L^p improving properties and maximal estimates for certain multilinear averaging operators

Chuhee Cho

Seoul National University

Harmonic Analysis Summer Workshop, July 23, 2024, Lisbon

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Based on joint works with Jin Bon Lee (SNU) and Kalachand Shuin (Indian Institute of Science)

The spherical (circular) averaging operator

$$A^t_{\mathbb{S}^{d-1}}f(x) := \int_{\mathbb{S}^{d-1}} f(x-ty) \, \mathrm{d}\sigma(y).$$

The spherical maximal function

$$M^*_{\mathbb{S}^{d-1}}f(x) = \sup_{t>0} |A^t_{\mathbb{S}^{d-1}}f(x)| := \sup_{t>0} \left| \int_{\mathbb{S}^{d-1}} f(x-ty) \, \mathrm{d}\sigma(y) \right|$$

with dσ is the normalized surface measure on the sphere S^{d-1}.
It was known that the maximal operator M^{*}_{S^{d-1}} is bounded in L^p if and only if p > d/d-1. (Stein, d ≥ 3, Bourgain, d = 2)

The lacunary spherical maximal operator

$$M_{\mathbb{S}^{d-1}}f(x) := \sup_{j \in \mathbb{Z}} |A_{\mathbb{S}^{d-1}}^{2^j}f(x)|$$

- ▶ Calderón proved L^p estimates of the operator $M_{\mathbb{S}^{d-1}}$ for $1 and <math>d \ge 2$.
- ▶ Seeger and Wright showed L^p estimates of general lacunary maximal operators M_S for $1 , when the Fourier transform of the surface measure <math>\sigma$ of S satisfies

 $|\hat{\sigma}(\xi)| \lesssim |\xi|^{-\epsilon}$ for any $\epsilon > 0$.

- ► Lacey used the L^p-improving estimates (L^p L^q estimates with p ≤ q) of spherical averages to prove sparse domination of the corresponding lacunary and full spherical maximal functions.
- The idea of Lacey together with L^p-improving estimates of certain bilinear averaging operators, can be used to study sparse domination of maximal operators associated with the bilinear operators.

Multilinear averaging operator I

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

- Let S be a compact and smooth hypersurface contained in a unit ball B^d(0,1) with κ non-vanishing principal curvatures.
- Let Θ_j be rotation matrices in $\mathbf{M}_{d,d}(\mathbb{R})$ for $j = 1, 2, \cdots, m$.
- Assume that $\Theta = \{\Theta_j\}_{j=1}^m$ are mutually linearly independent.

Definition

For
$$F = (f_1, f_2, \cdots, f_m)$$
 with $f_1, f_2, \ldots, f_m \in \mathscr{S}(\mathbb{R}^d)$, we define

$$\mathcal{A}_{\mathcal{S}}^{\Theta}(\mathbf{F})(x) := \int_{\mathcal{S}} \prod_{j=1}^{m} f_j(x + \Theta_j y) \, \mathrm{d}\sigma_{\mathcal{S}}(y)$$

where $d\sigma_{\mathcal{S}}$ is the normalized surface measure on \mathcal{S} .

• Note that κ satisfies $1 \le \kappa \le d-1$.

The bilinear Hilbert transform

$$BHT_{\alpha}(f,g)(x) := p.v. \int_{-\infty}^{\infty} f(x-t)g(x-\alpha t)\frac{\mathrm{d}t}{t}, \quad \alpha \neq 0, 1.$$

The bilinear maximal operator

$$M_{\alpha}(f,g)(x) := \sup_{t>0} \frac{1}{2t} \int_{-t}^{t} |f(x-y)g(x-\alpha y)| \, \mathrm{d}y, \quad \alpha \neq 0, 1.$$

- One may regard averaging operators A^Θ_S as a generalization of bilinear maximal operator M_α without the supremum because the condition α ≠ 0, 1.
- Greenleaf, losevich, Krause and Liu considered the operator

$$B_{\theta}(f,g)(x) = \int_{\mathbb{S}^1} f(x-y)g(x-\theta y) \, \mathrm{d}\sigma(y),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where θ denotes a counter-clockwise rotation.

L^p -improving estimates $(p \le 1)$

Proposition (C. Lee and Shuin, 2024)

Let S be a compact smooth hypersurface contained in $\mathbb{B}^d(0,1)$ with $\kappa \leq d-1$ nonvanishing principal curvatures. Assume that $\{\Theta_j\}_{j=1}^m$ is a family of mutually linearly independent rotation matrices. Let $\mathcal{V}_{\kappa}^{ij} = \{z = (z_1, \ldots, z_m) \in [0, 1]^m : z_i = z_j = \frac{\kappa+1}{\kappa+2}, z_l = 0, l \neq i, j\}$ and $\operatorname{conv}(\mathcal{V}_{\kappa})$ be its convex hull. Then for $(\frac{1}{p_1}, \ldots, \frac{1}{p_m}) \in \operatorname{conv}(\mathcal{V}_{\kappa})$ we have the following inequalities:

$$\begin{split} \|\mathcal{A}_{\mathcal{S}}^{\Theta}(\mathcal{F})\|_{L^{p}(\mathbb{R}^{d})} \lesssim \prod_{j=1}^{m} \|f_{j}\|_{L^{p_{j}}(\mathbb{R}^{d})}, \\ whenever \ 1 \leq \frac{1}{p} \leq \frac{2(\kappa+1)}{\kappa+2} = \sum_{j=1}^{m} \frac{1}{p_{j}}. \end{split}$$

ロ ト 4 目 ト 4 目 ト 4 目 ト つ 9 9

- When p > 1, one can obtain different L^p-improving estimates for A^Θ_S under specific choice of {Θ_j} and S.
- In this case, we do not need any curvature condition on S and only the dimension of surfaces matters.
- ▶ Let S^k be a k-dimensional C^2 surface in \mathbb{R}^d . Choose mutually linearly independent $\{\Theta_j\}$. Moreover, we assume that for any choice of $\{j_i\}_{i=1}^l$ with $2 \le l \le k+1 \le m$, the family $\{\Theta_j\}$ satisfies

$$\dim\left(\operatorname{span}_{1\leq i\leq l}\left(\{\Theta_{j_i}(y',0)\in\mathbb{R}^d:y'\in\mathbb{R}^k\}\right)\right)\geq\min\{k-1+l,d\},\\\dim\left(\bigcap_{i=1}^l\{\Theta_{j_i}(y',0)\in\mathbb{R}^d:y'\in\mathbb{R}^k\}\right)\leq k+1-l.$$

The second assumption yields that dimension of intersection of any subset {Θ_{ji}}^{k+1}_{i=1} of {Θ_j}^m_{j=1} equals to zero. L^p -improving estimates (p > 1)

Theorem (C. Lee and Shuin, 2024)

Let $m \ge d \ge 2$ and S^k be a k-dimensional C^2 surface in $\mathbb{B}^d(0,1)$. Assume that $\{\Theta_j\}$ satisfies above two conditions and k is given by such that

$$\frac{m-d+k}{m} \ge \frac{d-k-1}{d}k, \quad \frac{m-1}{m} \ge \frac{(d-k)k}{d}.$$

Then $\mathcal{A}_{\mathcal{S}^k}^{\Theta}$ is of strong type $(m, \ldots, m, \frac{d}{d-k})$. That is, we have

$$\|\mathcal{A}_{\mathcal{S}^k}^{\Theta}(F)\|_{L^{\frac{d}{d-k}}(\mathbb{R}^d)} \lesssim \prod_{j=1}^m \|f_j\|_{L^m(\mathbb{R}^d)}$$

- To prove the theorem, we mainly use the nonlinear Brascamp-Lieb inequality (Bennett, Bez, Buschenhenke, Cowling and Flock, 2020).
- In the theorem, one can use m ≥ d to check that the conditions for k are equivalent when d = 2k + 1.
- ► Moreover, if we assume k = d − 1, then we only need the upper bound for dimension to guarantee the following result:

Corollary

Let $m \ge d \ge 2$ and let S^{d-1} be a C^2 hypersurface. Assume that $\{\Theta_j\}$ is chosen to be mutually linearly independent and satisfy

$$\dim\left(\bigcap_{i=1}^{l} \{\Theta_{j_i}(y',0) \in \mathbb{R}^d : y' \in \mathbb{R}^k\}\right) \le k+1-l.$$

Then $\mathcal{A}_{\mathcal{S}^{d-1}}^{\Theta}$ is of strong-type (m, \ldots, m, d) .

- One can find similar results in [losevich, Palsson and Sovine, 2022]: restricted strong-type (m, \ldots, m, m) and $\left(m\frac{d+1}{d}, \ldots, m\frac{d+1}{d}, d+1\right)$ estimates for $\mathcal{A}^{\Theta}_{\mathcal{S}^{d-1}}$ when \mathcal{S}^{d-1} is a sphere.
- Note that the authors consider m ≤ d cases with linearly independent {Θ_j}, so it can not be directly compared to the corollary in which m ≥ d and the above condition are considered.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

When m = d, the corollary for S^{d−1} gives strong-type (m,...,m,m) estimates.

lacunary maximal operator associated with $\mathcal{A}^{\Theta}_{\mathcal{S}}$

$$\mathcal{M}_{\mathcal{S}}^{\Theta}(\mathbf{F})(x) = \sup_{l \in \mathbb{Z}} \left| \int_{\mathcal{S}} \prod_{j=1}^{m} f_j(x - 2^l \Theta_j y) \, \mathrm{d}\sigma_{\mathcal{S}}(y) \right|$$

Theorem (C. Lee and Shuin, 2024)

Let $1 \leq p_i^{\circ} \leq \infty$, $\sum_{i=1}^{m} \frac{1}{p_i^{\circ}} = \frac{1}{p^{\circ}}$ with $p^{\circ} \geq 1$ for $d \geq 2$. Suppose that \mathcal{A}_{S}^{Θ} satisfies the following Sobolev regularity estimates:

$$\left\|\mathcal{A}_{\mathcal{S}}^{\Theta}(F)\right\|_{L^{p^{\circ}}(\mathbb{R}^{d})} \lesssim 2^{-\varepsilon|\mathbf{n}|} \prod_{j=1}^{m} \left\|f_{j}\right\|_{L^{p^{\circ}_{j}}(\mathbb{R}^{d})}$$

where f_j with $supp(\hat{f}_j) \subset \mathbb{A}_{n_j} = \{\xi_j \in \mathbb{R}^d : 2^{n_j-1} \leq |\xi_j| \leq 2^{n_j+1}\}, j,$ and $\varepsilon > 0$. Then $\mathcal{M}^{\Theta}_{\mathcal{S}}$ maps $L^{p_1}(\mathbb{R}^d) \times \cdots \times L^{p_m}(\mathbb{R}^d) \to L^p(\mathbb{R}^d)$ for $(\frac{1}{p_1}, \ldots, \frac{1}{p_m}) \in \operatorname{conv}(\mathcal{V}^{\circ}_{\kappa}) \cup \{(0, \ldots, 0)\}$ and $1/p = 1/p_1 + \cdots + 1/p_m$, where $\operatorname{conv}(\mathcal{V}^{\circ}_{\kappa})$ denotes an interior of the convex hull of $\operatorname{conv}(\mathcal{V}_{\kappa})$ and the origin.

Multilinear averaging operator II

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

• Christ and Zhou studied $L^{p_1} \times L^{p_2} \rightarrow L^p$ with $1/p_1 + 1/p_2 = 1/p$ boundedness of bilinear lacunary maximal functions defined on a class of singular curves

$$\mathcal{M}(f_1, f_2)(x) := \sup_{l \in \mathbb{Z}} \Big| \int_{\mathbb{R}^1} \prod_{j=1}^2 f_j(x - 2^l \gamma_j(t)) \eta(t) \, \mathrm{d}t \Big|,$$

where
$$\gamma = (\gamma_1, \gamma_2) : (-1, 1) \rightarrow \mathbb{R}^2$$
 and $\eta \in C_0^{\infty}((-1, 1))$.

▶ Thus, they have proved $L^{p_1} \times L^{p_2} \to L^p$ estimates for $1 < p_1, p_2 \le \infty$, $1/p_1 + 1/p_2 = 1/p$ of the bilinear lacunary spherical maximal operator $\mathfrak{M}_{\mathbb{S}^{2d-1}}$ for dimension d = 1 where

$$\mathfrak{M}_{\mathbb{S}^1}(f_1, f_2)(x) = \sup_{l \in \mathbb{Z}} \Big| \int_{\mathbb{S}^1} \prod_{j=1}^2 f_j(x - 2^l y_j) \, \mathrm{d}\sigma(\mathbf{y}) \Big|,$$

with $d\sigma(y)$ is the normalized surface measure on the circle \mathbb{S}^1 .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ▶ For $d \ge 2$, the complete $(L^{p_1} \times L^{p_2} \to L^p)$ -estimate of the operator $\mathfrak{M}_{\mathbb{S}^{2d-1}}$ was not known.
- ► However, there are some partial results of the operator M_{S^{2d-1}} (Palsson and Sovine, Borges, Foster, Ou, Pipher and Zhou)
- Very recently Borges and Foster have obtained almost sharp results including some endpoint estimates.
- We give a different proof of the same estimate for $\mathfrak{M}_{\mathbb{S}^{2d-1}}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition

For
$$F = (f_1, f_2, \cdots, f_m)$$
, we define

$$A_{\Sigma}(F)(x) := \int_{\Sigma} \prod_{j=1}^{m} f_j(x+y_j) \, \mathrm{d}\sigma_{\Sigma}(y), \ y = (y_1, \dots, y_m) \in \mathbb{R}^{md}$$

where Σ is a compact (md-1) dimensional smooth hypersurface contained in a unit ball $\mathbb{B}^{md}(0,1)$ with κ non-vanishing principal curvatures.

• Note that $1 \le \kappa \le md - 1$.

A∑ is a direct analogue of a spherical averages A^t_{S^{d-1}} f(x) for t = 1.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

▶ Note
$$A_{\mathbb{S}^{md-1}}(F)(x) = A^1_{\mathbb{S}^{md-1}}(f_1 \otimes \cdots \otimes f_m)(x, \dots, x).$$

L^p -improving estimates

Proposition (C. Lee and Shuin, 2024)

Let $d \geq 2$ and let Σ be a compact smooth hypersurface Σ with κ nonvanishing principal curvatures with $(m-1)d < \kappa \leq md-1$. Then for $1 \leq p_j \leq 2$, j = 1, 2, ..., m and $\frac{m+1}{2} \leq \sum_{j=1}^{m} \frac{1}{p_j} < \frac{2d+\kappa}{2d}$,

$$\|\mathcal{A}_{\Sigma}(F)\|_{L^{1}(\mathbb{R}^{d})} \lesssim \prod_{j=1}^{m} \|f_{j}\|_{L^{p_{j}}(\mathbb{R}^{d})}$$

Moreover, we have for $\frac{m+1}{2} \leq \frac{1}{p} = \sum_{j=1}^{m} \frac{1}{p_j} < \frac{2d+\kappa}{2d}$

$$\|\mathsf{A}_{\Sigma}(F)\|_{L^{p}(\mathbb{R}^{d})} \lesssim \prod_{j=1}^{m} \|f_{j}\|_{L^{p_{j}}(\mathbb{R}^{d})}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

lacunary maximal estimates associated with A_{Σ}

Proposition (C. Lee and Shuin, 2024)

Let $1 \le p, p_1, \dots, p_m < \infty$ and $1/p = 1/p_1 + \dots + 1/p_m$. Then for f_j with $supp(\widehat{f}_j) \subset \mathbb{A}_{n_j} := \{\xi_j \in \mathbb{R}^d : 2^{n_j - 1} \le |\xi_j| \le 2^{n_j + 1}\},\$

$$\|\mathcal{A}_{\Sigma}(F)\|_{L^{p}(\mathbb{R}^{d})} \lesssim 2^{-\delta|\mathbf{n}|} \prod_{j=1}^{m} \|f_{j}\|_{L^{p_{j}}(\mathbb{R}^{d})},$$

where
$$\delta = \delta(p, \kappa, m, d) > 0$$
 and $|n| = \sqrt{\sum_{j=1}^{m} n_j^2}$.

Theorem (C. Lee and Shuin, 2024) Let $\frac{m+1}{2} \leq \frac{1}{p} = \sum_{j=1}^{m} \frac{1}{p_j} < \frac{2d+\kappa}{2d}$ for $1 \leq p_j \leq 2$ and $\kappa > (m-1)d$. The operator $\mathfrak{M}_{\Sigma}(\mathbf{F})(x) = \sup_{l \in \mathbb{Z}} \left| \int_{\Sigma} \prod_{j=1}^{m} f_j(x-2^l y_j) \, \mathrm{d}\sigma_{\Sigma}(y) \right|$ maps $L^{p_1}(\mathbb{R}^d) \times \cdots \times L^{p_m}(\mathbb{R}^d) \to L^p(\mathbb{R}^d)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Thank you for your attention