Semiclassical L^p quasimode restriction estimates in two dimensions

Sewook Oh

Korea Institute for Advanced Study

July 23, 2024

Joint work with Jaehyun Ryu
Harmonic Analysis workshop

Outline

- Quasimode restriction estimate
 - Laplace-Beltrami operator and Quasimode
 - Previous results
 - Main Theorem
- Ideas of proof
 - Reduction
 - Main part

Main objects

- ullet Δ_g : Laplace-Beltrami operator on a compact Riemannian manifold M
- $1_{[\lambda-1,\lambda+1]}(\sqrt{-\Delta_g})$: Spectral projection
- φ_{λ} : Eigenfunction of Δ_g such that $-\Delta_g \varphi_{\lambda} = \lambda^2 \varphi_{\lambda}$

Problem (Eigenfunction restriction estimate)

Let H be a submanifold of M. Determine $\delta(H, p)$ satisfying

$$\|\varphi_{\lambda}\|_{L^{p}(H)} \lesssim \lambda^{\delta(H,p)} \|\varphi_{\lambda}\|_{L^{2}(M)}$$

for $p \geqslant 2$.

• P(h): semiclassical pseudodifferential operator with a symbol $p(x, \xi, h)$, in that,

$$P(h)f = p(x, hD, h)f(x) = (2\pi h)^{-n} \int e^{\frac{i}{h}(x-y)\cdot\xi} p(x, \xi, h)f(y)dyd\xi.$$

• We call a family of functions f = f(h) an O(h) quasimode if f(h) is a L^2 normalized function such that

$$P(h)f = O_{L^2}(h).$$

• $1_{\lceil h^{-1}-1,h^{-1}+1 \rceil}(\sqrt{-\Delta_{g}})f$ is a quasimode when $P(h)=-h^{2}\Delta_{g}-1$.

Problem

Let H be a submanifold of M. For $p \ge 2$, determine $\delta(H, p)$ satisfying

$$||f||_{L^p(H)} \lesssim h^{-\delta(H,p)},$$

for a quasimode f.

When H = M

Theorem (Sogge)

Let $dim M =: n \ge 2$. Then

$$\|\mathbf{1}_{[\lambda-1,\lambda+1]}(\sqrt{-\Delta_g})\|_{L^2(M)\to L^p(M)}\lesssim \lambda^{\delta(p)}$$

where

$$\delta(p) = \begin{cases} \frac{n-1}{4} - \frac{n-1}{2p}, & 2 \leqslant p \leqslant \frac{2(n+1)}{n-1}, \\ \frac{n-1}{2} - \frac{n}{p}, & \frac{2(n+1)}{n-1} \leqslant p \leqslant \infty. \end{cases}$$

Corollary

$$\|\varphi_{\lambda}\|_{L^{p}(M)} \lesssim \lambda^{\delta(p)} \|\varphi_{\lambda}\|_{L^{2}(M)}$$

When dimH =: k < n

$$\|\mathbf{1}_{[\lambda-1,\lambda+1]}(\sqrt{-\Delta_g})\|_{L^2(M)\to L^p(H)}\lesssim \lambda^{\delta(H,p)}$$

By Burq-Gerard-Tzvetkov and Hu, the above holds:

- When $k \le n-2$, with $\delta(H,p) = \frac{n-1}{2} \frac{k}{p}$ except for k = n-2, p = 2 (in this case, log loss remains)
- When k = n 1, with

$$\delta(H,p) = \begin{cases} \frac{n-1}{4} - \frac{n-2}{2p}, & 2 \leqslant p \leqslant \frac{2n}{n-1}, \\ \frac{n-1}{2} - \frac{n-1}{p}, & \frac{2n}{n-1} \leqslant p \leqslant \infty. \end{cases}$$

• When k = n - 1 and H is well-curved w.r.t. geodesics, with

$$\delta(H,p) = \begin{cases} \frac{n-1}{3} - \frac{2n-3}{3p}, & 2 \leq p \leq \frac{2n}{n-1}, \\ \frac{n-1}{2} - \frac{n-1}{p}, & \frac{2n}{n-1} \leq p \leq \infty. \end{cases}$$

Curved w.r.t. geodesics

When n = 2, we say that H is well-curved w.r.t. geodesics, if a curve H has nonvanishing geodesic curvature.

Roughly speaking, for all s_0 , there exists a geodesic z_{s_0} s.t.

$$|\gamma(s) - z_{s_0}(s)| \sim |s - s_0|^2$$

where H is given by a curve $s \mapsto \gamma(s)$.

Question

What happens if

$$|\gamma(s)-z_{s_0}(s)|\sim |s-s_0|^k$$

for some s_0 and $k \geqslant 3$?

When $M = \mathbb{T}$

Theorem (Hu)

Let $M = \mathbb{T}$ and $2 \le p \le 4$. Assume that $\gamma(s) = (s, s^k)$. Then

$$\|\mathbf{1}_{[\lambda-1,\lambda+1]}(\sqrt{-\Delta_{\mathbf{g}}})\|_{L^2(\mathbb{T})\to L^p(\gamma)}\lesssim \lambda^{\delta(\mathbf{k},\mathbf{p})},$$

where

$$\delta(k,p) = \frac{k}{2(2k-1)} - \frac{1}{(2k-1)p}.$$

Main result

Set

$$s\mapsto z_{(\gamma(s_0),\dot{\gamma}(s_0))}(s)$$

is the geodesic satisfying $z_{(\gamma(s_0),\dot{\gamma}(s_0))}(0)=\gamma(s_0)$ and $\dot{z}_{(\gamma(s_0),\dot{\gamma}(s_0))}(0)=\dot{\gamma}(s_0)$.

We say that γ and the geodesics have the maximal order of contact k-1 if for all s_0

$$\sum_{j=2}^{k} |\gamma^{(j)}(s_0) - z_{(\gamma(s_0), \dot{\gamma}(s_0))}^{(j)}(0)| \neq 0$$

and there exist s_1 s.t. for $j \in \{0, \dots, k-1\}$,

$$\gamma^{(j)}(s_1) = z_{(\gamma(s_1),\dot{\gamma}(s_1))}^{(j)}(0) \text{ and } \gamma^{(k)}(s_1) \neq z_{(\gamma(s_1),\dot{\gamma}(s_1))}^{(k)}(0).$$

• $|\gamma(s) - z_{s_0}(s)| \gtrsim |s - s_0|^k$ and $|\gamma(s) - z_{s_1}(s)| \sim |s - s_1|^k$.

Main result

Theorem (O.-Ryu)

Let n=2 and $2 \le p \le 4$. Assume that γ and the geodesics have the maximal order of contact k-1. Then

$$\|\mathbf{1}_{[\lambda-1,\lambda+1]}(\sqrt{-\Delta_{\mathbf{g}}})\|_{L^2(M)\to L^p(\gamma)}\lesssim \lambda^{\delta(k,p)},$$

where

$$\delta(k,p) = \frac{k}{2(2k-1)} - \frac{1}{(2k-1)p}.$$

Corollary

$$\|\varphi_{\lambda}\|_{L^{p}(\gamma)} \lesssim \lambda^{\delta(k,p)} \|\varphi_{\lambda}\|_{L^{2}(M)}$$

Idea of proof

- Reduction to oscillatory integrals
- Dyadic decomposition
- Maximal order of contact

Basic reduction

It is enough to show ...

• By interpolation with the known L^4 estimate,

$$\|\mathbf{1}_{[\lambda-1,\lambda+1]}(\sqrt{-\Delta_{\mathbf{g}}})\|_{L^2(M)\to L^2(\gamma)}\lesssim \lambda^{\frac{k-1}{2(2k-1)}}=\lambda^{\delta(k,2)}.$$

• Using resolvent $(\lambda P + i)^{-1}$ with $P = -\lambda^{-2}\Delta_g - 1$,

$$\|\check{\chi}(\lambda P)f\|_{L^2(\gamma)} \lesssim \lambda^{\delta(k,2)} \|f\|_2.$$

for every $\chi \in C^{\infty}(\mathbb{R}\setminus\{0\})$ such that $|\chi^{(m)}(s)| \lesssim (1+|s|)^{-N}$.

• By TT*-argument,

$$\|\check{\chi}(\lambda P)\|_{L^2(\gamma)\to L^2(\gamma)} \lesssim \lambda^{2\delta(k,2)}.$$

• Up to small error,

•

$$\check{\chi}(\lambda P)f(u) = \lambda^2 \int \chi(s) e^{i\lambda(\phi(s,\gamma(u),\eta) - \gamma(v)\cdot \eta)} b(s,\gamma(u),\eta) f(v) d\eta ds dv,$$

where ϕ is a solution to

$$\partial_s \phi(s, x, \eta) + p(x, \partial_x \phi(s, x, \eta)) = 0, \quad \phi(0, x, \eta) = x \cdot \eta,$$

 $b \in C_c^{\infty}(\mathbb{R} \times T^*\mathbb{R}^2)$, and p is a symbol satisfying $p(x,\xi) = |\xi|_g^2 - 1$.

$$z_{(x,\partial_x\phi)}(-s) = \partial_\eta \phi$$

- Main part: $|s| \sim 2^{-j} \gtrsim \lambda^{-1}$ and $|u v| \sim 2^{-j}$
- Using stationary phase method w.r.t. s, η , it is enough to show that

$$\sum_{j} \|T_{j}\|_{L^{2}(\mathbb{R}) \mapsto L^{2}(\mathbb{R})} \lesssim \lambda^{2\delta(k,p)}$$

where

$$T_j f(u) := \lambda^{\frac{1}{2}} 2^{\frac{j}{2}} \int B_j(u,v) e^{i\lambda \Phi(u,v)} f(v) dv,$$

$$\Phi(u,v) = \phi(s(u,v),\gamma(u),\eta(u,v)) - \gamma(v) \cdot \eta(u,v),$$

$$(s(u,v),\eta(u,v)) \text{ is a critical point of } (s,\eta) \mapsto \phi(s,\gamma(u),\eta) - \gamma(v) \cdot \eta, \text{ and } |\sup B_j(u,\cdot)| \lesssim 2^{-j}.$$

Estimates on Φ

By the L^2 -method, the matter is reduced to

Proposition

Assume that $|u_0| \lesssim 2^{-j}$, $|u-u_0|, |v-v_0|, |w-v_0| \leqslant \varepsilon 2^{-j}$ for small $\varepsilon > 0$. Then the following estimates hold.

i) Upper bounds of the phase difference. For $m \geqslant 1$,

$$\left|\partial_u^m(\Phi(u,v)-\Phi(u,w))\right|\lesssim 2^{-(2k-2-m)j}|v-w|.$$

ii) Lower bounds of the phase difference.

$$2^{j} \left| \partial_{u}(\Phi(u,v) - \Phi(u,w)) \right| + \left| \partial_{u}^{2}(\Phi(u,v) - \Phi(u,w)) \right| \gtrsim 2^{-(2k-4)j} |v-w|.$$

Relation between $\partial_u \partial_v \Phi$ and geodesic

• Recall that $\Phi(u, v) = \phi(s(u, v), \gamma(u), \eta(u, v)) - \gamma(v) \cdot \eta(u, v)$, $s \mapsto z_{(x,\xi)}(s)$ is geodesic, and

$$\partial_s \phi(s, x, \eta) + p(x, \partial_x \phi(s, x, \eta)) = 0, \quad z_{(x, \partial_x \phi)}(-s) = \partial_\eta \phi,$$

- $\partial_u \Phi = \dot{\gamma}(u) \cdot k(u, v)$ where $k(u, v) = \partial_x \phi(s(u, v), \gamma(u), \eta(u, v))$.
 - $|k(u,\cdot)| \equiv 1$
 - $|\partial_u \partial_v \Phi| = |\dot{\gamma} \cdot \partial_v k| \sim |(\dot{\gamma} k) \cdot \partial_v k| \sim |\partial_v |\dot{\gamma} k|^2$
- $\partial_{\eta}\phi(s(u,v),\gamma(u),\eta(u,v)) = \gamma(v)$.

 - $|z_{(\gamma(u),\dot{\gamma}(u))}(v-u)-\gamma(v)| \sim |u-v||\dot{\gamma}(u)-k(u,v)|$

$$\partial_u \partial_v \Phi(u,v) \sim \left| \partial_v \right| \frac{z_{(\gamma(u),\dot{\gamma}(u))}(v-u) - \gamma(v)}{v-u} |^2 = O(2^{-(2k-3)j}).$$

Thank you for your attention!