On Hardy Spaces associated with the twisted Laplacian and sharp estimates for the corresponding wave operator

> Jotsaroop Kaur, IISER Mohali (jointly with Riju Basak)

> > July 23, 2024

(Jotsaroop Kaur, IISER Mohali(jointly with On Hardy Spaces associated with the twiste

July 23, 2024 1 / 38

• Let
$$\Delta = -\sum_{j=1}^{n} rac{\partial^2}{\partial x_j^2}$$
 be the standard Laplacian on \mathbb{R}^n .

Sar

• Let
$$\Delta = -\sum_{j=1}^{n} \frac{\partial^2}{\partial x_i^2}$$
 be the standard Laplacian on \mathbb{R}^n .

2 The Hardy space $H^{p}(\mathbb{R}^{n})$ is defined as the space of tempered distributions for which $\sup_{0 < t < \infty} |e^{-t\Delta}f| \in L^{p}(\mathbb{R}^{n}), 0 < p < \infty$.

- Let $\Delta = -\sum_{j=1}^{n} \frac{\partial^2}{\partial x_i^2}$ be the standard Laplacian on \mathbb{R}^n .
- 2 The Hardy space $H^{p}(\mathbb{R}^{n})$ is defined as the space of tempered distributions for which $\sup_{0 < t < \infty} |e^{-t\Delta}f| \in L^{p}(\mathbb{R}^{n}), 0 < p < \infty$.
- In the seminal work of C. Fefferman and E.M. Stein in 1970's, the real variable theory of H^p(ℝⁿ) was developed involving equivalent characterisations of H^p(ℝⁿ) in terms of maximal functions, boundary values of harmonic functions.

Theorem 1.

For every tempered distribution f on \mathbb{R}^n , the following conditions are equivalent.

2 $\sup_{0 \le t \le \infty} |f \ast \varphi_t| \in L^p(\mathbb{R}^n)$ where $\varphi_t(x) = t^{-n}\varphi(t^{-1}x), \varphi \in \mathcal{S}(\mathbb{R}^n)$ and $\int_{\mathbb{R}^n} \varphi(x) dx \ne 0$.

3
$$f = \sum_j c_j f_j$$
, where $f_j \subset Q(x_j, r_j)$

$$\|f_j\|_{\infty} \leq (2r_j)^{-n/p}$$

and

$$\int f_j(x)x^\alpha\,dx=0,$$

for all $|\alpha| \leq \mathcal{N}$ with $\mathcal{N} \geq \lfloor n(1/p-1) \rfloor$, and $\sum_j |c_j|^p < \infty$.

Moreover

$$\|f\|_{H^p} \sim \inf\left\{\left(\sum_j |c_j|^p\right)^{1/p} : f = \sum_j c_j f_j, f_j' \text{s are as in (2) above }\right\}$$

(Jotsaroop Kaur, IISER Mohali(jointly with On Hardy Spaces associated with the twister

July 23, 2024 4 / 38

・ロト ・部ト ・ヨト ・ヨト

≣ ৩৭ে 4/38 All the characterisations are very useful to study many problems in harmonic analysis including singular integral operators and Fourier multipliers on H^p(ℝⁿ) when 0

- All the characterisations are very useful to study many problems in harmonic analysis including singular integral operators and Fourier multipliers on H^p(ℝⁿ) when 0
- **2** $H^p(\mathbb{R}^n)$ are more suitable spaces to do harmonic analysis when $p \leq 1$.

- All the characterisations are very useful to study many problems in harmonic analysis including singular integral operators and Fourier multipliers on H^p(ℝⁿ) when 0
- 2 $H^p(\mathbb{R}^n)$ are more suitable spaces to do harmonic analysis when $p \leq 1$.
- In the non-Euclidean setting G.B. Folland and E.M. Stein developed the analogous theory in the book titled Hardy spaces on homogeneous groups.

- All the characterisations are very useful to study many problems in harmonic analysis including singular integral operators and Fourier multipliers on H^p(ℝⁿ) when 0
- 2 $H^p(\mathbb{R}^n)$ are more suitable spaces to do harmonic analysis when $p \leq 1$.
- In the non-Euclidean setting G.B. Folland and E.M. Stein developed the analogous theory in the book titled Hardy spaces on homogeneous groups.
- General Hardy spaces corresponding to a non negative, self adjoint operator A on L²(ℝⁿ) are defined via heat semigroup e^{-tA}, t > 0.

- All the characterisations are very useful to study many problems in harmonic analysis including singular integral operators and Fourier multipliers on H^p(ℝⁿ) when 0
- 2 $H^p(\mathbb{R}^n)$ are more suitable spaces to do harmonic analysis when $p \leq 1$.
- In the non-Euclidean setting G.B. Folland and E.M. Stein developed the analogous theory in the book titled Hardy spaces on homogeneous groups.
- Iteration of the set of the se
- A suitable atomic characterisation is known if the heat kernel corresponding to e^{-tA} satisfies Gaussian estimates by L. Song and L. Yan in 2016.

Twisted Laplacian

We define the twisted Laplacian on \mathbb{C}^n as

$$\mathcal{L} = -rac{1}{2}\sum_{j=1}^n \left(Z_j ar{Z}_j + ar{Z}_j Z_j
ight)$$

where
$$Z_j = \frac{\partial}{\partial z_j} - \frac{1}{2}\bar{z}_j$$
, $\bar{Z}_j = \frac{\partial}{\partial \bar{z}_j} + \frac{1}{2}z_j$, $j = 1, 2, ..., n$. Here
 $\frac{\partial}{\partial z_j} = \frac{\partial}{\partial x_j} - i\frac{\partial}{\partial y_j}$.

990

We define the twisted Laplacian on \mathbb{C}^n as

$$\mathcal{L}=-rac{1}{2}\sum_{j=1}^n \left(Z_jar{Z}_j+ar{Z}_jZ_j
ight)$$

where
$$Z_j = \frac{\partial}{\partial z_j} - \frac{1}{2}\bar{z}_j$$
, $\bar{Z}_j = \frac{\partial}{\partial \bar{z}_j} + \frac{1}{2}z_j$, $j = 1, 2, ..., n$. Here
 $\frac{\partial}{\partial z_j} = \frac{\partial}{\partial x_j} - i\frac{\partial}{\partial y_j}$. We can explicitly write
 $\mathcal{L} = -\triangle + \frac{1}{4}|z|^2 + i\sum_{j=1}^n \left(x_j\frac{\partial}{\partial y_j} - y_j\frac{\partial}{\partial x_j}\right)$,

where $z = (z_1, z_2, ..., z_n)$ and $z_j = x_j + iy_j$. Here \triangle is the standard Laplacian in \mathbb{R}^{2n} .

We define the twisted Laplacian on \mathbb{C}^n as

$$\mathcal{L}=-rac{1}{2}\sum_{j=1}^n \left(Z_jar{Z}_j+ar{Z}_jZ_j
ight)$$

where
$$Z_j = \frac{\partial}{\partial z_j} - \frac{1}{2}\bar{z}_j$$
, $\bar{Z}_j = \frac{\partial}{\partial \bar{z}_j} + \frac{1}{2}z_j$, $j = 1, 2, ..., n$. Here
 $\frac{\partial}{\partial z_j} = \frac{\partial}{\partial x_j} - i\frac{\partial}{\partial y_j}$. We can explicitly write
 $\mathcal{L} = -\triangle + \frac{1}{4}|z|^2 + i\sum_{j=1}^n \left(x_j\frac{\partial}{\partial y_j} - y_j\frac{\partial}{\partial x_j}\right)$,

where $z = (z_1, z_2, ..., z_n)$ and $z_j = x_j + iy_j$. Here \triangle is the standard Laplacian in \mathbb{R}^{2n} .

The operator L is a positive self-adjoint second-order elliptic differential operator.

- The operator L is a positive self-adjoint second-order elliptic differential operator.
- **2** The spectrum of \mathcal{L} is explicitly known. More precisely it is the set $\Gamma := \{(2k + n) : k \in \mathbb{N} \cup \{0\}\}.$

- The operator L is a positive self-adjoint second-order elliptic differential operator.
- 2 The spectrum of \mathcal{L} is explicitly known. More precisely it is the set $\Gamma := \{(2k + n) : k \in \mathbb{N} \cup \{0\}\}.$
- 3 It is known that $\mathcal{L}\varphi_k = (2k + n)\varphi_k$ for $k \ge 0$ where φ_k are Laguerre functions of order n 1.

- The operator L is a positive self-adjoint second-order elliptic differential operator.
- 2 The spectrum of \mathcal{L} is explicitly known. More precisely it is the set $\Gamma := \{(2k + n) : k \in \mathbb{N} \cup \{0\}\}.$
- 3 It is known that $\mathcal{L}\varphi_k = (2k + n)\varphi_k$ for $k \ge 0$ where φ_k are Laguerre functions of order n 1.
- The heat kernel corresponding to $e^{-t\mathcal{L}}$, t > 0 also satisfies Gaussian estimates.

July 23, 2024

6 / 38

- The operator L is a positive self-adjoint second-order elliptic differential operator.
- 2 The spectrum of \mathcal{L} is explicitly known. More precisely it is the set $\Gamma := \{(2k + n) : k \in \mathbb{N} \cup \{0\}\}.$
- 3 It is known that $\mathcal{L}\varphi_k = (2k + n)\varphi_k$ for $k \ge 0$ where φ_k are Laguerre functions of order n 1.
- **3** The heat kernel corresponding to $e^{-t\mathcal{L}}$, t > 0 also satisfies Gaussian estimates.
- The differential operator *L* is related to the sub-Laplacian *L*_{ℍⁿ} (left invariant) on the Heisenberg group.

July 23, 2024

6 / 38

- The operator L is a positive self-adjoint second-order elliptic differential operator.
- 2 The spectrum of \mathcal{L} is explicitly known. More precisely it is the set $\Gamma := \{(2k + n) : k \in \mathbb{N} \cup \{0\}\}.$
- 3 It is known that $\mathcal{L}\varphi_k = (2k + n)\varphi_k$ for $k \ge 0$ where φ_k are Laguerre functions of order n 1.
- **3** The heat kernel corresponding to $e^{-t\mathcal{L}}$, t > 0 also satisfies Gaussian estimates.
- The differential operator L is related to the sub-Laplacian L_{Hⁿ} (left invariant) on the Heisenberg group.

• In fact
$$\mathcal{L}_{\mathbb{H}^n}(f(z)e^{it}) = \mathcal{L}f(z)e^{it}$$
.

Let $\omega(z, w) := e^{\frac{i}{2}Im(z \cdot \bar{w})}$ on $\mathbb{C}^n \times \mathbb{C}^n$. The twisted convolution of two functions f and g is defined by

$$(f \times g)(z) = \int_{\mathbb{C}^n} f(w)g(z-w)\omega(z,w) \, dw.$$

Let $\omega(z, w) := e^{\frac{i}{2}lm(z \cdot \bar{w})}$ on $\mathbb{C}^n \times \mathbb{C}^n$. The twisted convolution of two functions f and g is defined by

$$(f \times g)(z) = \int_{\mathbb{C}^n} f(w)g(z-w)\omega(z,w) \, dw.$$

Using the connection on \mathcal{L} and $\mathcal{L}_{\mathbb{H}^n}$ we have $\mathcal{L}(f \times g)(z) = f \times \mathcal{L}g(z)$ for all f, g in Schwartz class on \mathbb{R}^{2n} .

Let $\omega(z, w) := e^{\frac{i}{2}lm(z \cdot \bar{w})}$ on $\mathbb{C}^n \times \mathbb{C}^n$. The twisted convolution of two functions f and g is defined by

$$(f \times g)(z) = \int_{\mathbb{C}^n} f(w)g(z-w)\omega(z,w) \, dw.$$

Using the connection on \mathcal{L} and $\mathcal{L}_{\mathbb{H}^n}$ we have $\mathcal{L}(f \times g)(z) = f \times \mathcal{L}g(z)$ for all f, g in Schwartz class on \mathbb{R}^{2n} .

The spectral resolution of identity of \mathcal{L} is given by $f = (2\pi)^{-n} \sum_{k\geq 0} f \times \varphi_k$ for $f \in L^2(\mathbb{C}^n)$. We also know that

$$\int_{\mathbb{C}^n} |f(z)|^2 \, dz = (2\pi)^{-2n} \sum_{k \ge 0} \int_{\mathbb{C}^n} |f \times \varphi_k(z)|^2 \, dz \tag{0.1}$$

where with abuse of notation dz is the usual Lebesgue measure on \mathbb{R}^{2n} .

The spectral resolution of identity of \mathcal{L} is given by $f = (2\pi)^{-n} \sum_{k \ge 0} f \times \varphi_k$ for $f \in L^2(\mathbb{C}^n)$. We also know that

$$\int_{\mathbb{C}^n} |f(z)|^2 \, dz = (2\pi)^{-2n} \sum_{k \ge 0} \int_{\mathbb{C}^n} |f \times \varphi_k(z)|^2 \, dz \tag{0.1}$$

where with abuse of notation dz is the usual Lebesgue measure on \mathbb{R}^{2n} . Let m be a bounded measurable function on $[0, \infty)$. We define the corresponding multiplier operator $m(\mathcal{L})f = (2\pi)^{-n} \sum_{k\geq 0} m(2k+n)f \times \varphi_k$ for $f \in L^2(\mathbb{C}^n)$.

Definition

We define the Hardy space

$$\mathcal{H}^{p}(\mathbb{C}^{n}) = \bigg\{ f \in \mathcal{S}'(\mathbb{C}^{n}) : M_{\mathcal{L}}f(z) = \sup_{0 < t < \infty} \Big| e^{-t^{2}\mathcal{L}}f(z) \Big| \in L^{p}(\mathbb{C}^{n}) \bigg\}.$$

 $\mathcal{H}^{p}(\mathbb{C}^{n})$ is equipped with the norm $\|f\|_{\mathcal{H}^{p}(\mathbb{C}^{n})} = \|M_{\mathcal{L}}f\|_{p}$.

SQA

Definition

We define the Hardy space

$$\mathcal{H}^{p}(\mathbb{C}^{n}) = \bigg\{ f \in \mathcal{S}'(\mathbb{C}^{n}) : M_{\mathcal{L}}f(z) = \sup_{0 < t < \infty} \left| e^{-t^{2}\mathcal{L}}f(z) \right| \in L^{p}(\mathbb{C}^{n}) \bigg\}.$$

 $\mathcal{H}^{p}(\mathbb{C}^{n})$ is equipped with the norm $\|f\|_{\mathcal{H}^{p}(\mathbb{C}^{n})} = \|M_{\mathcal{L}}f\|_{p}$.

We are interested to do the atomic space characterisation of $\mathcal{H}^{p}(\mathbb{C}^{n})$ for $0 in terms of atoms compatible with the inherent twisted convolution structure associated to <math>\mathcal{L}$.

Definition

We define the Hardy space

$$\mathcal{H}^{p}(\mathbb{C}^{n}) = \bigg\{ f \in \mathcal{S}'(\mathbb{C}^{n}) : M_{\mathcal{L}}f(z) = \sup_{0 < t < \infty} \Big| e^{-t^{2}\mathcal{L}}f(z) \Big| \in L^{p}(\mathbb{C}^{n}) \bigg\}.$$

 $\mathcal{H}^{p}(\mathbb{C}^{n})$ is equipped with the norm $\|f\|_{\mathcal{H}^{p}(\mathbb{C}^{n})} = \|M_{\mathcal{L}}f\|_{p}$.

We are interested to do the atomic space characterisation of $\mathcal{H}^{p}(\mathbb{C}^{n})$ for $0 in terms of atoms compatible with the inherent twisted convolution structure associated to <math>\mathcal{L}$.

When p = 1 such an atomic decomposition of $\mathcal{H}^1(\mathbb{C}^n)$ was done by Mauceri, Ricci and Michele.

Let us now define atoms associated to \mathcal{L} .

Definition 2.

Let $0 and <math>0 < \sigma < \infty$. We call a measurable function f a (p, σ) -atom if there exists a cube $Q = Q(z_0, r)$ center at z_0 and length 2r such that

Let us define the atomic Hardy space $H^p_{\mathcal{L},at,\sigma}(\mathbb{C}^n)$ as follows

$$\mathcal{H}^{p}_{\mathcal{L},at,\sigma}(\mathbb{C}^{n}) = \left\{ f = \sum_{j} c_{j}a_{j} : a_{j}'s \text{ are } (p,\sigma) - \text{atom and } \sum_{j} |c_{j}|^{p} < \infty \right\}$$

and the "norm" in this space is defined by

$$\|f\|_{H^p_{\mathcal{L},at,\sigma}(\mathbb{C}^n)} = \inf\left\{\left(\sum_j |c_j|^p\right)^{1/p} : f = \sum_j c_j a_j \in H^p_{\mathcal{L},at,\sigma}(\mathbb{C}^n)\right\}.$$

July 23, 2024 11 / 38

Let us define the atomic Hardy space $H^p_{\mathcal{L},at,\sigma}(\mathbb{C}^n)$ as follows

$$H^{p}_{\mathcal{L},at,\sigma}(\mathbb{C}^{n}) = \left\{ f = \sum_{j} c_{j}a_{j} : a'_{j}s \text{ are } (p,\sigma) - \text{atom and } \sum_{j} |c_{j}|^{p} < \infty \right\}$$

and the "norm" in this space is defined by

$$\|f\|_{H^p_{\mathcal{L},at,\sigma}(\mathbb{C}^n)} = \inf\left\{\left(\sum_j |c_j|^p\right)^{1/p} : f = \sum_j c_j a_j \in H^p_{\mathcal{L},at,\sigma}(\mathbb{C}^n)\right\}$$

Again when $\sigma = 1$, we just write the above space as $H^{p}_{\mathcal{L},at}(\mathbb{C}^{n})$.

We prove the following theorem:

Theorem 3.

For any $0 , <math>f \in \mathcal{H}^{p}(\mathbb{C}^{n})$ if and only if $f \in H^{p}_{\mathcal{L},at}(\mathbb{C}^{n})$. Moreover $||f||^{p}_{\mathcal{H}^{p}(\mathbb{C}^{n})} \cong_{p} ||f||_{H^{p}_{\mathcal{L},at}(\mathbb{C}^{n})}$.

(Jotsaroop Kaur, IISER Mohali(jointly with On Hardy Spaces associated with the twist

Oscillatory multipliers

For $\beta \geq 0$, we define

$$m_{\beta}(\lambda) = \lambda^{-\beta} e^{i\lambda}. \tag{0.2}$$

э

990

For $\beta \geq 0$, we define

$$m_{\beta}(\lambda) = \lambda^{-\beta} e^{i\lambda}. \tag{0.2}$$

We prove the following sharp result concerning the boundedness of $m_{\beta}(\sqrt{\mathcal{L}})$ on $\mathcal{H}^{p}(\mathbb{C}^{n}), 0 by using the above atomic charaterisation.$

Theorem 4.

The operator $m_{\beta}(\sqrt{\mathcal{L}})$ is bounded on $\mathcal{H}^p(\mathbb{C}^n)$ for $0 with <math>\beta \ge (2n-1)(1/p-1/2)$.

For $\beta \geq 0$, we define

$$m_{\beta}(\lambda) = \lambda^{-\beta} e^{i\lambda}. \tag{0.2}$$

We prove the following sharp result concerning the boundedness of $m_{\beta}(\sqrt{\mathcal{L}})$ on $\mathcal{H}^{p}(\mathbb{C}^{n}), 0 by using the above atomic charaterisation.$

Theorem 4.

The operator
$$m_{\beta}(\sqrt{\mathcal{L}})$$
 is bounded on $\mathcal{H}^{p}(\mathbb{C}^{n})$ for $0 with $\beta \geq (2n-1)(1/p-1/2)$.$

 $\beta = 1$ is related to the solution of wave equation corresponding to \mathcal{L} .

July 23, 2024 13 / 38

Let us consider a collection

 $\mathcal{S}_{N} = \{ \varphi \in C^{\infty}_{c}(\mathbb{R}^{2n}) : supp \ \varphi \in Q(0,1) \text{ and } |\partial^{\alpha}\varphi| \leq 1 \text{ for all } |\alpha| \leq N \}.$ Here $Q(0,1) = [-1,1]^{2n}$.

14 / 38
Let us consider a collection

 $S_N = \{ \varphi \in C_c^{\infty}(\mathbb{R}^{2n}) : supp \ \varphi \in Q(0,1) \text{ and } |\partial^{\alpha}\varphi| \leq 1 \text{ for all } |\alpha| \leq N \}.$ Here $Q(0,1) = [-1,1]^{2n}$. Let $\varphi_t(z) = t^{-2n}\varphi(z/t)$. For given $0 < \sigma \leq \infty$, let us define a grand maximal function

$$\mathcal{M}_{\sigma}^{\mathcal{N}}f(z) = \sup_{\varphi \in \mathcal{S}_{\mathcal{N}}} \sup_{0 < t < \sigma} |f \times \varphi_t(z)|.$$

Let us consider a collection

 $S_N = \{ \varphi \in C_c^{\infty}(\mathbb{R}^{2n}) : supp \ \varphi \in Q(0,1) \text{ and } |\partial^{\alpha}\varphi| \leq 1 \text{ for all } |\alpha| \leq N \}.$ Here $Q(0,1) = [-1,1]^{2n}$. Let $\varphi_t(z) = t^{-2n}\varphi(z/t)$. For given $0 < \sigma \leq \infty$, let us define a grand maximal function

$$\mathcal{M}_{\sigma}^{\mathcal{N}}f(z) = \sup_{\varphi \in \mathcal{S}_{\mathcal{N}}} \sup_{0 < t < \sigma} |f \times \varphi_t(z)|.$$

We take N sufficiently large (depends on n and p) and fix it.

For $0 < \sigma \le \infty$ and $0 , we define the twisted Hardy space <math>H^p_{\mathcal{L}}(\mathbb{C}^n)$ as

$$H^p_{\mathcal{L},\sigma}(\mathbb{C}^n) := \left\{ f : f \in \mathcal{S}'(\mathbb{R}^{2n}), \|f\|_{H^p_{\mathcal{L},\sigma}(\mathbb{C}^n)} = \|\mathcal{M}_{\sigma}f\|_{L^p} < \infty \right\}.$$

For $0 < \sigma \leq \infty$ and $0 , we define the twisted Hardy space <math>H^p_{\mathcal{L}}(\mathbb{C}^n)$ as

$$H^p_{\mathcal{L},\sigma}(\mathbb{C}^n) := \left\{ f : f \in \mathcal{S}'(\mathbb{R}^{2n}), \|f\|_{H^p_{\mathcal{L},\sigma}(\mathbb{C}^n)} = \|\mathcal{M}_{\sigma}f\|_{L^p} < \infty \right\}.$$

For $\sigma = 1$, we write the Hardy space $H^{p}_{\mathcal{L},1}(\mathbb{C}^{n})$ as $H^{p}_{\mathcal{L}}(\mathbb{C}^{n})$.

For $0 < \sigma \le \infty$ and $0 , we define the twisted Hardy space <math>H^p_{\mathcal{L}}(\mathbb{C}^n)$ as

$$H^p_{\mathcal{L},\sigma}(\mathbb{C}^n) := \left\{ f : f \in \mathcal{S}'(\mathbb{R}^{2n}), \|f\|_{H^p_{\mathcal{L},\sigma}(\mathbb{C}^n)} = \|\mathcal{M}_{\sigma}f\|_{L^p} < \infty \right\}.$$

For $\sigma = 1$, we write the Hardy space $H^{p}_{\mathcal{L},1}(\mathbb{C}^{n})$ as $H^{p}_{\mathcal{L}}(\mathbb{C}^{n})$. One of the first characterisation theorem is:

Theorem 5.

For $0 , the twisted Hardy space <math>H^p_{\mathcal{L}}(\mathbb{C}^n)$ coincides with the atomic Hardy space $H^p_{\mathcal{L},at}(\mathbb{C}^n)$ with norm equivalence.

For a fixed sufficiently large N, and $0 < \sigma \le \infty$, we define the Euclidean grand maximal function using the usual Euclidean convolution as follows

$$\widetilde{\mathcal{M}}_{\sigma}f(z) = \sup_{\varphi \in \mathcal{S}_N} \sup_{0 < t < \sigma} |f * \varphi_t(z)|.$$

For a fixed sufficiently large N, and $0 < \sigma \le \infty$, we define the Euclidean grand maximal function using the usual Euclidean convolution as follows

$$\widetilde{\mathcal{M}}_{\sigma}f(z) = \sup_{\varphi \in \mathcal{S}_N} \sup_{0 < t < \sigma} |f * \varphi_t(z)|.$$

Let $h^p_{\sigma}(\mathbb{C}^n) := \{ f \in \mathcal{S}'(\mathbb{C}^n) : \| \widetilde{\mathcal{M}}_{\sigma} f \|_p < \infty \}.$

For a fixed sufficiently large N, and $0 < \sigma \le \infty$, we define the Euclidean grand maximal function using the usual Euclidean convolution as follows

$$\widetilde{\mathcal{M}}_{\sigma}f(z) = \sup_{\varphi \in \mathcal{S}_N} \sup_{0 < t < \sigma} |f * \varphi_t(z)|.$$

Let
$$h^p_{\sigma}(\mathbb{C}^n) := \{ f \in \mathcal{S}'(\mathbb{C}^n) : \|\widetilde{\mathcal{M}}_{\sigma}f\|_p < \infty \}.$$

Define $\|f\|_{h^p_{\sigma}} = \|\widetilde{\mathcal{M}}_{\sigma}f\|_p.$

Goldberg proved the following characterization of local hardy spaces $h^p_{\sigma}(\mathbb{C}^n)$, 0 .

э

990

Goldberg proved the following characterization of local hardy spaces $h^p_{\sigma}(\mathbb{C}^n)$, 0 .

Theorem 6.

For every tempered distribution f on \mathbb{C}^n and fixed positive σ , the following conditions are equivalent.

1 $\widetilde{\mathcal{M}}_{\sigma}f \in L^{p}(\mathbb{C}^{n})$ 2 $f = \sum_{j} c_{j}f_{j}$, where supp $f_{j} \subset Q(z_{j}, r_{j})$

$$\|f_j\|_{\infty} \leq (2r_j)^{-2n/p}$$

and

$$\int f_j(z) z^\alpha \bar{z}^\beta \, dz = 0,$$

for all $|\alpha| + |\beta| \leq N$ with $N \geq \lfloor 2n(1/p - 1) \rfloor$, whenever $r_j < \sigma$ and $\sum_j |c_j|^p < \infty$.

Moreover

$$\|f\|_{h^p_{\sigma}} \sim \inf\left\{\left(\sum_j |c_j|^p\right)^{1/p} : f = \sum_j c_j f_j, f'_j s \text{ are as in (2) above }\right\}$$

(Jotsaroop Kaur, IISER Mohali(jointly with On Hardy Spaces associated with the twister

We first prove the following lemma.

Lemma 7.

Let f be a function such that $f \subset Q(z_0, \sigma)$. Then there is a positive constant $C(\sigma)$ depending on σ but independent of z_0 such that

 $C(\sigma)^{-1} \|\mathcal{M}_{\sigma}f\|_{p} \leq \|f(\cdot)\omega(z_{0},\cdot)\|_{h^{p}_{\sigma}} \leq C(\sigma) \|\mathcal{M}_{\sigma}f\|_{p}$

for every 0 .

We first prove the following lemma.

Lemma 7.

Let f be a function such that $f \subset Q(z_0, \sigma)$. Then there is a positive constant $C(\sigma)$ depending on σ but independent of z_0 such that

$$C(\sigma)^{-1} \|\mathcal{M}_{\sigma}f\|_{p} \leq \|f(\cdot)\omega(z_{0},\cdot)\|_{h^{p}_{\sigma}} \leq C(\sigma) \|\mathcal{M}_{\sigma}f\|_{p}$$

for every 0 .

Let us consider a partition of \mathbb{C}^n into family of cubes $Q_j = Q(z_j, \sigma/2)$ and construct a C^{∞} partition of unity $\{\zeta_j\}$ such that ζ_j is supported on $Q_j^* = Q(z_j, \sigma)$ and $|\partial_z^{\alpha} \partial_{\overline{z}}^{\beta} \zeta_j(z)| \lesssim_{\alpha,\beta} 2\sigma^{-|\alpha|-|\beta|}$ for all α, β .

We first prove the following lemma.

Lemma 7.

Let f be a function such that $f \subset Q(z_0, \sigma)$. Then there is a positive constant $C(\sigma)$ depending on σ but independent of z_0 such that

$$C(\sigma)^{-1} \|\mathcal{M}_{\sigma}f\|_{p} \leq \|f(\cdot)\omega(z_{0},\cdot)\|_{h^{p}_{\sigma}} \leq C(\sigma)\|\mathcal{M}_{\sigma}f\|_{p}$$

for every 0 .

Let us consider a partition of \mathbb{C}^n into family of cubes $Q_j = Q(z_j, \sigma/2)$ and construct a C^{∞} partition of unity $\{\zeta_j\}$ such that ζ_j is supported on $Q_j^* = Q(z_j, \sigma)$ and $|\partial_z^{\alpha} \partial_{\overline{z}}^{\beta} \zeta_j(z)| \lesssim_{\alpha,\beta} 2\sigma^{-|\alpha|-|\beta|}$ for all α, β .

Lemma 8.

Let f be such that $\mathcal{M}_{\sigma}f \in L^{p}(\mathbb{C}^{n})$. Then $g_{j}(z) = f(z)\zeta_{j}(z)\omega(z_{j},z)$ is in h_{σ}^{p} and $\|\mathcal{M}_{\sigma}f\|_{p}^{p} \simeq \sum_{j} \|g_{j}\|_{h_{\sigma}^{p}}^{p}$.

SQA

By Lemma 8, given $f \in H^{p}_{\mathcal{L},\sigma}(\mathbb{C}^{n})$ we first decompose $f = \sum_{j} g_{j} \bar{\omega}(z_{j}, z)$.

э

990

By Lemma 8, given $f \in H^p_{\mathcal{L},\sigma}(\mathbb{C}^n)$ we first decompose $f = \sum_j g_j \bar{\omega}(z_j, z)$. We know that $g_j(\cdot) \in h^p_{\sigma}(\mathbb{C}^n)$ for each j.

By Lemma 8, given $f \in H^p_{\mathcal{L},\sigma}(\mathbb{C}^n)$ we first decompose $f = \sum_j g_j \bar{\omega}(z_j, z)$. We know that $g_j(\cdot) \in h^p_{\sigma}(\mathbb{C}^n)$ for each *j*. We can write the atomic decomposition of $g_i(\cdot)$ in $h^p_{\sigma}(\mathbb{C}^n)$.

By Lemma 8, given $f \in H^p_{\mathcal{L},\sigma}(\mathbb{C}^n)$ we first decompose $f = \sum_j g_j \bar{\omega}(z_j, z)$. We know that $g_j(\cdot) \in h^p_{\sigma}(\mathbb{C}^n)$ for each *j*. We can write the atomic decomposition of $g_j(\cdot)$ in $h^p_{\sigma}(\mathbb{C}^n)$. Therefore we conclude that for every $f \in H^p_{\mathcal{L},\sigma}$, we can write $f = \sum_j \eta_j h_j$, where

$$\sum_{j} |\eta_j|^p \lesssim_{n,p} C(\sigma) \|f\|^p_{\mathcal{H}^p_{\mathcal{L},\sigma}}, h_j \subseteq Q(w_j, r_j) \text{ and } \|h_j\|_{\infty} \le (2r_j)^{-2n/p}, (0.3)$$

19 / 38

and

By Lemma 8, given $f \in H^p_{\mathcal{L},\sigma}(\mathbb{C}^n)$ we first decompose $f = \sum_j g_j \bar{\omega}(z_j, z)$. We know that $g_j(\cdot) \in h^p_{\sigma}(\mathbb{C}^n)$ for each j. We can write the atomic decomposition of $g_j(\cdot)$ in $h^p_{\sigma}(\mathbb{C}^n)$. Therefore we conclude that for every $f \in H^p_{\mathcal{L},\sigma}$, we can write $f = \sum_j \eta_j h_j$, where

$$\sum_{j} |\eta_j|^p \lesssim_{n,p} C(\sigma) \|f\|_{H^p_{\mathcal{L},\sigma}}^p, h_j \subseteq Q(w_j, r_j) \text{ and } \|h_j\|_{\infty} \le (2r_j)^{-2n/p}, (0.3)$$

and

whenever
$$r_j < \sigma$$
, there exists θ_j such that $|\theta_j - w_j| < 2\sigma$ and (0.4)

$$\int h_j(z) z^{\alpha} \bar{z}^{\beta} e^{\frac{i}{2} lm(\theta_j \cdot \bar{z})} dz = 0 \text{ for all } |\alpha| + |\beta| \le N, \text{ where } N \ge \mathcal{N}_0.$$

By Lemma 8, given $f \in H^p_{\mathcal{L},\sigma}(\mathbb{C}^n)$ we first decompose $f = \sum_j g_j \bar{\omega}(z_j, z)$. We know that $g_j(\cdot) \in h^p_{\sigma}(\mathbb{C}^n)$ for each *j*. We can write the atomic decomposition of $g_j(\cdot)$ in $h^p_{\sigma}(\mathbb{C}^n)$. Therefore we conclude that for every $f \in H^p_{\mathcal{L},\sigma}$, we can write $f = \sum_j \eta_j h_j$, where

$$\sum_{j} |\eta_{j}|^{p} \lesssim_{n,p} C(\sigma) \|f\|_{H^{p}_{\mathcal{L},\sigma}}^{p}, h_{j} \subseteq Q(w_{j}, r_{j}) \text{ and } \|h_{j}\|_{\infty} \leq (2r_{j})^{-2n/p}, (0.3)$$

and

whenever
$$r_j < \sigma$$
, there exists θ_j such that $|\theta_j - w_j| < 2\sigma$ and (0.4)

$$\int h_j(z) z^{\alpha} \bar{z}^{\beta} e^{\frac{j}{2} lm(\theta_j \cdot \bar{z})} dz = 0 \text{ for all } |\alpha| + |\beta| \le N, \text{ where } N \ge \mathcal{N}_0.$$

Also, conversely given a sequence $\{h_j\}$ of functions satisfying (0.3) and (0.4) and a sequence $\{\eta_j\}$ satisfying $\sum_j |\eta_j|^p < \infty$, the function $f(z) = \sum_j \eta_j h_j$ is in $H^p_{\mathcal{L},\sigma}(\mathbb{C}^n)$ and $\|f\|^p_{H^p_{\mathcal{L},\sigma}} \leq C(\sigma) \sum_j |\eta_j|^p$.

This is the not the exact atomic decomposition we want for $H^{p}_{\mathcal{L},\sigma}(\mathbb{C}^{n})$.

Sac

This is the not the exact atomic decomposition we want for $H^p_{\mathcal{L},\sigma}(\mathbb{C}^n)$. We need to replace θ in the cancellation condition (0.4) with the center of the cube on which the atom is supported.

Lemma 9.

Let f be a function supported on $Q = Q(z_0, r), r < \sigma$ such that

$$\|f\|_{\infty} \leq (2r)^{-2n/p}$$

and

$$\int f(w)w^{\alpha}\bar{w}^{\beta}e^{\frac{i}{2}Im(\theta\cdot\bar{w})}\,dw = 0, \text{ for all } |\alpha| + |\beta| \le N, \qquad (0.5)$$

with $N \ge 2\mathcal{N}_0$ and for some ϑ with $|\theta - z_0| < 2\sigma$.

Let σ be small enough (depending on n, p). Then f can be decomposed as $f = \sum_{i} \eta_{i} g_{i}$, where

$$\textcircled{0}$$
 $g_j \subseteq Q(z_j,r_j)$, $\|g_j\|_\infty \leq (2r_j)^{-2n/p}$,

Let us fix a positive natural number N such that $N \ge \mathcal{N}_0$.

990

Let us fix a positive natural number N such that $N \ge \mathcal{N}_0$.Let $L^2(Q)$ be the Hilbert space of square integrable functions on Q with the norm

$$||f||_Q^2 = \frac{1}{|Q|} \int_Q |f(z)|^2 dz.$$

Let us fix a positive natural number N such that $N \ge \mathcal{N}_0$.Let $L^2(Q)$ be the Hilbert space of square integrable functions on Q with the norm

$$||f||_Q^2 = \frac{1}{|Q|} \int_Q |f(z)|^2 dz.$$

Let \mathcal{P}_N be the vector space of all polynomial of degree upto N.

Let us fix a positive natural number N such that $N \ge \mathcal{N}_0$.Let $L^2(Q)$ be the Hilbert space of square integrable functions on Q with the norm

$$||f||_Q^2 = \frac{1}{|Q|} \int_Q |f(z)|^2 dz.$$

Let \mathcal{P}_N be the vector space of all polynomial of degree upto N.We equip the space \mathcal{P}_N with the Hilbert space norm $\|\cdot\|_Q$ defined above.

Let us fix a positive natural number N such that $N \ge \mathcal{N}_0$.Let $L^2(Q)$ be the Hilbert space of square integrable functions on Q with the norm

$$||f||_Q^2 = \frac{1}{|Q|} \int_Q |f(z)|^2 dz.$$

Let \mathcal{P}_N be the vector space of all polynomial of degree upto N.We equip the space \mathcal{P}_N with the Hilbert space norm $\|\cdot\|_Q$ defined above.Let us denote $\{\mathcal{P}_N, \|\cdot\|_Q\}$ by $\mathcal{P}_{N,Q}$. We fix an orthonormal basis $\{e_1, \ldots, e_{\mathcal{N}_1}\}$ of $\mathcal{P}_{N,Q}$, where $dim(\mathcal{P}_N) = \mathcal{N}_1$.

Let us fix a positive natural number N such that $N \ge \mathcal{N}_0$.Let $L^2(Q)$ be the Hilbert space of square integrable functions on Q with the norm

$$||f||_Q^2 = \frac{1}{|Q|} \int_Q |f(z)|^2 dz.$$

Let \mathcal{P}_N be the vector space of all polynomial of degree upto N.We equip the space \mathcal{P}_N with the Hilbert space norm $\|\cdot\|_Q$ defined above.Let us denote $\{\mathcal{P}_N, \|\cdot\|_Q\}$ by $\mathcal{P}_{N,Q}$. We fix an orthonormal basis $\{e_1, \ldots, e_{\mathcal{N}_1}\}$ of $\mathcal{P}_{N,Q}$, where $dim(\mathcal{P}_N) = \mathcal{N}_1$.If Q = Q(0, 1), then by equivalance of any two norms on a finite dimensional vector space we get

$$\sup_{w \in Q(0,1)} |P(w)| \le C \|P\|_{Q(0,1)}.$$

Let us fix a positive natural number N such that $N \ge \mathcal{N}_0$. Let $L^2(Q)$ be the Hilbert space of square integrable functions on Q with the norm

$$||f||_Q^2 = \frac{1}{|Q|} \int_Q |f(z)|^2 dz.$$

Let \mathcal{P}_N be the vector space of all polynomial of degree upto N.We equip the space \mathcal{P}_N with the Hilbert space norm $\|\cdot\|_Q$ defined above.Let us denote $\{\mathcal{P}_N, \|\cdot\|_Q\}$ by $\mathcal{P}_{N,Q}$. We fix an orthonormal basis $\{e_1, \ldots, e_{\mathcal{N}_1}\}$ of $\mathcal{P}_{N,Q}$, where $dim(\mathcal{P}_N) = \mathcal{N}_1$.If Q = Q(0, 1), then by equivalance of any two norms on a finite dimensional vector space we get

$$\sup_{w \in Q(0,1)} |P(w)| \le C ||P||_{Q(0,1)}.$$

Let Q = Q(z, r) define $Tf(x) = f(rx + z), x \in Q(0, 1)$. Note that T is an isometry onto from $\mathcal{P}_{N,Q(z,r)}$ to $\mathcal{P}_{N,Q(0,1)}$.

Let us fix a positive natural number N such that $N \ge \mathcal{N}_0$. Let $L^2(Q)$ be the Hilbert space of square integrable functions on Q with the norm

$$||f||_Q^2 = \frac{1}{|Q|} \int_Q |f(z)|^2 dz.$$

Let \mathcal{P}_N be the vector space of all polynomial of degree upto N.We equip the space \mathcal{P}_N with the Hilbert space norm $\|\cdot\|_Q$ defined above.Let us denote $\{\mathcal{P}_N, \|\cdot\|_Q\}$ by $\mathcal{P}_{N,Q}$. We fix an orthonormal basis $\{e_1, \ldots, e_{\mathcal{N}_1}\}$ of $\mathcal{P}_{N,Q}$, where $dim(\mathcal{P}_N) = \mathcal{N}_1$.If Q = Q(0, 1), then by equivalance of any two norms on a finite dimensional vector space we get

$$\sup_{w\in Q(0,1)} |P(w)| \le C ||P||_{Q(0,1)}.$$

Let Q = Q(z, r) define $Tf(x) = f(rx + z), x \in Q(0, 1)$. Note that T is an isometry onto from $\mathcal{P}_{N,Q(z,r)}$ to $\mathcal{P}_{N,Q(0,1)}$. For a general Q we get the above equivalence of norms by using the map T.

$$\sup_{w\in Q}|P(w)|\leq C\|P\|_Q,$$

where C in the above inequality is independent of Q.

(Jotsaroop Kaur, IISER Mohali(jointly with On Hardy Spaces associated with the twist

$$\sup_{w\in Q}|P(w)|\leq C\|P\|_Q,$$

where C in the above inequality is independent of Q.This implies, for all $1 \le j \le N_1$,

$$\sup_{z\in Q} |e_j(z)| \le C. \tag{0.6}$$

990

$$\sup_{w\in Q}|P(w)|\leq C\|P\|_Q,$$

where C in the above inequality is independent of Q.This implies, for all $1 \le j \le N_1$,

$$\sup_{z\in Q} |e_j(z)| \le C. \tag{0.6}$$

Define
$$h_j(w) = e_j(w)e^{-\frac{j}{2}Im(z_0\cdot\bar{w})}$$
 for $j = 1, 2, ...\mathcal{N}_1$. Note that $(h_j, h_l)_Q = (e_j, e_l)_Q$.

Sac

$$\sup_{w\in Q}|P(w)|\leq C\|P\|_Q,$$

where C in the above inequality is independent of Q.This implies, for all $1 \le j \le N_1$,

$$\sup_{z\in Q} |e_j(z)| \le C. \tag{0.6}$$

Define $h_j(w) = e_j(w)e^{-\frac{i}{2}Im(z_0\cdot\bar{w})}$ for $j = 1, 2, ...\mathcal{N}_1$. Note that $(h_j, h_l)_Q = (e_j, e_l)_Q$.Let $\mathcal{H}_{Q,N}$ be the linear span of the elements $\{h_j\}_{j=1}^{\mathcal{N}_1}$. Clearly $\mathcal{H}_{Q,N} \subset L^2(Q)$.

$$\sup_{w\in Q}|P(w)|\leq C\|P\|_Q,$$

where C in the above inequality is independent of Q.This implies, for all $1 \le j \le N_1$,

$$\sup_{z\in Q} |e_j(z)| \le C. \tag{0.6}$$

Define $h_j(w) = e_j(w)e^{-\frac{i}{2}lm(z_0\cdot\bar{w})}$ for $j = 1, 2, ...\mathcal{N}_1$. Note that $(h_j, h_l)_Q = (e_j, e_l)_Q$.Let $\mathcal{H}_{Q,N}$ be the linear span of the elements $\{h_j\}_{j=1}^{\mathcal{N}_1}$. Clearly $\mathcal{H}_{Q,N} \subset L^2(Q)$.Since $\{h_j\}_{j=1}^{\mathcal{N}_1}$ are linearly independent, they also form an orthonormal basis for the space $\mathcal{H}_{Q,N}$.

July 23, 2024 23 / 38

Let us consider a projection operator $P_{Q,N}$ from $L^2(Q)$ onto the space $\mathcal{H}_{Q,N}$ as follows

Sar
Let us consider a projection operator $P_{Q,N}$ from $L^2(Q)$ onto the space $\mathcal{H}_{Q,N}$ as follows

$$(P_{Q,N}f)(z) = \sum_{j=1}^{N_1} (f, h_j)_Q e_j(z) e^{-\frac{i}{2}Im(z_0 \cdot \bar{z})} \chi_Q(z)$$

Let us consider a projection operator $P_{Q,N}$ from $L^2(Q)$ onto the space $\mathcal{H}_{Q,N}$ as follows

$$(P_{Q,N}f)(z) = \sum_{j=1}^{N_1} (f, h_j)_Q e_j(z) e^{-\frac{i}{2}Im(z_0 \cdot \bar{z})} \chi_Q(z).$$

Now, we write $f(z) = a^{(1)}(z) + b^{(1)}(z)$, where

$$b^{(1)}(z) = P_{Q,N}(f)(z), \quad a^{(1)}(z) = f(z) - P_{Q,N}(f)(z).$$

(Jotsaroop Kaur, IISER Mohali(jointly with On Hardy Spaces associated with the twiste

July 23, 2024 24 / 38

Let us consider a projection operator $P_{Q,N}$ from $L^2(Q)$ onto the space $\mathcal{H}_{Q,N}$ as follows

$$(P_{Q,N}f)(z) = \sum_{j=1}^{\mathcal{N}_1} (f,h_j)_Q \quad e_j(z) e^{-\frac{i}{2}Im(z_0\cdot\bar{z})}\chi_Q(z).$$

Now, we write $f(z) = a^{(1)}(z) + b^{(1)}(z)$, where

$$b^{(1)}(z) = P_{Q,N}(f)(z), \quad a^{(1)}(z) = f(z) - P_{Q,N}(f)(z).$$

By the definition of the projection $P_{Q,N}$, it is clear that $\frac{1}{N_1+1}a^{(1)}(z)$ satisfies the conditions (*ii*) and (*iii*).

July 23, 2024 24 / 38

$$|b^{(1)}(z)| \leq \sum_{j=1}^{\mathcal{N}_1} \left| \frac{1}{|Q|} \int_Q f(w) \overline{e_j(w)} e^{\frac{i}{2} Im(z_0 \cdot \bar{w})} dw \right|$$
(0.7)

for $z \in Q$.

э

990

$$|b^{(1)}(z)| \leq \sum_{j=1}^{\mathcal{N}_1} \left| \frac{1}{|Q|} \int_Q f(w) \overline{e_j(w)} e^{\frac{i}{2} Im(z_0 \cdot \bar{w})} dw \right|$$
(0.7)

for $z \in Q$. We shall consider each term of the sum on the right side of (0.7) separately.

$$|b^{(1)}(z)| \leq \sum_{j=1}^{\mathcal{N}_1} \left| \frac{1}{|Q|} \int_Q f(w) \overline{e_j(w)} e^{\frac{i}{2} Im(z_0 \cdot \bar{w})} dw \right|$$
(0.7)

for $z \in Q$.We shall consider each term of the sum on the right side of (0.7) separately.Using the cancellation condition on f and the fact $|\theta - z_0|\sigma$ we get

$$|b^{(1)}(z)| \leq C_{\mathcal{N}_0,\mathcal{N}_1}\sigma^{\mathcal{N}_0+1} r^{\mathcal{N}_0+1-2n/p}$$

$$|b^{(1)}(z)| \leq \sum_{j=1}^{\mathcal{N}_1} \left| \frac{1}{|Q|} \int_Q f(w) \overline{e_j(w)} e^{\frac{i}{2} Im(z_0 \cdot \bar{w})} dw \right|$$
(0.7)

for $z \in Q$.We shall consider each term of the sum on the right side of (0.7) separately.Using the cancellation condition on f and the fact $|\theta - z_0|\sigma$ we get

$$|b^{(1)}(z)| \leq C_{\mathcal{N}_0,\mathcal{N}_1}\sigma^{\mathcal{N}_0+1} r^{\mathcal{N}_0+1-2n/p}$$

If we choose $q = \frac{2n}{\frac{2n}{p} - \mathcal{N}_0 - 1}$, then $\|b^{(1)}\|_q \leq C\sigma^{\mathcal{N}_0 + 1}$. Recall that $\mathcal{N}_0 = \lfloor 2n(1/p - 1) \rfloor$ which further implies that q > 1. Since $b^{(1)} \subset Q(z_0, \sigma)$, by Holder's inequality and boundedness of $\widetilde{\mathcal{M}}_{\sigma}$ on $L^q(\mathbb{C}^n), q > 1$ we get

$$\begin{split} \|\omega(z_0,\cdot)b^{(1)}(\cdot)\|_{h^p_{\sigma}} = &\|\widetilde{\mathcal{M}}_{\sigma}(\omega(z_0,\cdot)b^{(1)}(\cdot))\|_p\\ \leq &C\sigma^{\frac{\mathcal{N}_0+1}{2n}}\|\omega(z_0,\cdot)b^{(1)}(\cdot)\|_q\\ \leq &C\sigma^{\frac{\mathcal{N}_0+1}{2n}}\sigma^{\mathcal{N}_0+1}. \end{split}$$

Now, we choose
$$\sigma$$
 sufficiently small such that $C\sigma^{rac{\mathcal{N}_0+1}{2n}}\sigma^{\mathcal{N}_0+1}<rac{1}{2}.$

(Jotsaroop Kaur, IISER Mohali(jointly with On Hardy Spaces associated with the twist

July 23, 2024 26 / 38

< ロ > < 部 > < き > < き > ...

Now, we choose σ sufficiently small such that $C\sigma^{\frac{N_0+1}{2n}}\sigma^{N_0+1} < \frac{1}{2}$. Note that the choice of σ only depends on n, p and is independent of f.

Now, we choose σ sufficiently small such that $C\sigma^{\frac{N_0+1}{2n}}\sigma^{N_0+1} < \frac{1}{2}$. Note that the choice of σ only depends on n, p and is independent of f. Since $\omega(z_0, \cdot)b^{(1)} \in h^p_{\sigma}$, we can again write

$$b^{(1)}(z) = \sum_{j} \nu_{j}^{(1)} h_{j}^{(1)}(z)$$

Now, we choose σ sufficiently small such that $C\sigma^{\frac{N_0+1}{2n}}\sigma^{N_0+1} < \frac{1}{2}$. Note that the choice of σ only depends on n, p and is independent of f. Since $\omega(z_0, \cdot)b^{(1)} \in h^p_{\sigma}$, we can again write

$$b^{(1)}(z) = \sum_{j} \nu_{j}^{(1)} h_{j}^{(1)}(z)$$

where $\sum_{j} |\nu_{j}^{(1)}|^{p} \lesssim_{n,p} \frac{1}{2^{p}}$ and the functions $h_{j}^{(1)}(z)$ satisfy the conditions (0.3) and (0.4).

Now, we choose σ sufficiently small such that $C\sigma^{\frac{N_0+1}{2n}}\sigma^{N_0+1} < \frac{1}{2}$. Note that the choice of σ only depends on n, p and is independent of f. Since $\omega(z_0, \cdot)b^{(1)} \in h^p_{\sigma}$, we can again write

$$b^{(1)}(z) = \sum_{j} \nu_{j}^{(1)} h_{j}^{(1)}(z)$$

where $\sum_{j} |\nu_{j}^{(1)}|^{p} \leq_{n,p} \frac{1}{2^{p}}$ and the functions $h_{j}^{(1)}(z)$ satisfy the conditions (0.3) and (0.4). We can now again decompose the functions $h_{j}^{(1)}$ using the projection operator whose support is contained in a cube $Q(z_{j}, r_{j})$ with $r_{j} < \sigma$.

$$b^{(1)}(z) = a^{(2)}(z) + b^{(2)}(z)$$

э

990

<ロト < 同ト < 三ト < 三ト

$$b^{(1)}(z) = a^{(2)}(z) + b^{(2)}(z)$$

Using the similar analysis as we did for $b^{(1)}$ we can write

$$b^{(2)}(z) = \sum_{j} \nu_{j}^{(2)} h_{j}^{(2)}(z)$$

Sac

27 / 38

July 23, 2024

$$b^{(1)}(z) = a^{(2)}(z) + b^{(2)}(z)$$

Using the similar analysis as we did for $b^{(1)}$ we can write

$$b^{(2)}(z) = \sum_{j} \nu_{j}^{(2)} h_{j}^{(2)}(z)$$

where $h_j^{(2)}$ above satisfy the conditions (0.3) and (0.4) and $\sum_j |\nu_j^{(2)}|^p \lesssim \frac{1}{4^p}$.

$$b^{(1)}(z) = a^{(2)}(z) + b^{(2)}(z)$$

Using the similar analysis as we did for $b^{(1)}$ we can write

$$b^{(2)}(z) = \sum_{j} \nu_{j}^{(2)} h_{j}^{(2)}(z)$$

where $h_j^{(2)}$ above satisfy the conditions (0.3) and (0.4) and $\sum_j |\nu_j^{(2)}|^p \lesssim \frac{1}{4^p}$. Note that $a^{(2)}(z) = \sum_j \eta_j^{(2)} g_j^{(2)}(z)$ with $g_j^{(2)}$ satisfy (*ii*) and (*iii*) and $\sum_j |\eta_j^{(2)}|^p \lesssim 1$. Using an iterative process we can write

.

$$h(z) = \sum_k a_k(z)$$

where $a_k \in H^p_{\mathcal{L},at,\sigma}(\mathbb{C}^n)$ and $\sum_k a_k$ converges in $H^p_{\mathcal{L},at,\sigma}(\mathbb{C}^n)$ with $\|h\|_{H^p_{\mathcal{L},at,\sigma}} \lesssim \|h\|_{H^p_{\mathcal{L},\sigma}}$

(Jotsaroop Kaur, IISER Mohali(jointly with On Hardy Spaces associated with the twist

Using an iterative process we can write

$$h(z)=\sum_k a_k(z)$$

where $a_k \in H^p_{\mathcal{L},at,\sigma}(\mathbb{C}^n)$ and $\sum_k a_k$ converges in $H^p_{\mathcal{L},at,\sigma}(\mathbb{C}^n)$ with $\|h\|_{H^p_{\mathcal{L},at,\sigma}} \lesssim \|h\|_{H^p_{\mathcal{L},\sigma}}$

This gives the required atomic decomposition of h.

We will prove the other way inclusion $H^{p}_{\mathcal{L},at,\sigma}(\mathbb{C}^{n}) \subseteq H^{p}_{\mathcal{L},\sigma}(\mathbb{C}^{n})$.

(Jotsaroop Kaur, IISER Mohali(jointly with On Hardy Spaces associated with the twist

э

We will prove the other way inclusion $H^{p}_{\mathcal{L},at,\sigma}(\mathbb{C}^{n}) \subseteq H^{p}_{\mathcal{L},\sigma}(\mathbb{C}^{n})$.Let $f \in H^{p}_{\mathcal{L},at,\sigma}(\mathbb{C}^{n})$ Then we can write $f = \sum_{j} c_{j}f_{j}$, where f_{j} 's are ' (p,σ) atoms and $\sum_{j} |c_{j}|^{p} < \infty$. First we shall show that for all j,

$$\int \left(\mathcal{M}_{\sigma}f_{j}(z)\right)^{p} dz \leq C. \tag{0.8}$$

We will prove the other way inclusion $H^{p}_{\mathcal{L},at,\sigma}(\mathbb{C}^{n}) \subseteq H^{p}_{\mathcal{L},\sigma}(\mathbb{C}^{n})$.Let $f \in H^{p}_{\mathcal{L},at,\sigma}(\mathbb{C}^{n})$ Then we can write $f = \sum_{j} c_{j}f_{j}$, where f_{j} 's are ' (p,σ) atoms and $\sum_{j} |c_{j}|^{p} < \infty$. First we shall show that for all j,

$$\int \left(\mathcal{M}_{\sigma} f_j(z)\right)^p \, dz \leq C. \tag{0.8}$$

Let us assume $f \subset B = B(z_0, r)$ and $\tilde{B} = 4B$. We write

$$\int \left(\mathcal{M}_{\sigma}f(z)\right)^{p} dz = \int_{\tilde{B}} \left(\mathcal{M}_{\sigma}f(z)\right)^{p} dz + \int_{\tilde{B}^{c}} \left(\mathcal{M}_{\sigma}f(z)\right)^{p} dz$$
$$= J_{1} + J_{2}.$$

(Jotsaroop Kaur, IISER Mohali(jointly with On Hardy Spaces associated with the twist

We will prove the other way inclusion $H^{p}_{\mathcal{L},at,\sigma}(\mathbb{C}^{n}) \subseteq H^{p}_{\mathcal{L},\sigma}(\mathbb{C}^{n})$.Let $f \in H^{p}_{\mathcal{L},at,\sigma}(\mathbb{C}^{n})$ Then we can write $f = \sum_{j} c_{j}f_{j}$, where f_{j} 's are ' (p,σ) atoms and $\sum_{j} |c_{j}|^{p} < \infty$. First we shall show that for all j,

$$\int \left(\mathcal{M}_{\sigma}f_{j}(z)\right)^{p} dz \leq C. \tag{0.8}$$

Let us assume $f \subset B = B(z_0, r)$ and $\tilde{B} = 4B$. We write

$$\int (\mathcal{M}_{\sigma}f(z))^{p} dz = \int_{\tilde{B}} (\mathcal{M}_{\sigma}f(z))^{p} dz + \int_{\tilde{B}^{c}} (\mathcal{M}_{\sigma}f(z))^{p} dz$$
$$= J_{1} + J_{2}.$$

Since $|f| \lesssim r^{-2n/p}$, we have $\mathcal{M}_{\sigma}f(z) \lesssim r^{-2n/p}$. This implies $J_1 \lesssim r^{-2n}|\tilde{B}| \leq C$.

July 23, 2024 29 / 38

Let us now consider the case when $r < \sigma$.

Let us now consider the case when $r < \sigma$. We will use cancellation condition on f.

Let us now consider the case when $r < \sigma$. We will use cancellation condition on f. Using the Taylor's series expansion for twisted translation for the function $\varphi_t(\cdot)$ at $z = z - z_0$ about $w = w - z_0$ we get

$$\varphi_t(z-w)e^{\frac{i}{2}Im(z_0-w\cdot\overline{z-z_0})}$$

$$=\sum_{|\alpha|+|\beta|\leq \mathcal{N}_0}\frac{(-1)^{|\alpha|+|\beta|}}{(|\alpha|+|\beta|)!}(\operatorname{Re}(w-z_0))^{\alpha}(\operatorname{Im}(w-z_0))^{\beta}\tilde{X}^{\alpha}\tilde{Y}^{\beta}\varphi_t(z-z_0)$$

$$+\Phi(w)$$

Let us now consider the case when $r < \sigma$. We will use cancellation condition on f. Using the Taylor's series expansion for twisted translation for the function $\varphi_t(\cdot)$ at $z = z - z_0$ about $w = w - z_0$ we get

$$\begin{split} \varphi_t(z-w)e^{\frac{i}{2}Im(z_0-w\cdot\overline{z-z_0})} \\ = \sum_{|\alpha|+|\beta| \le \mathcal{N}_0} \frac{(-1)^{|\alpha|+|\beta|}}{(|\alpha|+|\beta|)!} (\operatorname{Re}(w-z_0))^{\alpha} (\operatorname{Im}(w-z_0))^{\beta} \tilde{X}^{\alpha} \tilde{Y}^{\beta} \varphi_t(z-z_0) \\ + \Phi(w) \end{split}$$

where

$$\Phi(w) = \sum_{|\alpha|+|\beta|=\mathcal{N}_{0}+1} \frac{(-1)^{|\alpha|+|\beta|}}{\mathcal{N}_{0}+1!} \int_{s=0}^{1} (1-s)^{N} \tilde{X}^{\alpha} \tilde{Y}^{\beta} \varphi_{t}(z-z_{0}+s(z_{0}-w))$$
$$(\operatorname{Re}(w-z_{0}))^{\alpha} (\operatorname{Im}(w-z_{0}))^{\beta} e^{\frac{i}{2}s \operatorname{Im}(z_{0}-w \cdot \overline{z-z_{0}})} ds$$

July 23, 2024 30 / 38

Using the moment condition of the atom f_j and the above Taylor's expansion, we write

$$f \times \varphi_t(z) = \int_{\mathbb{R}^{2n}} \varphi_t(z - w) f(w) e^{\frac{i}{2} Im(z \cdot \overline{w})} dw$$
$$= e^{-\frac{i}{2} Im(z_0 \cdot \overline{z})} \int_{\mathbb{R}^{2n}} f(w) \Phi(w) e^{\frac{i}{2} Im(z_0 \cdot \overline{w})} dw$$

(Jotsaroop Kaur, IISER Mohali(jointly with On Hardy Spaces associated with the twist

Sac

Using the moment condition of the atom f_j and the above Taylor's expansion, we write

$$f \times \varphi_t(z) = \int_{\mathbb{R}^{2n}} \varphi_t(z - w) f(w) e^{\frac{i}{2} Im(z \cdot \overline{w})} dw$$
$$= e^{-\frac{i}{2} Im(z_0 \cdot \overline{z})} \int_{\mathbb{R}^{2n}} f(w) \Phi(w) e^{\frac{i}{2} Im(z_0 \cdot \overline{w})} dw$$

When $0 < t < \sigma$ and $\varphi \in C^\infty_c(\mathbb{C}^n)$, one can check that

$$\left| ilde{Z}^lpha inom{ ilde{Z}}{inom{ ilde{Z}}{}^eta} arphi_t(z-z_0+s(z_0-w))
ight|\lesssim_{\sigma,\mathcal{N}_0}t^{-2n-\mathcal{N}_0-1}\|arphi\|_{\mathcal{N}_0+1}$$

. Using the above estimate we get

$$|\Phi(w)| \lesssim_\sigma rac{r^{\mathcal{N}_0+1}}{t^{2n+\mathcal{N}_0+1}}.$$

We know that $z \notin \tilde{B}$, $w \in B$ and $z - w \in supp \varphi_t$. This implies that $|z - z_0| \leq ct$.

Sar

We know that $z \notin \tilde{B}$, $w \in B$ and $z - w \in supp \varphi_t$. This implies that $|z - z_0| \leq ct$. This implies

$$|f imes arphi_t(z)| \lesssim_\sigma r^{-2n/p} rac{r^{2n+\mathcal{N}_0+1}}{|z-z_0|^{2n+\mathcal{N}_0+1}}.$$

(Jotsaroop Kaur, IISER Mohali(jointly with On Hardy Spaces associated with the twiste

We know that $z \notin \tilde{B}$, $w \in B$ and $z - w \in supp \varphi_t$. This implies that $|z - z_0| \leq ct$. This implies

$$|f imes arphi_t(z)| \lesssim_\sigma r^{-2n/p} rac{r^{2n+\mathcal{N}_0+1}}{|z-z_0|^{2n+\mathcal{N}_0+1}}.$$

Therefore, for all $z \notin \tilde{B}$, we get

$$\mathcal{M}_{\sigma}f(z)\lesssim_{\sigma}r^{-2n/p}rac{r^{2n+\mathcal{N}_{0}+1}}{|z-z_{0}|^{2n+\mathcal{N}_{0}+1}}.$$

We know that $z \notin \tilde{B}$, $w \in B$ and $z - w \in supp \varphi_t$. This implies that $|z - z_0| \leq ct$. This implies

$$|f imes arphi_t(z)| \lesssim_\sigma r^{-2n/p} rac{r^{2n+\mathcal{N}_0+1}}{|z-z_0|^{2n+\mathcal{N}_0+1}}.$$

Therefore, for all $z \notin \tilde{B}$, we get

$$\mathcal{M}_{\sigma}f(z)\lesssim_{\sigma}r^{-2n/p}rac{r^{2n+\mathcal{N}_{0}+1}}{|z-z_{0}|^{2n+\mathcal{N}_{0}+1}}.$$

Since $(2n + N_0 + 1)p > 2n$, we get

$$J_2 \lesssim_{\sigma} r^{-2n} \int_{\tilde{B}^c} \left(\frac{r^{2n+\mathcal{N}_0+1}}{|z-z_0|^{2n+\mathcal{N}_0+1}} \right)^p dz \lesssim_{\sigma} r^{2n} r^{-2n} = C_{\sigma}.$$

This proves the estimate (0.8).

July 23, 2024 32 / 38

When $f \in H^p_{\mathcal{L},\sigma}(\mathbb{C}^n)$. It follows from the following observation,

$$\int \left(\mathcal{M}_{\sigma}f(z)\right)^p \, dz \lesssim \sum_j |c_j|^p \int \left(\mathcal{M}f_j(z)\right)^p \, dz \lesssim \sum_j |c_j|^p < \infty.$$

This proves $H^{p}_{\mathcal{L},at,\sigma}(\mathbb{C}^{n}) \subseteq H^{p}_{\mathcal{L},\sigma}(\mathbb{C}^{n})$ for any $\sigma > 0$.

33 / 38

When $f \in H^p_{\mathcal{L},\sigma}(\mathbb{C}^n)$. It follows from the following observation,

$$\int \left(\mathcal{M}_{\sigma}f(z)\right)^p \, dz \lesssim \sum_j |c_j|^p \int \left(\mathcal{M}f_j(z)\right)^p \, dz \lesssim \sum_j |c_j|^p < \infty.$$

This proves $H^{p}_{\mathcal{L},at,\sigma}(\mathbb{C}^{n}) \subseteq H^{p}_{\mathcal{L},\sigma}(\mathbb{C}^{n})$ for any $\sigma > 0$. When $\sigma > 0$ is small enough depending on n and p we have that $H^{p}_{\mathcal{L},at,\sigma}(\mathbb{C}^{n})$ coincides with $H^{p}_{\mathcal{L},\sigma}(\mathbb{C}^{n})$ with norm equivalence.

When $f \in H^{p}_{\mathcal{L},\sigma}(\mathbb{C}^{n})$. It follows from the following observation,

$$\int \left(\mathcal{M}_{\sigma}f(z)\right)^p \, dz \lesssim \sum_j |c_j|^p \int \left(\mathcal{M}f_j(z)\right)^p \, dz \lesssim \sum_j |c_j|^p < \infty.$$

This proves $H^{p}_{\mathcal{L},at,\sigma}(\mathbb{C}^{n}) \subseteq H^{p}_{\mathcal{L},\sigma}(\mathbb{C}^{n})$ for any $\sigma > 0$. When $\sigma > 0$ is small enough depending on n and p we have that $H^{p}_{\mathcal{L},at,\sigma}(\mathbb{C}^{n})$ coincides with $H^{p}_{\mathcal{L},\sigma}(\mathbb{C}^{n})$ with norm equivalence.

With a slight modification we can also prove it for $\sigma = 1$.
$$\mathcal{H}^p(\mathbb{C}^n) = \{f: M_{\mathcal{L}}f(z) = \sup_{0 < t < \infty} \left| e^{-t^2 \mathcal{L}}f(z) \right| \in L^p(\mathbb{C}^n) \}.$$

(Jotsaroop Kaur, IISER Mohali(jointly with On Hardy Spaces associated with the twister

э

< 一型

990

$$\mathcal{H}^p(\mathbb{C}^n) = \{f : M_{\mathcal{L}}f(z) = \sup_{0 < t < \infty} \left| e^{-t^2 \mathcal{L}}f(z) \right| \in L^p(\mathbb{C}^n) \}.$$

We know that $e^{-t^2 \mathcal{L}} f(z) = f \times p_{t^2}(z)$ where $p_{t^2}(z) = (4\pi)^{-n} (\sinh t^2)^{-n} e^{-\frac{1}{4} (\coth t^2) |z|^2}$.

34 / 38

$$\mathcal{H}^p(\mathbb{C}^n) = \{f : M_{\mathcal{L}}f(z) = \sup_{0 < t < \infty} \left| e^{-t^2 \mathcal{L}}f(z) \right| \in L^p(\mathbb{C}^n) \}.$$

We know that $e^{-t^2 \mathcal{L}} f(z) = f \times p_{t^2}(z)$ where $p_{t^2}(z) = (4\pi)^{-n} (\sinh t^2)^{-n} e^{-\frac{1}{4} (\coth t^2)|z|^2}$. Using the above arguments for proving $H^p_{\mathcal{L},at,\sigma}(\mathbb{C}^n) \subseteq H^p_{\mathcal{L},\sigma}(\mathbb{C}^n)$ for any $\sigma > 0$, we can also show that $H^p_{\mathcal{L},at,\sigma}(\mathbb{C}^n) \subseteq \mathcal{H}^p(\mathbb{C}^n)$.

$$\mathcal{H}^{p}(\mathbb{C}^{n}) = \{f : M_{\mathcal{L}}f(z) = \sup_{0 < t < \infty} \left| e^{-t^{2}\mathcal{L}}f(z) \right| \in L^{p}(\mathbb{C}^{n}) \}.$$

We know that $e^{-t^2 \mathcal{L}} f(z) = f \times p_{t^2}(z)$ where $p_{t^2}(z) = (4\pi)^{-n} (\sinh t^2)^{-n} e^{-\frac{1}{4} (\coth t^2)|z|^2}$. Using the above arguments for proving $H^p_{\mathcal{L},at,\sigma}(\mathbb{C}^n) \subseteq H^p_{\mathcal{L},\sigma}(\mathbb{C}^n)$ for any $\sigma > 0$, we can also show that $H^p_{\mathcal{L},at,\sigma}(\mathbb{C}^n) \subseteq \mathcal{H}^p(\mathbb{C}^n)$.

We also need to prove atomic decomposition for $f \in \mathcal{H}^{p}(\mathbb{C}^{n})$ for a complete characterisation of $\mathcal{H}^{p}(\mathbb{C}^{n})$.

For $0 <math>\mathcal{H}^p(\mathbb{C}^n) \subset H^p_{\mathcal{L}}(\mathbb{C}^n)$ and there exists C > 0 such that

$$\|f\|_{H^p_{\mathcal{L}}} \leq C \|f\|_{\mathcal{H}^p},$$

where C only depends on n, p.

For $0 <math>\mathcal{H}^p(\mathbb{C}^n) \subset H^p_{\mathcal{L}}(\mathbb{C}^n)$ and there exists C > 0 such that

$$\|f\|_{\mathcal{H}^p_{\mathcal{L}}} \leq C \|f\|_{\mathcal{H}^p},$$

where C only depends on n, p.

To prove Theorem 10, we need to study various maximal functions related to the heat semigroup $e^{-t^2 \mathcal{L}}$ and relations between them.

For $0 <math>\mathcal{H}^p(\mathbb{C}^n) \subset H^p_{\mathcal{L}}(\mathbb{C}^n)$ and there exists C > 0 such that

 $\|f\|_{H^p_{\mathcal{L}}} \leq C \|f\|_{\mathcal{H}^p},$

where C only depends on n, p.

To prove Theorem 10, we need to study various maximal functions related to the heat semigroup $e^{-t^2\mathcal{L}}$ and relations between them. One of the key things in the above theorem is to be able to realise a distribution on \mathbb{C}^n as a distribution on \mathbb{H}^n via the map $f \to f(z)e^{it}$.

For $0 <math>\mathcal{H}^p(\mathbb{C}^n) \subset H^p_{\mathcal{L}}(\mathbb{C}^n)$ and there exists C > 0 such that

 $\|f\|_{H^p_{\mathcal{L}}} \leq C \|f\|_{\mathcal{H}^p},$

where C only depends on n, p.

To prove Theorem 10, we need to study various maximal functions related to the heat semigroup $e^{-t^2\mathcal{L}}$ and relations between them. One of the key things in the above theorem is to be able to realise a distribution on \mathbb{C}^n as a distribution on \mathbb{H}^n via the map $f \to f(z)e^{it}$. After this realisation many techniques developed by Folland and Stein for Hardy spaces on homogeneous groups go through with appropriate modifications.

References

- Folland, G. B. and Stein, Elias M., Hardy spaces on homogeneous groups, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo (1982).
- Goldberg, David, *A local version of real Hardy spaces*, Duke Math. J.(46), no.1 (1979), pages 27-42..
- Stein, Elias M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton University Press, Princeton, NJ (1993).
- Mauceri, G., Picardello, M. A. and Ricci, F., *A Hardy space associated with twisted convolution*, Adv. Math., 39 (1981) no. 3, pages 270-288.
- C. Fefferman, E. M. Stein, *H^p spaces of several variables*, Acta Math. 129 (1972), 137-193.

- Liang Song, Lixin Yan, A maximal function characterization for Hardy spaces associated to nonnegative self-adjoint operators satisfying Gaussian estimates, Advances in Mathematics, 287 (2016) 463-484.
- Cao J., Mayboroda S., Yang D.Local Hardy spaces associated with inhomogeneous higher order elliptic operators(2017) Analysis and Applications, 15 (2), pp. 137 - 224.

Thanks for your attention!

э