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!n

j=1
∂2

∂x2j
be the standard Laplacian on Rn.

The Hardy space Hp(Rn) is defined as the space of tempered
distributions for which sup0<t<∞ |e−t∆f | ∈ Lp(Rn), 0 < p < ∞.

In the seminal work of C. Fefferman and E.M. Stein in 1970’s, the
real variable theory of Hp(Rn) was developed involving equivalent
characterisations of Hp(Rn) in terms of maximal functions, boundary
values of harmonic functions.
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Theorem 1.

For every tempered distribution f on Rn, the following conditions are
equivalent.

sup0<t<∞ |e−t∆f | ∈ Lp(Rn).

sup0<t<∞ |f ∗ ϕt | ∈ Lp(Rn) where ϕt(x) = t−nϕ(t−1x), ϕ ∈ S(Rn)
and

"
Rn ϕ(x)dx ∕= 0.

f =
!

j cj fj , where fj ⊂ Q(xj , rj)

‖fj‖∞ ≤ (2rj)
−n/p

and #
fj(x)x

α dx = 0,

for all |α| ≤ N with N ≥ ⌊n(1/p − 1)⌋, and
!

j |cj |p < ∞.

Moreover

‖f ‖Hp ∼ inf

$%!
j |cj |p

&1/p
: f =

!
j cj fj , f

′
j s are as in (2) above

'
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All the characterisations are very useful to study many problems in
harmonic analysis including singular integral operators and Fourier
multipliers on Hp(Rn) when 0 < p ≤ 1.
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All the characterisations are very useful to study many problems in
harmonic analysis including singular integral operators and Fourier
multipliers on Hp(Rn) when 0 < p ≤ 1.

Hp(Rn) are more suitable spaces to do harmonic analysis when p ≤ 1.

In the non-Euclidean setting G.B. Folland and E.M. Stein developed
the analogous theory in the book titled Hardy spaces on homogeneous
groups.

Hardy spaces corresponding to a non negative, self adjoint operator A
on L2(Rn) are defined via heat semigroup e−tA, t > 0.

A suitable atomic characterisation is known if the heat kernel
corresponding to e−tA satisfies Gaussian estimates by L. Song and L.
Yan in 2016.
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Twisted Laplacian

We define the twisted Laplacian on Cn as

L = −1

2

n(

j=1

)
Zj Z̄j + Z̄jZj

*

where Zj =
∂
∂zj

− 1
2 z̄j , Z̄j =

∂
∂z̄j

+ 1
2zj , j = 1, 2, . . . , n. Here

∂
∂zj

= ∂
∂xj

− i ∂
∂yj

.
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∂
∂z̄j

+ 1
2zj , j = 1, 2, . . . , n. Here

∂
∂zj

= ∂
∂xj

− i ∂
∂yj

.We can explicitly write

L = −△+
1

4
|z |2 + i

n(

j=1

+
xj

∂

∂yj
− yj

∂

∂xj

,
,

where z = (z1, z2, ....zn) and zj = xj + iyj . Here △ is the standard
Laplacian in R2n.
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The operator L is a positive self-adjoint second-order elliptic
differential operator.
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The operator L is a positive self-adjoint second-order elliptic
differential operator.

The spectrum of L is explicitly known. More precisely it is the set
Γ := {(2k + n) : k ∈ N ∪ {0}}.
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The operator L is a positive self-adjoint second-order elliptic
differential operator.

The spectrum of L is explicitly known. More precisely it is the set
Γ := {(2k + n) : k ∈ N ∪ {0}}.
It is known that Lϕk = (2k + n)ϕk for k ≥ 0 where ϕk are Laguerre
functions of order n − 1.

The heat kernel corresponding to e−tL, t > 0 also satisfies Gaussian
estimates.

The differential operator L is related to the sub-Laplacian LHn (left
invariant) on the Heisenberg group.

In fact LHn(f (z)e it) = Lf (z)e it .
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Twisted convolution

Let ω(z ,w) := e
i
2
Im(z·w̄) on Cn × Cn. The twisted convolution of two

functions f and g is defined by

(f × g)(z) =

#

Cn

f (w)g(z − w)ω(z ,w) dw .
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Functional Calculus corresponding to L

The spectral resolution of identity of L is given by
f = (2π)−n

!
k≥0 f × ϕk for f ∈ L2(Cn). We also know that

#

Cn

|f (z)|2 dz = (2π)−2n
(

k≥0

#

Cn

|f × ϕk(z)|2 dz (0.1)

where with abuse of notation dz is the usual Lebesgue measure on R2n.
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f = (2π)−n

!
k≥0 f × ϕk for f ∈ L2(Cn). We also know that

#

Cn

|f (z)|2 dz = (2π)−2n
(

k≥0

#

Cn

|f × ϕk(z)|2 dz (0.1)

where with abuse of notation dz is the usual Lebesgue measure on R2n.
Let m be a bounded measurable function on [0,∞). We define the
corresponding multiplier operator m(L)f = (2π)−n

!
k≥0m(2k + n)f ×ϕk

for f ∈ L2(Cn).
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Definition

We define the Hardy space

Hp(Cn) =

$
f ∈ S ′(Cn) : MLf (z) = sup

0<t<∞

---e−t2Lf (z)
--- ∈ Lp(Cn)

'
.

Hp(Cn) is equipped with the norm ‖f ‖Hp(Cn) = ‖MLf ‖p.
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We are interested to do the atomic space characterisation of Hp(Cn) for
0 < p < 1 in terms of atoms compatible with the inherent twisted
convolution structure associated to L.
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f ∈ S ′(Cn) : MLf (z) = sup

0<t<∞

---e−t2Lf (z)
--- ∈ Lp(Cn)

'
.

Hp(Cn) is equipped with the norm ‖f ‖Hp(Cn) = ‖MLf ‖p.

We are interested to do the atomic space characterisation of Hp(Cn) for
0 < p < 1 in terms of atoms compatible with the inherent twisted
convolution structure associated to L.
When p = 1 such an atomic decomposition of H1(Cn) was done by
Mauceri, Ricci and Michele.
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Let us now define atoms associated to L.

Definition 2.

Let 0 < p ≤ 1 and 0 < σ < ∞. We call a measurable function f a
(p,σ)-atom if there exists a cube Q = Q(z0, r) center at z0 and length 2r
such that

supp f ⊂ Q,

‖f ‖∞ ≤ (2r)−2n/p,
"
f (z)zαz̄βω(z0, z) dz = 0 for all

|α|+ |β| ≤ N,withN ≥ ⌊2n(1/p − 1)⌋ = N0, whenever r < σ.
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Atomic space

Let us define the atomic Hardy space Hp
L,at,σ(C

n) as follows

Hp
L,at,σ(C

n) =

.
/

0f =
(

j

cjaj : a
′
js are (p,σ)− atom and

(

j

|cj |p < ∞

1
2

3

and the ”norm” in this space is defined by

‖f ‖Hp
L,at,σ(Cn) = inf

.
4/

40

5

6
(

j

|cj |p
7

8
1/p

: f =
(

j

cjaj ∈ Hp
L,at,σ(C

n)

1
42

43
.
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Again when σ = 1, we just write the above space as Hp
L,at(C

n).
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We prove the following theorem:

Theorem 3.

For any 0 < p < 1, f ∈ Hp(Cn) if and only if f ∈ Hp
L,at(C

n).

Moreover ‖f ‖pHp(Cn)
∼=p ‖f ‖Hp

L,at(Cn).
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Oscillatory multipliers

For β ≥ 0, we define

mβ(λ) = λ−β e iλ. (0.2)
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Oscillatory multipliers

For β ≥ 0, we define

mβ(λ) = λ−β e iλ. (0.2)

We prove the following sharp result concerning the boundedness of
mβ(

√
L) on Hp(Cn), 0 < p ≤ 1 by using the above atomic charaterisation.

Theorem 4.

The operator mβ(
√
L) is bounded on Hp(Cn) for 0 < p ≤ 1 with

β ≥ (2n − 1) (1/p − 1/2) .
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mβ(λ) = λ−β e iλ. (0.2)

We prove the following sharp result concerning the boundedness of
mβ(

√
L) on Hp(Cn), 0 < p ≤ 1 by using the above atomic charaterisation.

Theorem 4.

The operator mβ(
√
L) is bounded on Hp(Cn) for 0 < p ≤ 1 with

β ≥ (2n − 1) (1/p − 1/2) .

β = 1 is related to the solution of wave equation corresponding to L.
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Sketch of proof of Theorem 3

Let us consider a collection

SN = {ϕ ∈ C∞
c (R2n) : supp ϕ ∈ Q(0, 1) and |∂αϕ| ≤ 1 for all |α| ≤ N}.

Here Q(0, 1) = [−1, 1]2n.
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c (R2n) : supp ϕ ∈ Q(0, 1) and |∂αϕ| ≤ 1 for all |α| ≤ N}.

Here Q(0, 1) = [−1, 1]2n.
Let ϕt(z) = t−2nϕ(z/t). For given 0 < σ ≤ ∞, let us define a grand
maximal function

MN
σ f (z) = sup

ϕ∈SN

sup
0<t<σ

|f × ϕt(z)| .
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Here Q(0, 1) = [−1, 1]2n.
Let ϕt(z) = t−2nϕ(z/t). For given 0 < σ ≤ ∞, let us define a grand
maximal function

MN
σ f (z) = sup

ϕ∈SN

sup
0<t<σ

|f × ϕt(z)| .

We take N sufficiently large (depends on n and p) and fix it.
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For 0 < σ ≤ ∞ and 0 < p ≤ 1, we define the twisted Hardy space Hp
L(C

n)
as

Hp
L,σ(C

n) :=
9
f : f ∈ S ′(R2n), ‖f ‖Hp

L,σ(Cn) = ‖Mσf ‖Lp < ∞
:
.
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n) :=
9
f : f ∈ S ′(R2n), ‖f ‖Hp
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:
.

For σ = 1, we write the Hardy space Hp
L,1(C

n) as Hp
L(C

n).

(Jotsaroop Kaur, IISER Mohali(jointly with Riju Basak) )On Hardy Spaces associated with the twisted Laplacian and sharp estimates for the corresponding wave operatorJuly 23, 2024 15 / 38



For 0 < σ ≤ ∞ and 0 < p ≤ 1, we define the twisted Hardy space Hp
L(C

n)
as

Hp
L,σ(C

n) :=
9
f : f ∈ S ′(R2n), ‖f ‖Hp

L,σ(Cn) = ‖Mσf ‖Lp < ∞
:
.

For σ = 1, we write the Hardy space Hp
L,1(C

n) as Hp
L(C

n).One of the first
characterisation theorem is:

Theorem 5.

For 0 < p ≤ 1, the twisted Hardy space Hp
L(C

n) coincides with the atomic
Hardy space Hp

L,at(C
n) with norm equivalence.
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For a fixed sufficiently large N, and 0 < σ ≤ ∞, we define the Euclidean
grand maximal function using the usual Euclidean convolution as follows

;Mσf (z) = sup
ϕ∈SN

sup
0<t<σ

|f ∗ ϕt(z)|.
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For a fixed sufficiently large N, and 0 < σ ≤ ∞, we define the Euclidean
grand maximal function using the usual Euclidean convolution as follows

;Mσf (z) = sup
ϕ∈SN

sup
0<t<σ

|f ∗ ϕt(z)|.

Let hpσ(Cn) := {f ∈ S ′(Cn) : ‖;Mσf ‖p < ∞}.
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For a fixed sufficiently large N, and 0 < σ ≤ ∞, we define the Euclidean
grand maximal function using the usual Euclidean convolution as follows

;Mσf (z) = sup
ϕ∈SN

sup
0<t<σ

|f ∗ ϕt(z)|.

Let hpσ(Cn) := {f ∈ S ′(Cn) : ‖;Mσf ‖p < ∞}.
Define ‖f ‖hpσ = ‖;Mσf ‖p.
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Goldberg proved the following characterization of local hardy spaces
hpσ(Cn), 0 < p ≤ 1.
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Goldberg proved the following characterization of local hardy spaces
hpσ(Cn), 0 < p ≤ 1.

Theorem 6.

For every tempered distribution f on Cn and fixed positive σ, the following
conditions are equivalent.

;Mσf ∈ Lp(Cn)

f =
!

j cj fj , where supp fj ⊂ Q(zj , rj)

‖fj‖∞ ≤ (2rj)
−2n/p

and #
fj(z)z

αz̄β dz = 0,

for all |α|+ |β| ≤ N with N ≥ ⌊2n(1/p − 1)⌋, whenever rj < σ and!
j |cj |p < ∞.

Moreover

‖f ‖hpσ ∼ inf

$%!
j |cj |p

&1/p
: f =

!
j cj fj , f

′
j s are as in (2) above

'
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We first prove the following lemma.

Lemma 7.

Let f be a function such that f ⊂ Q(z0,σ). Then there is a positive
constant C (σ) depending on σ but independent of z0 such that

C (σ)−1‖Mσf ‖p ≤ ‖f (·)ω(z0, ·)‖hpσ ≤ C (σ)‖Mσf ‖p

for every 0 < p ≤ 1.
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Let f be a function such that f ⊂ Q(z0,σ). Then there is a positive
constant C (σ) depending on σ but independent of z0 such that

C (σ)−1‖Mσf ‖p ≤ ‖f (·)ω(z0, ·)‖hpσ ≤ C (σ)‖Mσf ‖p

for every 0 < p ≤ 1.

Let us consider a partition of Cn into family of cubes Qj = Q(zj ,σ/2) and
construct a C∞ partition of unity {ζj} such that ζj is supported on

Q∗
j = Q(zj ,σ) and |∂α

z ∂
β
z̄ ζj(z)| ≲α,β 2σ−|α|−|β| for all α,β.
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constant C (σ) depending on σ but independent of z0 such that

C (σ)−1‖Mσf ‖p ≤ ‖f (·)ω(z0, ·)‖hpσ ≤ C (σ)‖Mσf ‖p

for every 0 < p ≤ 1.

Let us consider a partition of Cn into family of cubes Qj = Q(zj ,σ/2) and
construct a C∞ partition of unity {ζj} such that ζj is supported on

Q∗
j = Q(zj ,σ) and |∂α

z ∂
β
z̄ ζj(z)| ≲α,β 2σ−|α|−|β| for all α,β.

Lemma 8.

Let f be such that Mσf ∈ Lp(Cn). Then gj(z) = f (z)ζj(z)ω(zj , z) is in
hpσ and ‖Mσf ‖pp ≃

!
j ‖gj‖

p
hpσ
.
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By Lemma 8, given f ∈ Hp
L,σ(C

n) we first decompose

f =
!

j gj ω̄(zj , z).
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n) we first decompose

f =
!

j gj ω̄(zj , z).We know that gj(·) ∈ hpσ(Cn) for each j .
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By Lemma 8, given f ∈ Hp
L,σ(C

n) we first decompose

f =
!

j gj ω̄(zj , z).We know that gj(·) ∈ hpσ(Cn) for each j .We can write

the atomic decomposition of gj(·) in hpσ(Cn).
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By Lemma 8, given f ∈ Hp
L,σ(C

n) we first decompose

f =
!

j gj ω̄(zj , z).We know that gj(·) ∈ hpσ(Cn) for each j .We can write

the atomic decomposition of gj(·) in hpσ(Cn).Therefore we conclude that
for every f ∈ Hp

L,σ, we can write f =
!

j ηjhj , where

(

j

|ηj |p ≲n,p C (σ)‖f ‖p
Hp
L,σ

, hj ⊆ Q(wj , rj) and ‖hj‖∞ ≤ (2rj)
−2n/p, (0.3)

and
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the atomic decomposition of gj(·) in hpσ(Cn).Therefore we conclude that
for every f ∈ Hp

L,σ, we can write f =
!

j ηjhj , where

(

j

|ηj |p ≲n,p C (σ)‖f ‖p
Hp
L,σ

, hj ⊆ Q(wj , rj) and ‖hj‖∞ ≤ (2rj)
−2n/p, (0.3)

and

whenever rj < σ , there exists θj such that |θj − wj | < 2σ and (0.4)
#

hj(z)z
αz̄βe

i
2
Im(θj ·z̄) dz = 0 for all |α|+ |β| ≤ N, whereN ≥ N0.
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L,σ, we can write f =
!

j ηjhj , where

(

j

|ηj |p ≲n,p C (σ)‖f ‖p
Hp
L,σ

, hj ⊆ Q(wj , rj) and ‖hj‖∞ ≤ (2rj)
−2n/p, (0.3)

and

whenever rj < σ , there exists θj such that |θj − wj | < 2σ and (0.4)
#

hj(z)z
αz̄βe

i
2
Im(θj ·z̄) dz = 0 for all |α|+ |β| ≤ N, whereN ≥ N0.

Also, conversely given a sequence {hj} of functions satisfying (0.3) and
(0.4) and a sequence {ηj} satisfying

!
j |ηj |p < ∞, the function

f (z) =
!

j ηjhj is in Hp
L,σ(C

n) and ‖f ‖p
Hp
L,σ

≤ C (σ)
!

j |ηj |p.
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This is the not the exact atomic decomposition we want for Hp
L,σ(C

n).
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This is the not the exact atomic decomposition we want for Hp
L,σ(C

n).
We need to replace θ in the cancellation condition (0.4) with the center of
the cube on which the atom is supported.
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Lemma 9.

Let f be a function supported on Q = Q(z0, r), r < σ such that

‖f ‖∞ ≤ (2r)−2n/p

and
#

f (w)wαw̄βe
i
2
Im(θ·w̄) dw = 0, for all |α|+ |β| ≤ N, (0.5)

withN ≥ 2N0 and for some ϑ with |θ − z0| < 2σ.

Let σ be small enough (depending on n, p). Then f can be decomposed
as f =

!
j ηjgj , where!

j |ηj |p ≤ C,

gj ⊆ Q(zj , rj), ‖gj‖∞ ≤ (2rj)
−2n/p,

"
gj(w)wαw̄βe

i
2
Im(zj ·w̄) dw = 0, for all |α|+ |β| ≤ N, with N ≥

N0, whenever rj < σ.
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Proof

Let us fix a positive natural number N such that N ≥ N0.
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Proof

Let us fix a positive natural number N such that N ≥ N0.Let L
2(Q) be

the Hilbert space of square integrable functions on Q with the norm

‖f ‖2Q =
1

|Q|

#

Q
|f (z)|2 dz .
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Let us fix a positive natural number N such that N ≥ N0.Let L
2(Q) be

the Hilbert space of square integrable functions on Q with the norm

‖f ‖2Q =
1

|Q|

#

Q
|f (z)|2 dz .

Let PN be the vector space of all polynomial of degree upto N.
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Let us fix a positive natural number N such that N ≥ N0.Let L
2(Q) be

the Hilbert space of square integrable functions on Q with the norm

‖f ‖2Q =
1

|Q|

#

Q
|f (z)|2 dz .

Let PN be the vector space of all polynomial of degree upto N.We equip
the space PN with the Hilbert space norm ‖ · ‖Q defined above.
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Proof

Let us fix a positive natural number N such that N ≥ N0.Let L
2(Q) be

the Hilbert space of square integrable functions on Q with the norm

‖f ‖2Q =
1

|Q|

#

Q
|f (z)|2 dz .

Let PN be the vector space of all polynomial of degree upto N.We equip
the space PN with the Hilbert space norm ‖ · ‖Q defined above.Let us
denote {PN , ‖ · ‖Q} by PN,Q .
We fix an orthonormal basis {e1, . . . eN1} of PN,Q , where dim(PN) = N1.
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Proof

Let us fix a positive natural number N such that N ≥ N0.Let L
2(Q) be

the Hilbert space of square integrable functions on Q with the norm

‖f ‖2Q =
1

|Q|

#

Q
|f (z)|2 dz .

Let PN be the vector space of all polynomial of degree upto N.We equip
the space PN with the Hilbert space norm ‖ · ‖Q defined above.Let us
denote {PN , ‖ · ‖Q} by PN,Q .
We fix an orthonormal basis {e1, . . . eN1} of PN,Q , where dim(PN) = N1.If
Q = Q(0, 1), then by equivalance of any two norms on a finite dimensional
vector space we get

sup
w∈Q(0,1)

|P(w)| ≤ C‖P‖Q(0,1).
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Proof

Let us fix a positive natural number N such that N ≥ N0.Let L
2(Q) be

the Hilbert space of square integrable functions on Q with the norm

‖f ‖2Q =
1

|Q|

#

Q
|f (z)|2 dz .

Let PN be the vector space of all polynomial of degree upto N.We equip
the space PN with the Hilbert space norm ‖ · ‖Q defined above.Let us
denote {PN , ‖ · ‖Q} by PN,Q .
We fix an orthonormal basis {e1, . . . eN1} of PN,Q , where dim(PN) = N1.If
Q = Q(0, 1), then by equivalance of any two norms on a finite dimensional
vector space we get

sup
w∈Q(0,1)

|P(w)| ≤ C‖P‖Q(0,1).

Let Q = Q(z , r) define Tf (x) = f (rx + z), x ∈ Q(0, 1). Note that T is an
isometry onto from PN,Q(z,r) to PN,Q(0,1).
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Proof

Let us fix a positive natural number N such that N ≥ N0.Let L
2(Q) be

the Hilbert space of square integrable functions on Q with the norm

‖f ‖2Q =
1

|Q|

#

Q
|f (z)|2 dz .

Let PN be the vector space of all polynomial of degree upto N.We equip
the space PN with the Hilbert space norm ‖ · ‖Q defined above.Let us
denote {PN , ‖ · ‖Q} by PN,Q .
We fix an orthonormal basis {e1, . . . eN1} of PN,Q , where dim(PN) = N1.If
Q = Q(0, 1), then by equivalance of any two norms on a finite dimensional
vector space we get

sup
w∈Q(0,1)

|P(w)| ≤ C‖P‖Q(0,1).

Let Q = Q(z , r) define Tf (x) = f (rx + z), x ∈ Q(0, 1). Note that T is an
isometry onto from PN,Q(z,r) to PN,Q(0,1).For a general Q we get the
above equivalence of norms by using the map T .
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Therefore we get for all Q the inequality

sup
w∈Q

|P(w)| ≤ C‖P‖Q ,

where C in the above inequality is independent of Q.
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Therefore we get for all Q the inequality

sup
w∈Q

|P(w)| ≤ C‖P‖Q ,

where C in the above inequality is independent of Q.This implies, for all
1 ≤ j ≤ N1,

sup
z∈Q

|ej(z)| ≤ C . (0.6)
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Therefore we get for all Q the inequality

sup
w∈Q

|P(w)| ≤ C‖P‖Q ,

where C in the above inequality is independent of Q.This implies, for all
1 ≤ j ≤ N1,

sup
z∈Q

|ej(z)| ≤ C . (0.6)

Define hj(w) = ej(w)e−
i
2
Im(z0·w̄) for j = 1, 2, ..N1. Note that

(hj , hl)Q = (ej , el)Q .
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sup
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Define hj(w) = ej(w)e−
i
2
Im(z0·w̄) for j = 1, 2, ..N1. Note that

(hj , hl)Q = (ej , el)Q .Let HQ,N be the linear span of the elements {hj}N1
j=1.

Clearly HQ,N ⊂ L2(Q).
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Therefore we get for all Q the inequality

sup
w∈Q

|P(w)| ≤ C‖P‖Q ,

where C in the above inequality is independent of Q.This implies, for all
1 ≤ j ≤ N1,

sup
z∈Q

|ej(z)| ≤ C . (0.6)

Define hj(w) = ej(w)e−
i
2
Im(z0·w̄) for j = 1, 2, ..N1. Note that

(hj , hl)Q = (ej , el)Q .Let HQ,N be the linear span of the elements {hj}N1
j=1.

Clearly HQ,N ⊂ L2(Q).Since {hj}N1
j=1 are linearly independent, they also

form an orthonormal basis for the space HQ,N .
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Let us consider a projection operator PQ,N from L2(Q) onto the space
HQ,N as follows
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Let us consider a projection operator PQ,N from L2(Q) onto the space
HQ,N as follows

(PQ,N f ) (z) =

N1(

j=1

(f , hj)Q ej(z)e
− i

2
Im(z0·z̄)χQ(z).
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Let us consider a projection operator PQ,N from L2(Q) onto the space
HQ,N as follows

(PQ,N f ) (z) =

N1(

j=1

(f , hj)Q ej(z)e
− i

2
Im(z0·z̄)χQ(z).

Now, we write f (z) = a(1)(z) + b(1)(z), where

b(1)(z) = PQ,N(f )(z), a(1)(z) = f (z)− PQ,N(f )(z).
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Let us consider a projection operator PQ,N from L2(Q) onto the space
HQ,N as follows

(PQ,N f ) (z) =

N1(

j=1

(f , hj)Q ej(z)e
− i

2
Im(z0·z̄)χQ(z).

Now, we write f (z) = a(1)(z) + b(1)(z), where

b(1)(z) = PQ,N(f )(z), a(1)(z) = f (z)− PQ,N(f )(z).

By the definition of the projection PQ,N , it is clear that
1

N1+1a
(1)(z)

satisfies the conditions (ii) and (iii).
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For b(1)(z), using the estimate (0.6), we get

|b(1)(z)| ≤
N1(

j=1

----
1

|Q|

#

Q
f (w)ej(w)e

i
2
Im(z0·w̄) dw

---- (0.7)

for z ∈ Q.
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For b(1)(z), using the estimate (0.6), we get

|b(1)(z)| ≤
N1(

j=1

----
1

|Q|

#

Q
f (w)ej(w)e

i
2
Im(z0·w̄) dw

---- (0.7)

for z ∈ Q.We shall consider each term of the sum on the right side of
(0.7) separately.
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For b(1)(z), using the estimate (0.6), we get

|b(1)(z)| ≤
N1(

j=1

----
1

|Q|

#

Q
f (w)ej(w)e

i
2
Im(z0·w̄) dw

---- (0.7)

for z ∈ Q.We shall consider each term of the sum on the right side of
(0.7) separately.Using the cancellation condition on f and the fact
|θ − z0|σ we get

|b(1)(z)| ≤ CN0,N1σ
N0+1 rN0+1−2n/p
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For b(1)(z), using the estimate (0.6), we get

|b(1)(z)| ≤
N1(

j=1

----
1

|Q|

#

Q
f (w)ej(w)e

i
2
Im(z0·w̄) dw

---- (0.7)

for z ∈ Q.We shall consider each term of the sum on the right side of
(0.7) separately.Using the cancellation condition on f and the fact
|θ − z0|σ we get

|b(1)(z)| ≤ CN0,N1σ
N0+1 rN0+1−2n/p

If we choose q = 2n
2n
p
−N0−1

, then ‖b(1)‖q ≤ CσN0+1. Recall that

N0 = ⌊2n(1/p − 1)⌋ which further implies that q > 1.

Since b(1) ⊂ Q(z0,σ), by Holder’s inequality and boundedness of ;Mσ on
Lq(Cn), q > 1 we get

‖ω(z0, ·)b(1)(·)‖hpσ =‖;Mσ(ω(z0, ·)b(1)(·))‖p

≤Cσ
N0+1
2n ‖ω(z0, ·)b(1)(·)‖q

≤Cσ
N0+1
2n σN0+1.
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Now, we choose σ sufficiently small such that Cσ
N0+1
2n σN0+1 < 1

2 .
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Now, we choose σ sufficiently small such that Cσ
N0+1
2n σN0+1 < 1

2 .Note
that the choice of σ only depends on n, p and is independent of f .
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Now, we choose σ sufficiently small such that Cσ
N0+1
2n σN0+1 < 1

2 .Note
that the choice of σ only depends on n, p and is independent of f .
Since ω(z0, ·)b(1) ∈ hpσ, we can again write

b(1)(z) =
(

j

ν
(1)
j h

(1)
j (z)
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Now, we choose σ sufficiently small such that Cσ
N0+1
2n σN0+1 < 1

2 .Note
that the choice of σ only depends on n, p and is independent of f .
Since ω(z0, ·)b(1) ∈ hpσ, we can again write

b(1)(z) =
(

j

ν
(1)
j h

(1)
j (z)

where
!

j |ν
(1)
j |p ≲n,p

1
2p and the functions h

(1)
j (z) satisfy the conditions

(0.3) and (0.4).
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Now, we choose σ sufficiently small such that Cσ
N0+1
2n σN0+1 < 1

2 .Note
that the choice of σ only depends on n, p and is independent of f .
Since ω(z0, ·)b(1) ∈ hpσ, we can again write

b(1)(z) =
(

j

ν
(1)
j h

(1)
j (z)

where
!

j |ν
(1)
j |p ≲n,p

1
2p and the functions h

(1)
j (z) satisfy the conditions

(0.3) and (0.4).We can now again decompose the functions h
(1)
j using the

projection operator whose support is contained in a cube Q(zj , rj) with
rj < σ.
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Thus we can write

b(1)(z) = a(2)(z) + b(2)(z)
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Using the similar analysis as we did for b(1) we can write

b(2)(z) =
(

j

ν
(2)
j h

(2)
j (z)

where h
(2)
j above satisfy the conditions (0.3) and (0.4) and

!
j |ν

(2)
j |p ≲ 1

4p .
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b(1)(z) = a(2)(z) + b(2)(z)

Using the similar analysis as we did for b(1) we can write

b(2)(z) =
(

j

ν
(2)
j h

(2)
j (z)

where h
(2)
j above satisfy the conditions (0.3) and (0.4) and

!
j |ν

(2)
j |p ≲ 1

4p .

Note that a(2)(z) =
!

j η
(2)
j g

(2)
j (z) with g

(2)
j satisfy (ii) and (iii) and

!
j |η

(2)
j |p ≲ 1.
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Using an iterative process we can write

h(z) =
(

k

ak(z)

where ak ∈ Hp
L,at,σ(C

n)and
!

k ak converges in Hp
L,at,σ(C

n) with

‖h‖Hp
L,at,σ

≲ ‖h‖Hp
L,σ

.
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Using an iterative process we can write

h(z) =
(

k

ak(z)

where ak ∈ Hp
L,at,σ(C

n)and
!

k ak converges in Hp
L,at,σ(C

n) with

‖h‖Hp
L,at,σ

≲ ‖h‖Hp
L,σ

.
This gives the required atomic decomposition of h.
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We will prove the other way inclusion Hp
L,at,σ(C

n) ⊆ Hp
L,σ(C

n).
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We will prove the other way inclusion Hp
L,at,σ(C

n) ⊆ Hp
L,σ(C

n).Let

f ∈ Hp
L,at,σ(C

n) Then we can write f =
!

j cj fj , where fj ’s are ‘(p,σ)
atoms and

!
j |cj |p < ∞. First we shall show that for all j ,

#
(Mσfj(z))

p dz ≤ C . (0.8)
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f ∈ Hp
L,at,σ(C

n) Then we can write f =
!

j cj fj , where fj ’s are ‘(p,σ)
atoms and

!
j |cj |p < ∞. First we shall show that for all j ,

#
(Mσfj(z))

p dz ≤ C . (0.8)

Let us assume f ⊂ B = B(z0, r) and B̃ = 4B . We write

#
(Mσf (z))

p dz =

#

B̃
(Mσf (z))

p dz +

#

B̃c

(Mσf (z))
p dz

=J1 + J2.
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We will prove the other way inclusion Hp
L,at,σ(C

n) ⊆ Hp
L,σ(C

n).Let

f ∈ Hp
L,at,σ(C

n) Then we can write f =
!

j cj fj , where fj ’s are ‘(p,σ)
atoms and

!
j |cj |p < ∞. First we shall show that for all j ,

#
(Mσfj(z))

p dz ≤ C . (0.8)

Let us assume f ⊂ B = B(z0, r) and B̃ = 4B . We write

#
(Mσf (z))

p dz =

#

B̃
(Mσf (z))

p dz +

#

B̃c

(Mσf (z))
p dz

=J1 + J2.

Since |f | ≲ r−2n/p, we have Mσf (z) ≲ r−2n/p. This implies

J1 ≲ r−2n|B̃ | ≤ C .
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Now, we consider J2. Let z /∈ B̃ . When r ≥ σ, for 0 < t < σ, observe that
(f × ϕt) is contained in 3B . Therefore, Mσf (z) = 0, for z ∈ B̃ and the
inequality (0.8) holds.
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(f × ϕt) is contained in 3B . Therefore, Mσf (z) = 0, for z ∈ B̃ and the
inequality (0.8) holds.
Let us now consider the case when r < σ.
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(f × ϕt) is contained in 3B . Therefore, Mσf (z) = 0, for z ∈ B̃ and the
inequality (0.8) holds.
Let us now consider the case when r < σ.We will use cancellation
condition on f .
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Now, we consider J2. Let z /∈ B̃ . When r ≥ σ, for 0 < t < σ, observe that
(f × ϕt) is contained in 3B . Therefore, Mσf (z) = 0, for z ∈ B̃ and the
inequality (0.8) holds.
Let us now consider the case when r < σ.We will use cancellation
condition on f .Using the Taylor’s series expansion for twisted translation
for the function ϕt(·) at z = z − z0 about w = w − z0 we get

ϕt(z − w)e
i
2
Im(z0−w ·z−z0)

=
(

|α|+|β|≤N0

(−1)|α|+|β|

(|α|+ |β|)!(Re(w − z0))
α(Im(w − z0))

βX̃αỸ βϕt(z − z0)

+Φ(w)

(Jotsaroop Kaur, IISER Mohali(jointly with Riju Basak) )On Hardy Spaces associated with the twisted Laplacian and sharp estimates for the corresponding wave operatorJuly 23, 2024 30 / 38



Now, we consider J2. Let z /∈ B̃ . When r ≥ σ, for 0 < t < σ, observe that
(f × ϕt) is contained in 3B . Therefore, Mσf (z) = 0, for z ∈ B̃ and the
inequality (0.8) holds.
Let us now consider the case when r < σ.We will use cancellation
condition on f .Using the Taylor’s series expansion for twisted translation
for the function ϕt(·) at z = z − z0 about w = w − z0 we get

ϕt(z − w)e
i
2
Im(z0−w ·z−z0)

=
(

|α|+|β|≤N0

(−1)|α|+|β|

(|α|+ |β|)!(Re(w − z0))
α(Im(w − z0))

βX̃αỸ βϕt(z − z0)

+Φ(w)

where

Φ(w) =
(

|α|+|β|=N0+1

(−1)|α|+|β|

N0 + 1!

# 1

s=0
(1− s)N X̃αỸ βϕt(z − z0 + s(z0 − w))

(Re(w − z0))
α(Im(w − z0))

βe
i
2
s Im(z0−w ·z−z0)ds
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Using the moment condition of the atom fj and the above Taylor’s
expansion, we write

f × ϕt(z) =

#

R2n

ϕt(z − w)f (w)e
i
2
Im(z·w̄) dw

= e−
i
2
Im(z0·z)

#

R2n

f (w)Φ(w)e
i
2
Im(z0·w) dw
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Using the moment condition of the atom fj and the above Taylor’s
expansion, we write

f × ϕt(z) =

#

R2n

ϕt(z − w)f (w)e
i
2
Im(z·w̄) dw

= e−
i
2
Im(z0·z)

#

R2n

f (w)Φ(w)e
i
2
Im(z0·w) dw

When 0 < t < σ and ϕ ∈ C∞
c (Cn), one can check that

---Z̃α ¯̃Zβϕt(z − z0 + s(z0 − w))
--- ≲σ,N0 t

−2n−N0−1‖ϕ‖N0+1

. Using the above estimate we get

|Φ(w)| ≲σ
rN0+1

t2n+N0+1
.
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We know that z /∈ B̃ , w ∈ B and z − w ∈ supp ϕt . This implies that
|z − z0| ≤ ct.
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We know that z /∈ B̃ , w ∈ B and z − w ∈ supp ϕt . This implies that
|z − z0| ≤ ct.This implies

|f × ϕt(z)| ≲σ r−2n/p r2n+N0+1

|z − z0|2n+N0+1
.
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We know that z /∈ B̃ , w ∈ B and z − w ∈ supp ϕt . This implies that
|z − z0| ≤ ct.This implies

|f × ϕt(z)| ≲σ r−2n/p r2n+N0+1

|z − z0|2n+N0+1
.

Therefore, for all z /∈ B̃ , we get

Mσf (z) ≲σ r−2n/p r2n+N0+1

|z − z0|2n+N0+1
.
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We know that z /∈ B̃ , w ∈ B and z − w ∈ supp ϕt . This implies that
|z − z0| ≤ ct.This implies

|f × ϕt(z)| ≲σ r−2n/p r2n+N0+1

|z − z0|2n+N0+1
.

Therefore, for all z /∈ B̃ , we get

Mσf (z) ≲σ r−2n/p r2n+N0+1

|z − z0|2n+N0+1
.

Since (2n +N0 + 1)p > 2n, we get

J2 ≲σ r−2n

#

B̃c

+
r2n+N0+1

|z − z0|2n+N0+1

,p

dz ≲σ r2nr−2n = Cσ.

This proves the estimate (0.8).
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When f ∈ Hp
L,σ(C

n). It follows from the following observation,

#
(Mσf (z))

p dz ≲
(

j

|cj |p
#

(Mfj(z))
p dz ≲

(

j

|cj |p < ∞.

This proves Hp
L,at,σ(C

n) ⊆ Hp
L,σ(C

n) for any σ > 0.
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#
(Mσf (z))

p dz ≲
(

j

|cj |p
#

(Mfj(z))
p dz ≲

(

j

|cj |p < ∞.

This proves Hp
L,at,σ(C

n) ⊆ Hp
L,σ(C

n) for any σ > 0.When σ > 0 is small

enough depending on n and p we have that Hp
L,at,σ(C

n) coincides with

Hp
L,σ(C

n) with norm equivalence.
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L,σ(C

n). It follows from the following observation,

#
(Mσf (z))

p dz ≲
(

j

|cj |p
#

(Mfj(z))
p dz ≲

(

j

|cj |p < ∞.

This proves Hp
L,at,σ(C

n) ⊆ Hp
L,σ(C

n) for any σ > 0.When σ > 0 is small

enough depending on n and p we have that Hp
L,at,σ(C

n) coincides with

Hp
L,σ(C

n) with norm equivalence.
With a slight modification we can also prove it for σ = 1.
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Recall that

Hp(Cn) = {f : MLf (z) = sup
0<t<∞

---e−t2Lf (z)
--- ∈ Lp(Cn)}.
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Recall that

Hp(Cn) = {f : MLf (z) = sup
0<t<∞

---e−t2Lf (z)
--- ∈ Lp(Cn)}.

We know that e−t2Lf (z) = f × pt2(z) where

pt2(z) = (4π)−n(sinh t2)−ne−
1
4
(coth t2)|z|2 .
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Recall that

Hp(Cn) = {f : MLf (z) = sup
0<t<∞

---e−t2Lf (z)
--- ∈ Lp(Cn)}.

We know that e−t2Lf (z) = f × pt2(z) where

pt2(z) = (4π)−n(sinh t2)−ne−
1
4
(coth t2)|z|2 .Using the above arguments for

proving Hp
L,at,σ(C

n) ⊆ Hp
L,σ(C

n) for any σ > 0, we can also show that

Hp
L,at,σ(C

n) ⊆ Hp(Cn).
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Recall that

Hp(Cn) = {f : MLf (z) = sup
0<t<∞

---e−t2Lf (z)
--- ∈ Lp(Cn)}.

We know that e−t2Lf (z) = f × pt2(z) where

pt2(z) = (4π)−n(sinh t2)−ne−
1
4
(coth t2)|z|2 .Using the above arguments for

proving Hp
L,at,σ(C

n) ⊆ Hp
L,σ(C

n) for any σ > 0, we can also show that

Hp
L,at,σ(C

n) ⊆ Hp(Cn).
We also need to prove atomic decomposition for f ∈ Hp(Cn) for a
complete characterisation of Hp(Cn).
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Theorem 10.

For 0 < p < ∞ Hp(Cn) ⊂ Hp
L(C

n) and there exists C > 0 such that

‖f ‖Hp
L
≤ C‖f ‖Hp ,

where C only depends on n, p.
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For 0 < p < ∞ Hp(Cn) ⊂ Hp
L(C

n) and there exists C > 0 such that

‖f ‖Hp
L
≤ C‖f ‖Hp ,

where C only depends on n, p.

To prove Theorem 10, we need to study various maximal functions related
to the heat semigroup e−t2L and relations between them.
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n) and there exists C > 0 such that

‖f ‖Hp
L
≤ C‖f ‖Hp ,

where C only depends on n, p.

To prove Theorem 10, we need to study various maximal functions related
to the heat semigroup e−t2L and relations between them.
One of the key things in the above theorem is to be able to realise a
distribution on Cn as a distribution on Hn via the map f → f (z)e it .
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Theorem 10.

For 0 < p < ∞ Hp(Cn) ⊂ Hp
L(C

n) and there exists C > 0 such that

‖f ‖Hp
L
≤ C‖f ‖Hp ,

where C only depends on n, p.

To prove Theorem 10, we need to study various maximal functions related
to the heat semigroup e−t2L and relations between them.
One of the key things in the above theorem is to be able to realise a
distribution on Cn as a distribution on Hn via the map f → f (z)e it .
After this realisation many techniques developed by Folland and Stein for
Hardy spaces on homogeneous groups go through with appropriate
modifications.
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Thanks for your attention!
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