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Main objects

@ A,: Laplace-Beltrami operator on a compact Riemannian manifold
M

® 1pa_1.417(n/—Ag): Spectral projection
e ¢,: Eigenfunction of A, such that —Agzpy = Ay

Problem (Eigenfunction restriction estimate)

Let H be a submanifold of M. Determine §(H, p) satisfying

lexliogry < X2 o] 2

forp = 2.
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e P(h): semiclassical pseudodifferential operator with a symbol
p(x,&, h), in that,

P(h)f = p(x, hD, h)f(x) = (hh)*”fe%(“y)fp(x,g, h)f(y)dyd€.

o We call a family of functions f = f(h) an O(h) quasimode if f(h) is
a L2 normalized function such that

P(h)f = Opz(h).
® 1jp-1_1 p141)(/—Dg)f is a quasimode when P(h) = —h*Ag — 1.

Problem

Let H be a submanifold of M. For p = 2, determine 6(H, p) satisfying

|F ]l o(ry < 0P,

for a quasimode f.
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When H =M

Theorem (Sogge)
Let dimM =: n > 2. Then

11— (V=B 2wy —1omy < AP

where
n—=1 _ n—1 2 < < 2(n+1)
5(P) = 41 2p 2(\+f) ol
n— n n
2 T —1 SPS 0.
Corollary

lealeemy < X°P ol i2(my
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When dimH =: k < n

111 (V=) 2 my 1oy < AP

By Burg-Gerard-Tzvetkov and Hu, the above holds:
® When k < n—2, with §(H, p) = % f%
k =n—2,p=2(in this case, log loss remains)

@ When k= n—1, with

except for

n—1 n—2 2n
5(H )_ 4 2p> 2<p<n717
'P) =19 -1 n—1 L1
2~ "p o np—1 P s .

@ When k = n—1 and H is well-curved w.r.t. geodesics, with

n—1 2n—3 2n
SHp) =15 A ST
’ - -1 -1 2
n2 _np’ njlgpgoo.
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Curved w.r.t. geodesics

When n = 2, we say that H is well-curved w.r.t. geodesics, if a curve H
has nonvanishing geodesic curvature.
Roughly speaking, for all sy, there exists a geodesic zg; s.t.

[7(5) = 2 (s)] ~ |s — sol?
where H is given by a curve s — v(s).

Question
What happens if
7(5) = 24 (5)] ~ I — 50"

for some sq and k > 37
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When M =T

Theorem (Hu)
Let M =T and 2 < p < 4. Assume that v(s) = (s,s*). Then

11—t (V=) 2y ir(y) S AP,

where P )
k,p) = - .
0k P) = 3Gk =1 ~ @k—1)p
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Main result

@ Set
§ = Z(y().4(s0)) ()
is the geodesic satisfying z(,(s,),5(s))(0) = 7(s0) and
Z(y(s0)7(=0)) (0) = ¥(s0)-
We say that «v and the geodesics have the maximal order of contact k — 1
if for all sq

k
Z 1(90) = 2 ) 550 (O] # 0

and there exist s; s.t. for j€{0,--- , k — 1},

() )} (k) (k)
(1) = 2056 sy (0) and V(1) # 2000 56, (0)-

o [7(s) = z(s)| 2 [s — 50l and |7(s) — z5,(s)| ~ |s — 5[
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Main result

Theorem (O.-Ryu)

Let n=2 and 2 < p < 4. Assume that v and the geodesics have the
maximal order of contact k — 1. Then

Hl[)‘*lv\ﬂ](\/iAg)HLZ(M)HLp(W) < Akop),

where P )
k,p) = - .
ok P) = 3Gk =1 ~ @k—1)p

Corollary

)
loalioty) < AP [ox 2wy
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|dea of proof

@ Reduction to oscillatory integrals
@ Dyadic decomposition

@ Maximal order of contact
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Basic reduction

It is enough to show ...
@ By interpolation with the known L* estimate,

k—1
11—t (V=Bg) [ 2(m)—12(y) S ATED = N K2,
o Using resolvent (AP + i)~! with P = —A72A, — 1,
[X(AP)fli2y) S A°E2 £ .

for every x € C*(R\{0}) such that [x(™(s)| < (1 + |s|)~ .
e By TT*-argument,

INOP) |12y - 12(7) S A2 K2,
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@ Up to small error,
X(AP)f(u) = AzfX(S)e’“(‘f’(s’”(”)’")’”(V)"’)b(s,W(U),77)7‘(\/)0/77dsdv,

where ¢ is a solution to

5s¢(57X,77)+P(X7@x¢(5axv77)) =0, ¢(07X777) =X-1,

be CX(R x T*R?), and p is a symbol satisfying p(x, &) = [£[2 — 1.

Z(x,0,0)(—$) = On¢
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e Main part: |s| ~27 = A tand |[u—v|~27J

@ Using stationary phase method w.r.t. s, 1, it is enough to show that

Z I Till 2y 2(m) 2\26(k.p)
J
where

Tif(u) := AB2% JBj(u, V) eI £ (v)dy

O(u,v) = ¢(s(u, v),y(u),n(u, v)) =v(v) - n(u, v),
(s(u,v),n(u,v)) is a critical point of _
(5.m) = é(5.7(u).m) = 7(v) -, and |supp Bj(u,)| <27,
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Estimates on ®

By the L2-method, the matter is reduced to
Proposition

Assume that |up| < 277, |u— wl, |v — wl, |w — w| < 27/ for small
€ > 0. Then the following estimates hold.
i) Upper bounds of the phase difference. For m > 1,

|om(®(u, v) — d(u,w))| < 27 C22mijy — w).
ii) Lower bounds of the phase difference.

20|0,(®(u, v) =D (u, w))|+|2(D(u, v) = (u, w))| 2 27 i jy—w|.

Sewook Oh Semiclassical LP quasimode restriction estimates in two dimensions



Relation between 0,0,% and geodesic

@ Recall that q)(ua V) = ¢(S(Ua V)»’Y(U)an(uv V)) - ’}/(V) . 77(Ua V)'
s+ Z(x¢)(8) is geodesic, and

aSQS(S,X,'r]) + p(Xa aX¢(S7X?77)) = O? Z(X,axﬁﬁ)(is) = a?7¢’

° au(‘b = P)/(u) ! k(U, V) where k(u’ V) = X¢(5(U, V)a’Y(U)ﬂ?(U, V))
o |k(u,-)|=1
o 0,0, = |¥- k| ~ [(§ — k) - Ovk| ~ |0u]7 — K[|
° &77(;5(5(“; V),’}/(U), 77(Ua V)) = V(V)
o Y(V) = Z(y(u),k(uv)) (=s(u, v))
0 [Z(y(w) 4w (v — 1) = y(V)| ~ |u = v||F(u) — k(u, V)|

2,0,0(u, ) ~ |0, 203V =8 =YV 2 o (ar-ayy

vV—u
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Thank you for your attention!
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