Two parameter maxiaml average over tori

Juyoung Lee (This is a joint work with Sang-hyuk Lee)

Seoul National University

July 23, 2024

Harmonic Analysis Summer Workshop

Maximal averages over circles and spheres

- Let dσ be the normalized Lebesgue measure on the unit circle or the unit sphere centered at the origin (S¹ or S²).
- The circular (or spherical) average of f at $x \in \mathbb{R}^2$ (or \mathbb{R}^3) is defined by

$$A_t f(x) = \int f(x - ty) d\sigma(y) = f * d\sigma_t(x).$$

• The circular (or spherical) maximal function is defined by

$$Mf(x) = \sup_{t>0} |A_t f(x)|.$$

Theorem

- (Stein '76) The spherical maximal operator in \mathbb{R}^3 is bounded on L^p if and only if $p > \frac{3}{2}$.
- (Bourgain '86)
 The circular maximal operator is bounded on L^p if and only if p > 2.

Some remarks on classical results

- There are a lot of general results.
 - There are higher dimensional analogs (easier).
 - We can replace circles and spheres with curves and surfaces with non-vanishing curvature.
 - Ourves and surfaces may depend on the location x.
- Local smoothing type estimates are important in the maximal estimates. It comes from the curvature of geometric objects.
- Nevertheless, some results consider degenerate surfaces under certain conditions. The degeneracy makes the range of *p* which makes the maximal operator bounded smaller.
- Recently there have been several results considering multi-parameter maximal functions.

Multi parameter maximal functions

Theorem (Marletta, Ricci,'98)

Given a hypersurface Γ with homogeneous degree d and non-vanishing Gaussian curvature, the maximal operator defined by

$$Mf(x) = \sup_{a,b>0} \int_{y \in \mathbb{R}^{n-1}} f(x - (ay, b\Gamma(y))) dy$$

is bounded in L^p if and only if $p > \frac{d}{d-1}$.

Theorem (Cho '98, Heo '16)

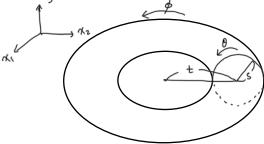
If $|\widehat{d\mu}(\xi)| \lesssim \prod_{i=1}^d (1+|\xi_i|)^{-a_i}$ for $a_i > \frac{1}{2}$, then the maximal operator defined by

$$Mf = \sup_{t_i > 0 \text{ for all } i} \widehat{d\mu}(t_1 D_1, \cdots t_d D_d) f$$

is bounded in L^p for a "suitable" range of p.

Torus \mathbb{T}_t^s in \mathbb{R}^3 We define

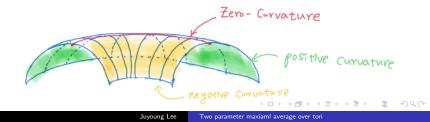
 $\Phi_t^s(\theta,\phi) = ((t+s\cos\theta)\cos\phi, (t+s\cos\theta)\sin\phi, s\sin\theta)$ for $\theta,\phi \in [0,2\pi)$. Define a measure on \mathbb{T}_t^s by $\langle f, d\sigma_t^s \rangle = \int_{[0,2\pi]^2} f(\Phi_t^s(\theta,\phi)) d\theta d\phi.$



Geometric observations of torus

The shape of the torus depends on the vario $\frac{5}{4}$. $\frac{5}{4}$ large $\frac{5}{4}$ small $\frac{15}{5}$ on the vario $\frac{5}{4}$. $\frac{15}{5}$ is too large, then the torus becomes singular. Thus, we need to bound $\frac{5}{4}$.

The torus is flat in some part. \Rightarrow degenerate.



Two types of maximal averages over tori

- Define an average $A_t^s f = f * d\sigma_t^s$.
- As we have seen in the geometric structure of the torus, there are two natural types of maximal functions.

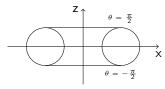
$$M_{\mathbb{T}_1^{c_0}} : f \mapsto \sup_{t>0} |A_t^{c_0 t} f|,$$
$$M : f \mapsto \sup_{0 \le s \le c_0 t} |A_t^s f|.$$

- Since T^{c₀}₁ has a part where curvature vanishes, the range of p which makes M<sub>T^{c₀}₁ bounded on L^p is smaller than that of the spherical maximal function in ℝ³.
 </sub>
- Meanwhile, T₁^{co} always has at least one non-vanishing principal curvature. This makes the range of p same with that of the circular maximal function, p > 2.

One parameter maximal average over tori

The Gaussian curvature of $\mathbb{T}_1^{c_0}$ is $K(\theta, \phi) = \frac{\cos \theta}{c_0(1+c_0\cos \theta)}$. It vanishes only if $\theta = \pm \frac{\pi}{2}$. Thus, if $||\theta| - \frac{\pi}{2}| > \epsilon > 0$, then the operator is bounded in L^p for $p > \frac{d}{d-1} = \frac{3}{2}$.

Theorem



 $M_{\mathbb{T}_1^{c_0}}$ is bounded in L^p if and only if p > 2.

Proof.

We can apply the result of [lkromov, Kempe, Müller, '10], or directly control the operator using a slicing argument.

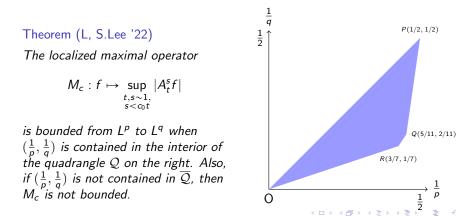
Two parameter maximal average over tori

Theorem (L, S.Lee '22)

Define an operator

$$M: f \mapsto \sup_{0 < s < c_0 t} |A_t^s f|.$$

Then, M is bounded in L^p if and only if p > 2.



Local smoothing estimate

• (Miyachi, 1980)The estimate for a fixed t > 0 gives

$$\|A_tf\|_{L^{p,\frac{1}{p}}(dx)} \lesssim \|f\|_{L^p(dx)}.$$

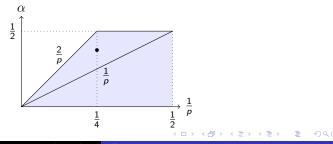
However, we need

$$\|A_t f\|_{L^{p,\frac{1}{p}+\epsilon}(dxdt)} \lesssim \|f\|_{L^p(dx)}$$

for an $\epsilon > 0$ to prove the theorem.

Theorem (Guth, Wang, Zhang, 2020)

 A_t is bounded from $L^p(\mathbb{R}^2)$ to $L^{p,\alpha}(\mathbb{R}^2 \times [1,2])$ when $\alpha < \max\{\frac{2}{p}, \frac{1}{2}\}$.

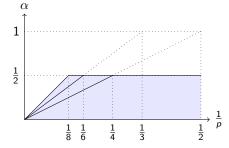


Local smoothing estimates

Theorem (L, S.Lee '22)

For $p \ge 2$ and smooth cutoff functions $\psi_1(t), \psi_2(t,s)$ which have supports near $t, \sim 1$ and $t, s \sim 1$ respectively, we have the following.

$$||A_t^s f||_{L_x^{p,\alpha}} \lesssim ||f||_{L^p} \text{ if } \alpha < \max\{\frac{1}{2}, \frac{2}{p}\} \text{ for any fixed } t, s \sim 1.$$



- We obtained that $|\widehat{d\sigma_t^s}(\xi)| \lesssim |(\xi_1,\xi_2)|^{-\frac{1}{2}} |\xi|^{-\frac{1}{2}}.$
- We remark that one additional integrating variable gives additional smoothing of order ¹/_p.

Comparison with the case of sphere

• After the Littlewood-Paley decomposition $f = \sum_{j=0}^{\infty} \mathcal{P}_j f$, we have

$$\widehat{d\sigma_t}(\xi) \approx a e^{it|\xi|} |\xi|^{-1} + b e^{-it|\xi|} |\xi|^{-1} + \text{error.}$$

• Thus, we have

$$A_t f(x) \approx \sum_{j=0}^{\infty} \int e^{i(x \cdot \xi + t|\xi|)} |\xi|^{-1} \widehat{\mathcal{P}_j f}(\xi) d\xi.$$

Now we can apply various theories associated to the extension operator for the cone $(\xi,|\xi|).$

• In the case of torus, we have

$$\widehat{d\sigma_t^s}(\xi) \approx e^{i(t|\xi'|+s|\xi|)} |\xi'|^{-\frac{1}{2}} |\xi|^{-\frac{1}{2}}$$

where $\xi' = (\xi_1, \xi_2)$.

 Thus, we need to analyze the extension operator for the conic surface (ξ, |ξ'|, |ξ|) which is 3-dimensional surface in ℝ⁵.

Thank you for your attention.

∃ ∕) ९ (?