) measure ν
such that

sup
1≤δj≤2

µt(δ) ≤ ν,

i.e.,

sup
1≤δj≤2

∫
f dµt(δ) ≤

∫
f dν

for all positive continuous function with compact support, then the maximal
function M is bounded on Lp for 1 < p ≤ ∞.
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• The theorem also implies Lp bound on the strong maximal function. It also
contains some of earlier results regrading maximal average over surfaces

• (Carlsson–Sjogren–Stromberg, ‘85) Let p be a homogenous function and

sup
h∈Rn

+

1

h1 . . . hn

∫
|yj |≤hj

f (x − (y , p(y))dy .

In this case, we may take the measure ν as follows:∫
f dν =

∫
|yj |≤2

f (y , p(y))dy .

• The proof of Ricci–Stein’s result basically relies on Lp bounds on the maximal
function along well curved homogenous curve.
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Spherical and circular maximal functions (1-parameter)

• There are maximal functions for which the previous Ricci–Stein’s theorem
does not work since there is no dominating measure.

• Spherical maximal function: For d ≥ 2, let

Msphere f (x) = sup
t>0
|
∫
Sd−1

f (x − ty)dσ(y)|,

where σ is the normalized surface measure on Sd−1.

• There is no finite measure ν such that

sup
1≤t≤2

∫
f (y)dσt(y) ≤

∫
f dν.

Theorem (Stein ‘76, d ≥ 3; Bourgain ‘86, d = 2)

Msphere is bounded on Lp if and only if p > d/(d − 1).

• Both results rely on smoothing property of the spherical averages (decay of
Fourier transform of σ).
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Maximal averages over hypersurfaces (1-parameter)

• The same results hold also for smooth compact surfaces with nonvanishing
Gaussian curvature.

• There are various results concerning degenerate surfaces whose curvature
vanishes (Sogge-Stein, ‘85; ... Muller–Ikromov–Kempe, ‘10; etc ). The problem
is better understood in R3 since degeneracy ∆ of 2-dimensional surfaces is
easier to characterize. However, in higher dimensions these problems are largely
open except for special cases, for example, finite type convex surfaces
(Nagel-Seeger-Wainger, ‘93)

• There are a lot of generalizations such as Lp − Lq bounds on the local
maximal function

M local
sphere f (x) = sup

1≤t≤2
|
∫
Sd−1

f (x − ty)dσ(y)|,

maximal bound depending on the dimension of dilation set, estimates relative
to fractal measure, and problems in different settings such as certain groups
and discrete settings.



7/26

Multi-parameter maximal averages over hypersurfaces

• Unlike the Hardy–Littlewood maximal function, obtaining Lp bound for the
maximal functions given by hypersurfaces is far less trivial. However, there have
been attempts to obtain multiparametric extensions of those maximal functions.

Theorem (Marletta–Ricci,’98)

Let d ≥ 2. Let Γ : Rd−1 \ {0} → R be a smooth function homogeneous degree
a > 0. Suppose the hypersurface xd = Γ(x̄) has non-vanishing Gaussian
curvature, the maximal operator

sup
a,b>0

|
∫
y∈Rd−1

f (x − (ay , bΓ(y)))dy |

is bounded in Lp if and only if p > d/(d − 1).

• This result heavily relies on homongeneity of the surface, which make it
possible to deduce the parameter maximal bounds from that of one parameter.
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Results based on L2 argument

• (Yongkum Cho ’98, Yaryong Heo ’16) If

|d̂µ(ξ)| .
d∏

i=1

(1 + |ξi |)−ai , ai > 1/2,

then the maximal operator

f 7→ sup
t∈Rd

+

|f ∗ dµt|

is bounded in Lp for a ”suitable” range of p depending a1, . . . , ad .

• The results rely on the L2 argument and the assumption is somewhat too
strong to give Lp bound on the maximal function on hypersufaces.
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Main topic: Strong spherical maximal function

• The strong (d-parametric) spherical maximal function

Mf (x) = sup
t∈Rd

+

|f ∗ σt(x)| = sup
t∈Rd

+

|
∫
Sd−1

f (x − (t1y1, . . . , tdyd))dσ(y)|

Theorem (Lee– L.–Oh, ’23)

Let d ≥ 3. Then, the strong spherical maximal function M is bounded on Lp if
p > 2(d + 1)/(d − 1).

• The range of p is far from being optimal. A Knapp type example shows Md

fails to be bounded on Lp if p < (d + 1)/(d − 1).

• When d = 2, M is bounded on Lp if and only if p > 3.
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• Consequences of the strong maximal estimate that strengthen the earlier
results:

I Let p > 2(d + 1)/(d − 1). For all f ∈ Lp,

f ∗ σt → f a.e. as t→ 0.

I Let E be a set of measure zero and t̃ : Rd → Rd
+ and St̃(x) denote the

ellipsoid with axis length t̃1(x), . . . , t̃d(x). Then,

|E ∩ (St̃(x) + x)|d−1 = 0 a.e. x ,

where | · |d−1 denotes (d − 1) dimensional Hausdorff measure. Indeed,

|E ∩ (St̃(x) + x)|d−1 ≤
∫
χE (x − t̃(x)y)dσ(y) ≤ MχE (x).

By the maximal bounds ‖MχE‖p . |E |
1
p . Since E is of measure zero,

MχE = 0 a.e. x .
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t–localized maximal function

• Multi-parameter Littlewood–Paley decomposition:

Mf (x) = sup
k∈Zd

sup
tj∈[2

−kj ,2
−kj +1

]

∣∣∣∑
l∈Zd

Plf ∗ σt(x)
∣∣∣,

where

Plf (ξ) =
( d∏

j=1

β(2−lj ξj)f̂ (ξ)
)∨

• For fixing k and tj ∈ [2−kj , 2−kj+1],∣∣∣∑
l∈Zd

Plf ∗ σt(x)
∣∣∣ ≤ ∣∣∣∑

lj≤kj

Plf ∗ σt(x)
∣∣∣+
∣∣∣∑
lj>kj

Plf ∗ σt(x)
∣∣∣

The lower frequency part is bounded by the strong maximal function. For the
high frequency part we use the high frequency decay in maximal bounds after
scaling.
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High frequency decay estimates

• Via scaling ∑
lj>kj

Plf ∗ σt(x) =
∑
lj>kj

Pl−kf (2−k·) ∗ σ2−kt(2kx),

where 2−kt = (2−k1t1, . . . , 2
−kd td). The proof of theorem essentially reduces to

showing bound on a local maximal operator

Mloc f (x) = sup
t∈[1,2]d

|f ∗ σt(x)|.

Proposition

Let d ≥ 3 and p > 2(d + 1)/(d − 1). Then, for some δ0 > 0,

‖Mloc f ‖Lp . 2−δ0j‖f ‖Lp , j ≥ 0

whenever supp f̂ ⊂ Aj := {ξ : 2j−1 ≤ |ξ| ≤ 2j+1}.
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• Asymptotic expansion:

σ̂t(ξ) = e i|ξt|a+(ξt) + e−i|ξt|a−(ξt), |ξ| ≥ 1

and a± satisfies

|a±(ξ)| . (1 + |ξ|)−
d−1

2 .

• Multi-parameter wave operators:

U±f (x , t) = a(x , t)

∫
e iΦ±(x,t,ξ) f̂ (ξ)dξ,

where a ∈ C∞c (B(0, 2)× [2−1, 22]d) and

Φ±(x , t, ξ) = x · ξ ± |ξt| = x · ξ ±
√

(t1ξ1)2 + · · ·+ (tdξd)2.
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• (1-parameter) sharp local smoothing estimate for the wave operator
(Bourgain–Demeter, ‘15)

‖e it
√
−∆f ‖Lp(Rd×[1,2]) . 2( d−1

2
− d

p
+ε)j‖f ‖Lp

for p ≥ 2(d + 1)/(d − 1) whenever supp f̂ ⊂ Aj . Sogge’s local smoothing
conjecture tells that the estimate holds for p ≥ 2d/(d − 1).

• Changing variables t = (t, tt2, . . . , ttd) and scaling give

‖U±f ‖Lpx,t(Rd×[1,2]d ) . 2( d−1
2
− d

p
+ε)j‖f ‖Lp , ε > 0

for p ≥ 2(d + 1)/(d − 1) whenever supp f̂ ⊂ Aj . Thus,

‖f ∗ σt‖Lpx,t(Rd×[1,2]d ) . 2(− d
p

+ε)j‖f ‖Lp , ε > 0.

• This and Sobolev imbedding give

‖Mloc f ‖Lp . ‖
d∏

j=1

(1 + |∂tj |)
1
p

+f ∗ σt‖Lpx,t . 2εj‖f ‖Lp

whenever supp f̂ ⊂ Aj .
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Multiparameter local smoothing: extra smoothing

• Do more averaging parameter gives additional smoothing? To get the
desired maximal estimate, we only need to get additional smoothing from more
than 1 parameters.

Proposition

Let p > 2(d + 1)/(d − 1) and j ≥ 0. Then, for some δ0 = δ0(p) > 0,

‖U±f ‖Lpx,t . 2( d−1
2
− d

p
−δ0)j‖f ‖Lp , supp f̂ ⊂ Aj .

• For a small constant c > 0, set

Anear
j (c) =

d⋃
k=1

{ξ ∈ Aj : ||ξ|−1ξ − ek | < c},

where ek denotes the k-th standard unit vector. We also set

Aaway
j (c) = Aj \ Anear

j (c).
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Decoupling inequalities
• Let S(2−j/2) = {ν} denote a partition of unity on Sd−1 subordinated to
boundedly overlapping caps of diameter ∼ 2−j/2 with ∂αν = O(2j|α|/2). For
ν ∈ S(2−j/2),

f̂ν(ξ) = f̂ (ξ)ν(ξ/|ξ|).

Proposition

Let p ≥ 6 and j ≥ 0. Suppose supp f̂ ⊂ Anear
j (c). Then, if c > 0 is small

enough, for any ε > 0 and M > 0 we have

‖U±f ‖Lpx,t . 2( d−1
2
− 2d−2

p
+ε)j
( ∑
ν∈S(2−j/2)

‖U±fν‖pLpx,t

)1/p

+ 2−Mj‖f ‖Lp .

• The smoothing estimate follows since∑
ν

‖U±fν‖pLpx,t . ‖f ‖pp, 2 ≤ p ≤ ∞.

Proposition

Let p ≥ 6 and j ≥ 0. Suppose supp f̂ ⊂ Aaway
j (c) for a constant c > 0. Then,

for any ε > 0 and M > 0 we have

‖U±f ‖Lpx,t . 2( d−1
2
− d+1

p
+ε)j
( ∑
ν∈S(2−j/2)

‖U±fν‖pLpx,t

)1/p

+ 2−Mj‖f ‖Lp .

• This gives a weaker smoothing estimate but it is still good enough for our
purpose.
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• Linearization. Observe that

∇x,t(x · ξ + |ξt|) =
(
ξ,

t1ξ
2
1

|ξt|
,
t2ξ

2
2

|ξt|
, · · · , tdξ

2
d

|ξt|

)
.

If ξ is contained in a narrow conic neighborhood of ed , setting

uj = ξj/ξd , j = 1, . . . , d − 1,

the left hand side can be regarded as (essentially) a conic (homogeneous)
extension of the surface

(u1, u2, · · · , ud−1, 1, u
2
1 , u

2
2 , · · · , u2

d−1, |u|4), |u| � 1,

• Standard strategy to obtain decoupling inequality:

I Quadratic surfaces (Guo–Oh–Zhang–Zorin-Kranich, ‘23)

I Conic extension (Bourgain–Demeter, ‘15)

I Variable coefficient generalization (e.g., Beltran–Hickman–Sogge, ‘20):
Suppose decoupling inequality for the surface ξ 7→ ∇zΦ(z0, ξ) for each z0

in a uniform manner (Stability of decoupling bounds). Then, the
corresponding decoupling inequality holds for the operator∫

e iΦ(z,ξ)a(z , ξ)f (ξ)dξ.
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Linearization and conical extension

• When supp f̂ ⊂ Anear
j (c) (near ed):

I (fixing s) consider

Φnear
s (t′, u) =

√
s +

∑d−1
j=1 tju2

j , t′ = (t1, . . . , td−1).

I Essentially, ∇t′Φ
near
s (u) = (2

√
s)−1(u2

1 , . . . , u
2
d−1) + O(c|u|4).

I Decoupling bound is given by

C2j(d−1)( 1
2
− 2

p
)
.

• When supp f̂ ⊂ Aaway
j (c):

I Fixing (d-2 variables) t′′, consider f 7→ U+f (·, t(t′′, 1), ts).

I After suitable change of variables (2-parameter smoothing):

Φaway (t, s, u) = t
√
|u|2 + s2,

I ∇s,tΦ
away (t, s, u) ∼ (u2

2 + ·+ u2
d−1, a

2u2
1) with a 6= 0.

I Decoupling bound is given by

C2j( d−2
2
− d−1

p
)2j( 1

2
− 2

p
) = C2( d−1

2
− d+1

p
)j
.
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Multiparameter maximal circular averages: d = 2

• Rθ denotes a rotation in R2 such that Rθ(1, 0) = (cos θ, sin θ). Define a
measure on the rotated ellipse

Eθt = {Rθyt : y ∈ S1}

by

〈f , σθt 〉 =

∫
S1

f
(
Rθyt

)
dσ(y).

• Elliptic maximal function: Let J ⊂ R+ be a compact interval and

Mf (x) = sup
(θ,t)∈T×R2

+:t1/t2∈J
|f ∗ σθt (x)|.

• Any nontrivial Lp fails if J is not compact.

• Compared with the circular maximal function, Lp bound on M becomes

highly nontrival. Erdoǵan (‘03) proved L4, 1
6 –L4 estimate but no Lp-estimate

was known until recently.
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Possible range of p for the maximal bounds
• (Erdoǵan, ‘03) M is bounded on Lp only if p > 4.

• Let Cδ be a δ neighborhood of the unit circle S1. For every x ∈ B(0, 1/2),
thanks to three free parameters, there is a rotated ellipse (Eθt + x) centered at
x which meets S1 with contact order 3. Thus,

length
[
(Eθt + x) ∩ Cδ

]
∼ δ

1
4 ,

and
MχCδ (x) & δ

1
4 , ∀x ∈ B(0, 1/2).

• Lp maximal bound implies

δ
1
4 . δ

1
p ,

thus, letting δ → 0 gives p ≥ 4. Further elaboration gives failure for p = 4.

• Similar argument shows the strong circular (2-parameter) maximal function
M can be bounded on Lp only if p > 3.

Theorem (Lee–L.–Oh, ’23)

If p > 12, then
‖Mf ‖Lp . ‖f ‖Lp .

If p > 4, then
‖Mf ‖Lp . ‖f ‖Lp .
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2-parameters, 3-parameters smoothing

• Let R∗θ denote the transpose of Rθ and

Φθ±(x , t, ξ) = x · ξ ± |(R∗θ ξ)t|, ξ ∈ R2.

• As before, we consider the operator

Uθ±f (x , t) = a(x , t)

∫
R2

e iΦ
θ
±(x,t,ξ) f̂ (ξ)dξ.

Theorem
Let us set ∆ = {t ∈ (2−1, 22)2 : t1 = t2}. Suppose supp a(x , ·) ∩∆ = ∅ for all
x ∈ B(2, 0). Then, if p ≥ 20, we have

‖Uθ±f ‖Lp
x,t,θ
≤ C‖f ‖Lpα , α > 1/2− 4/p.

For p ≥ 12, we have

‖U0
±f ‖Lpx,t ≤ C‖f ‖Lpα , α > 1/2− 3/p.
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• The smoothing orders are sharp (but the range of p is not sharp).

I 1
2
− 2

p
(1-parameter smoothing)

I 1
2
− 3

p
(2-parameter smoothing)

I 1
2
− 4

p
(3-parameter smoothing)

• Chen–Guo–Yang (A multi-parameter cinematic curvature, arXiv:2306.01606)
obtained multiparameter smoothing estimate which generalizes the smoothing
estimates.

• Combining this and Sobolev imbedding gives

‖Mloc f ‖Lp . 2(ε− 1
p

)j‖f ‖Lp , p > 20

‖Mloc f ‖Lp . 2(ε− 1
p

)j‖f ‖Lp , p > 12

whenever supp f̂ ⊂ Aj . Further interpolation with

‖Mloc f ‖L4 . 2(ε+ 1
4

)j‖f ‖L4 , ‖Mloc f ‖L4 . 2εj‖f ‖L4 ,

which is consequence of the L4 local smoothing estimate Guth–Wang–Zhang
(‘20) extends the ranges.
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3-parameter smoothing estimate

• Note that

∇x,t,θΦθ+(x , t, ξ) =
(
ξ,

t1(R∗θ ξ)2
1

|(R∗θ ξ)t|
,
t2(R∗θ ξ)2

2

|(R∗θ ξ)t|
,

2(t2
1 − t2

2 )(R∗θ ξ)1(R∗θ ξ)2

|(R∗θ ξ)t|

)
∈ R5.

• By rotational symmetry, we may set θ = 0. Letting (ξ1, ξ2) = (r , ru) (near
e1), we have

∇x,t,θΦ0
+(x , t, r , ru) = r(1,Υ(u)), u ∈ (−2, 2).

• If t1 6= t2, then Υ is nondegenerate, i.e.,

det(Υ′(u),Υ′′(u),Υ′′′(u),Υ′′′′(u)) 6= 0.

This allows us to use decoupling inequality for the nondegenerate curve
(Bourgain–Demeter–Guth, ‘16), with which we follows the standard strategy
conical extension, variable coefficient generalization.
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Further developments in R2

• Maximal averages over δ-neighborhood Eθt (δ) of ellipses Eθt :

Mδf (x) = sup
t∈[1,2]2

––

∫
E0
t(δ)

f (x−y)dy , Mδf (x) = sup
(θ,t)∈T×[1,2]2

––

∫
Eθt (δ)

f (x−y)dy .

• Pramanik–Yang–Zahl(Furstenberg-type problem for circles, and a
Kaufman-type restricted projection theorem in R3, arXiv:2207.02259)

‖Mδf ‖3 . δ−ε‖f ‖3, ∀ε > 0.

• Zahl(On Maximal Functions Associated to Families of Curves in the Plane,
arXiv:2306.01606)

‖Mδf ‖4 . δ−ε‖f ‖4, ∀ε > 0.

• These estimates was obtained by technique in discrete incidence geometry.
Local smoothing estimates allows to remove the ε-loss.

Theorem (d = 2)

M is bounded on Lp if and only if p > 4. M is bounded on Lp if and only if
p > 3.

• Those maximal bounds were further generalized by Zahl (for the curves in
R2) to m parameter maximal functions under the multi-parameter cinematic
curvature condition.
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Conclusion

• For d ≥ 3, find optimal range of boundedness of the strong spherical
maximal function

Mf (x) = sup
t∈Rd

+

|
∫
Sd−1

f (x − (t1y1, . . . , tdyd))dσ(y)|

Discrete incidence geometric estimates in higher dimensions?

• Multiparameter local smoothing estimate for

U±f (x , t) = a(x , t)

∫
e i(x·ξ±|ξt|) f̂ (ξ)dξ,

where a ∈ C∞c (B(0, 2)× [2−1, 22]d). Sharp smoothing order and optimal range
of p? More generally, are there underlining principles of multi-parametric local
smoothing?

• Considering what is known about the maximal functions given by
hypersurfaces over the last several decades, there are many natural, possible
multi-parametric generalizations of the known results, such as Lp − Lq bounds
and bounds depending on (multi-parameter) dilation sets, etc.
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Thank you very much !


