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I The spherical (circular) averaging operator

A
t
Sd�1f(x) :=

Z

Sd�1
f(x� ty) d�(y).

I The spherical maximal function

M
⇤
Sd�1f(x) = sup

t>0
|At

Sd�1f(x)| := sup
t>0

���
Z

Sd�1
f(x� ty) d�(y)

���

with d� is the normalized surface measure on the sphere Sd�1.

I It was known that the maximal operator M⇤
Sd�1 is bounded in

L
p if and only if p >

d
d�1 . (Stein, d � 3, Bourgain, d = 2)



I The lacunary spherical maximal operator

MSd�1f(x) := supj2Z |A2j

Sd�1f(x)|
I Calderón proved L

p estimates of the operator MSd�1 for
1 < p  1 and d � 2.

I Seeger and Wright showed L
p estimates of general lacunary

maximal operators MS for 1 < p  1, when the Fourier
transform of the surface measure � of S satisfies

|�̂(⇠)| . |⇠|�✏ for any ✏ > 0.

I Lacey used the Lp-improving estimates (Lp�L
q estimates with

p  q) of spherical averages to prove sparse domination of the
corresponding lacunary and full spherical maximal functions.

I The idea of Lacey together with L
p-improving estimates of

certain bilinear averaging operators, can be used to study
sparse domination of maximal operators associated with the
bilinear operators.



Multilinear averaging operator I



I Let S be a compact and smooth hypersurface contained in a
unit ball Bd(0, 1) with  non-vanishing principal curvatures.

I Let ⇥j be rotation matrices in Md,d(R) for j = 1, 2, · · · ,m.

I Assume that ⇥ = {⇥j}mj=1 are mutually linearly independent.

Definition

For F = (f1, f2, · · · , fm) with f1, f2, . . . , fm 2 S (Rd), we define

A⇥
S (F)(x) :=

Z

S

mY

j=1

fj(x+⇥jy) d�S(y)

where d�S is the normalized surface measure on S.

I Note that  satisfies 1    d� 1.



I The bilinear Hilbert transform

BHT↵(f, g)(x) := p.v.

Z 1

�1
f(x� t)g(x� ↵t)

dt

t
, ↵ 6= 0, 1.

I The bilinear maximal operator

M↵(f, g)(x) := sup
t>0

1

2t

Z t

�t
|f(x� y)g(x�↵y)| dy, ↵ 6= 0, 1.

I One may regard averaging operators A⇥
S as a generalization of

bilinear maximal operator M↵ without the supremum because
the condition ↵ 6= 0, 1.

I Greenleaf, Iosevich, Krause and Liu considered the operator

B✓(f, g)(x) =

Z

S1
f(x� y)g(x� ✓y) d�(y),

where ✓ denotes a counter-clockwise rotation.



Lp-improving estimates (p  1)

Proposition (C. Lee and Shuin, 2024)

Let S be a compact smooth hypersurface contained in Bd(0, 1) with
  d� 1 nonvanishing principal curvatures. Assume that {⇥j}mj=1
is a family of mutually linearly independent rotation matrices. Let
V ij
 = {z = (z1, . . . , zm) 2 [0, 1]m : zi = zj =

+1
+2 , zl = 0, l 6= i, j}

and conv(V) be its convex hull. Then for ( 1
p1
, . . . ,

1
pm

) 2 conv(V)
we have the following inequalities:

kA⇥
S (F)kLp(Rd) .

mY

j=1

kfjkLpj (Rd),

whenever 1  1
p  2(+1)

+2 =
Pm

j=1
1
pj
.

∅



I When p > 1, one can obtain di↵erent Lp-improving estimates
for A⇥

S under specific choice of {⇥j} and S.
I In this case, we do not need any curvature condition on S and

only the dimension of surfaces matters.
I Let Sk be a k-dimensional C2 surface in Rd. Choose mutually

linearly independent {⇥j}. Moreover, we assume that for any
choice of {ji}li=1 with 2  l  k + 1  m, the family {⇥j}
satisfies

dim
⇣
span1il

�
{⇥ji(y

0, 0) 2 Rd : y0 2 Rk}
�⌘

� min{k � 1 + l, d},

dim
⇣ l\

i=1

{⇥ji(y
0, 0) 2 Rd : y0 2 Rk}

⌘
 k + 1� l.

I The second assumption yields that dimension of intersection of
any subset {⇥ji}k+1

i=1 of {⇥j}mj=1 equals to zero.



Lp-improving estimates (p > 1)

Theorem (C. Lee and Shuin, 2024)

Let m � d � 2 and Sk be a k-dimensional C2 surface in Bd(0, 1).
Assume that {⇥j} satisfies above two conditions and k is given by
such that

m� d+ k

m
� d� k � 1

d
k,

m� 1

m
� (d� k)k

d
.

Then A⇥
Sk is of strong type (m, . . . ,m,

d
d�k ). That is, we have

kA⇥
Sk(F )k

L
d

d�k (Rd)
.

mY

j=1

kfjkLm(Rd).



I To prove the theorem, we mainly use the nonlinear Brascamp-Lieb
inequality (Bennett, Bez, Buschenhenke, Cowling and Flock, 2020).

I In the theorem, one can use m � d to check that the conditions for k
are equivalent when d = 2k + 1.

I Moreover, if we assume k = d� 1, then we only need the upper
bound for dimension to guarantee the following result:

Corollary

Let m � d � 2 and let Sd�1 be a C
2 hypersurface. Assume that {⇥j} is

chosen to be mutually linearly independent and satisfy

dim
⇣ l\

i=1

{⇥ji(y
0
, 0) 2 Rd : y0 2 Rk}

⌘
 k + 1� l.

Then A⇥
Sd�1 is of strong-type (m, . . . ,m, d).



I One can find similar results in [Iosevich, Palsson and Sovine,
2022]: restricted strong-type (m, . . . ,m,m) and⇣
m

d+1
d , . . . ,m

d+1
d , d+ 1

⌘
estimates for A⇥

Sd�1 when Sd�1 is a

sphere.

I Note that the authors consider m  d cases with linearly
independent {⇥j}, so it can not be directly compared to the
corollary in which m � d and the above condition are
considered.

I When m = d, the corollary for Sd�1 gives strong-type
(m, . . . ,m,m) estimates.



lacunary maximal operator associated with A⇥
S

M⇥
S (F)(x) = sup

l2Z

���
Z

S

mY

j=1

fj(x� 2l⇥jy) d�S(y)
���

Theorem (C. Lee and Shuin, 2024)

Let 1  p
�
i  1,

Pm
i=1

1
p�
i
= 1

p� with p
� � 1 for d � 2. Suppose that A⇥

S
satisfies the following Sobolev regularity estimates:

��A⇥
S (F )

��
Lp� (Rd)

. 2�"|n|
mY

j=1

kfjkLp�j (Rd)
,

where fj with supp( bfj) ⇢ Anj = {⇠j 2 Rd : 2nj�1  |⇠j |  2nj+1}, j,
and " > 0. Then M⇥

S maps Lp1(Rd)⇥ · · ·⇥ L
pm(Rd) ! L

p(Rd) for
( 1
p1
, . . . ,

1
pm

) 2 conv(V�
) [ {(0, . . . , 0)} and 1/p = 1/p1 + · · ·+ 1/pm,

where conv(V�
) denotes an interior of the convex hull of conv(V) and

the origin.



Multilinear averaging operator II



I Christ and Zhou studied L
p1 ⇥ L

p2 ! L
p with

1/p1 + 1/p2 = 1/p boundedness of bilinear lacunary maximal
functions defined on a class of singular curves

M(f1, f2)(x) := sup
l2Z

���
Z

R1

2Y

j=1

fj(x� 2l�j(t))⌘(t) dt
���,

where � = (�1, �2) : (�1, 1) ! R2 and ⌘ 2 C
1
0 ((�1, 1)).

I Thus, they have proved L
p1 ⇥ L

p2 ! L
p estimates for

1 < p1, p2  1, 1/p1 + 1/p2 = 1/p of the bilinear lacunary
spherical maximal operator MS2d�1 for dimension d = 1 where

MS1(f1, f2)(x) = sup
l2Z

���
Z

S1

2Y

j=1

fj(x� 2lyj) d�(y)
���,

with d�(y) is the normalized surface measure on the circle S1.



I For d � 2, the complete (Lp1 ⇥ L
p2 ! L

p)-estimate of the
operator MS2d�1 was not known.

I However, there are some partial results of the operator MS2d�1

(Palsson and Sovine, Borges, Foster, Ou, Pipher and Zhou)

I Very recently Borges and Foster have obtained almost sharp
results including some endpoint estimates.

I We give a di↵erent proof of the same estimate for MS2d�1 .



Definition

For F = (f1, f2, · · · , fm), we define

A⌃(F )(x) :=

Z

⌃

mY

j=1

fj(x+ yj) d�⌃(y), y = (y1, . . . , ym) 2 Rmd

where ⌃ is a compact (md� 1) dimensional smooth hypersurface
contained in a unit ball Bmd(0, 1) with  non-vanishing principal
curvatures.

I Note that 1    md� 1.

I A⌃ is a direct analogue of a spherical averages At
Sd�1f(x) for

t = 1.

I Note ASmd�1(F )(x) = A
1
Smd�1(f1 ⌦ · · ·⌦ fm)(x, . . . , x).



Lp-improving estimates

Proposition (C. Lee and Shuin, 2024)

Let d � 2 and let ⌃ be a compact smooth hypersurface ⌃ with 

nonvanishing principal curvatures with (m� 1)d <   md� 1.
Then for 1  pj  2, j = 1, 2, . . . ,m and m+1

2 
Pm

j=1
1
pj

<
2d+
2d ,

kA⌃(F )kL1(Rd) .
mY

j=1

kfjkLpj (Rd).

Moreover, we have for m+1
2  1

p =
Pm

j=1
1
pj

<
2d+
2d

kA⌃(F )kLp(Rd) .
mY

j=1

kfjkLpj (Rd).



lacunary maximal estimates associated with A⌃

Proposition (C. Lee and Shuin, 2024)

Let 1  p, p1, . . . , pm < 1 and 1/p = 1/p1 + · · ·+ 1/pm. Then for
fj with supp( bfj) ⇢ Anj := {⇠j 2 Rd : 2nj�1  |⇠j |  2nj+1},

kA⌃(F )kLp(Rd) . 2��|n|
mY

j=1

kfjkLpj (Rd),

where � = �(p,,m, d) > 0 and |n| =
qPm

j=1 n
2
j .

Theorem (C. Lee and Shuin, 2024)

Let m+1
2  1

p =
Pm

j=1
1
pj

<
2d+
2d for 1  pj  2 and  > (m� 1)d.

The operator M⌃(F)(x) = supl2

���
R
⌃

Qm
j=1 fj(x� 2lyj) d�⌃(y)

���
maps Lp1(Rd)⇥ · · ·⇥ L

pm(Rd) ! L
p(Rd).
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