An introduction to PT -Symmetric Quantum Theory

Paulo Rocha

Faculdade de Ciências, Univ. Lisboa CMAF-CIO, Faculdade de Ciências da Universidade de Lisboa, C6 - Piso 1, sala 6,1.03 1749-016 Lisboa, Portugal

October 24, 2018

This presentation is based on the work of Carl Bender

Ref. Carl M. Bender, Introduction to PT-Symmetric Quantum Theorv. arXiv:quant-ph/0501052v1

Ref. Carl M. Bender, Mariagiovanna Gianfreda, Sahin K. Ozdemir, Bo Peng, and Lan Yang, Twofold transition in PT -symmetric coupled oscillators, Phys. Rev. A 88, 062111 (2013)

Ref. Carl M. Bender, Bjorn K. Berntson, David Parker, E. Samuel, Observation of PT phase transition in a simple mechanical system, https://arxiv.org/abs/1206.4972

The central idea of PT -symmetric Quantum Theory

4 0 8

Service

IF

 PT -symmetry of the Hamiltonian is not broken.

THEN

The Hamiltonian will exhibit all the features of a quantum theory described by a Hermitian Hamiltonian.

4 D F

A quantum theory is specified by the Hamiltonian operator, H , that acts on a Hilbert space.

The Hamiltonian does 3 things!

First

The Hamiltonian determines the energy eigenstates E_n of the system (energy levels)

$$
H\Psi_n = E_n \Psi_n
$$

Since E_n is a physical measurable quantity it must be real.

 200

Second

The Hamiltonian determines the time evolution of the theory

$$
i\hbar \frac{\partial \Psi(t)}{\partial t} = H\Psi(t)
$$

Whose formal solution is $\Psi(t)=e^{iHt}\Psi(0).$

It is important that the Hamiltonian preserves probability. The probability must not change over time (unitarity).

Third

The Hamiltonian incorporates the symmetries of the theory

Continuous Symmetries:

Lorentz invariance

Discrete Symmetries: Space reflection or time reversal

A quantum theory is symmetric under a transformation represented by an operator A if:

$$
[A,H]=0
$$

 200

If we are going to build a new quantum theory we need to guarantee that:

The energy levels, E_n , must be real.

and

The time evolution must be unitary.

 200

Introduction

Real and Symmetric Hamiltonians

Finite dimensional systems

Infinite dimensional systems

$$
\begin{pmatrix} a & b & c & \dots \\ b & d & e & \dots \\ c & e & f & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}
$$

$$
H\equiv H(\hat{x},\hat{p})
$$

 \hat{x} and \hat{p} are operators that act on coordinate space

Where: \hat{x} is a real and symmetric diagonal matrix. $\hat{p} = -i \dfrac{d}{dx}$ is *imaginary* and *anti-symmetric*.

 $H =$

Hermitian Hamiltonians

These are complex Hamiltonians that include the real and symmetric Hamiltonians as a special case.

Property of Hermiticity

$$
H=H^\dagger
$$

 $\dagger \equiv$ Dirac Hermitian conjugation (transpose + complex conjugation)

While Hermiticity is sufficient it is not necessary

An alternative type of complex Hamiltonians

This Hamiltonians also include real, symmetric Hamiltonians as a special case.

They have the property that they commute with the operator PT .

$$
[H,\mathcal{PT}]=0
$$

Two important discrete symmetries

Parity symmetry: P

Time reversal symmetry: T

$$
\begin{array}{ccc}\n\hat{x} \to -\hat{x} & \hat{x} \to \hat{x} \\
\hat{p} \to -\hat{p} & \hat{p} \to -\hat{p} \\
\hat{i} \to -i\n\end{array}
$$

Why T changes the sign of i?

 $[\hat{x}, \hat{p}] = i\hbar$ $\frac{\partial \Psi}{\partial t} = H \Psi$

 QQQ

 $\mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \ni \mathcal{B} \rightarrow \mathcal{A} \ni \mathcal{B} \rightarrow \mathcal{B}$

4 D F

Quantum Hamiltonian

We modify the Harmonic oscillator

$$
\hat{H} = \hat{p}^2 + \hat{x}^2
$$

$$
\hat{H} = \hat{p}^2 + \hat{x}^2 (ix)^{\epsilon}
$$

Where the parameter ϵ is real

4 0 8

 200

 QQ

We have a \mathcal{PT} -phase transition at $\epsilon = 0$ (The Harmonic Oscillator)

 \leftarrow

 $2Q$

The PT symmetry of a Hamiltonian H is unbroken if all of the eigenfunctions of H are simultaneously eigenfunctions of PT .

Lets try to understand what is a PT transition

$$
H = [a + ib]
$$

This Hamiltonian is not Hermitian

4 0 8

Lets try to understand what is a \mathcal{PT} transition

$$
H = \begin{bmatrix} a+ib & 0 \\ 0 & a-ib \end{bmatrix}
$$

This Hamiltonian is PT -symmetric

The system is not in equilibrium

 \leftarrow

Lets try to understand what is a PT transition

$$
H = \begin{bmatrix} a+ib & g \\ g & a-ib \end{bmatrix}
$$

This Hamiltonian is PT -symmetric

4 0 8

Lets try to understand what is a PT transition

$$
det(H-EI) = a^{2}+b^{2}-2aE+E^{2}-g^{2}
$$
\n
$$
E_{\pm} = a \pm \sqrt{g^{2}-b^{2}}
$$
\nIf $g^{2} < b^{2}$ we have a
\n
$$
PT
$$
-phase transition\n\n
$$
cos \left(\frac{B}{2}\right)
$$
\n
$$
cos \left(\frac{C}{2}\right)
$$

4 0 8

 QQ

Couple Harmonic Oscillators

$$
\begin{cases} \ddot{x} + \omega^2 x + \mu \dot{x} = -\epsilon y \\ \ddot{y} + \omega^2 y - \nu \dot{y} = -\epsilon x \end{cases}
$$

 \leftarrow

 200

Couple Harmonic Oscillators

$$
\begin{cases} \ddot{x} + \omega^2 x + \mu \dot{x} = -\epsilon y \\ \ddot{y} + \omega^2 y - \nu \dot{y} = -\epsilon x \end{cases}
$$

We look for solutions of the form $e^{i\lambda t}$ If we set $\mu = \nu = 2\gamma$

The frequencies λ are given by:

$$
\lambda^2 = \omega^2 - 2\gamma^2 \pm \sqrt{\epsilon^2 - 4\gamma^2\omega^2 + 4\gamma^4}
$$

∢ ⊡

PT -transitions on couple harmonic oscillator

PT-Symmetric Hamiltonian Quantum Mechanics

Ref. Carl M. Bender, Bjorn K. Berntson, David Parker, E. Samuel, Observation of PT phase transition in a simple mechanical system, https://arxiv.org/abs/1206.4972

つひひ

Every time that you identify a PT -phase transition you should contact immediately the nearest physics department!

4 D F

PT-Symmetric Hamiltonian Quantum Mechanics

 PT -Symmetric Quantum Theory

(i) Must possess a Hilbert space of state vectors having a inner product with a positive norm.

(ii) The time evolution of the theory must be unitary. The norm must be preserved in time.

We need to construct a inner product for our Hilbert space associated with our PT -symmetric Hamiltonian

In conventional Hermitian quantum mechanics the Hilbert space inner product is specified even before we begin to look at the eigenstates.

> For our non-Hermitian Hamiltonian we have to guess the inner product

∽≏

A reasonable guess for the inner product of two functions $f(x)$ and $g(x)$ might be

$$
\langle f, g \rangle \equiv \int dx f(x)^{\mathcal{PT}} g(x)
$$

Where:

$$
f(x)^{PT} = f(-x)^*
$$

4 D F

With respect to this inner product the eigenfunctions ϕ_n and ϕ_m are orthogonal for $n \neq m$

$$
\langle \phi_n, \phi_m \rangle = (-1)^n \, \delta_{nm}
$$

However, when $n = m$ we see that the PT norms of eigenfunctions are not positive...

Bad News!! The norm associated with PT -Symmetry is not positive definite

 \leftarrow

We need to construct a inner product for our Hilbert space

We will identify a new symmetry that all PT -symmetric Hamiltonians having an unbroken PT -symmetry possess.

The linear operator: C

The properties of this operator resemble those of the charge conjugation operator in particle physics

This will allow us to introduce an inner product structure associated with \mathcal{CPT} conjugation for which the norms of quantum states are positive definite.

$$
\langle \Psi, \Phi \rangle^{\mathcal{CPT}} = \int dx \Psi^{\mathcal{CPT}} \Phi
$$

Where:

$$
\Psi^{\mathcal{CPT}}(x) = \int dx \mathcal{C}(x, y)\Psi^*(-y) \qquad \mathcal{C}(x, y) = \sum_{n=0}^{\infty} \Psi_n(x)\Psi_m(y)
$$

This inner product satisfies the requirements for the quantum theory