Curing Divergences?

Discovering Aliens

Aliens, First Contact

Conclusion

Resurgence

Maximilian Schwick

Instituto Superior Técnico

October 17, 2018

ontact Con

Introduction

- Why Resurgence?
- **Curing Divergences?**
- **Discovering Aliens**
- **Aliens, First Contact**
- Conclusion

Bibliography

Inês Aniceto, Gökçe Başar, Ricardo Schiappa. A Primer on Resurgent Transseries and Their Asymptotics. arXiv: 1802.10441, 2018.

Aliens, First Contact

Overview

Introduction

Discovering Aliens

Curing Divergences?

Discovering Aliens

g Aliens Alie

Aliens, First Contact C

Conclusion

Birth of Resurgence

The Rainbow:

Almost 200 years ago George Biddell Airy tried to describe a rainbow. He came up with the so called Airy function to describe the light distribution:

$$\operatorname{Ai}(z) = \frac{1}{2\pi i} \int_0^\infty \cos\left(\frac{t^3}{3} + z t\right) \mathrm{d}t$$

- Hard to compute values
- George Stokes tried to approximate

The Airy Function

 \Rightarrow Where does the second exponential come from?

The Stokes Phenomenon

Stokes Phenomenon:

The asymptotic behavior of complex functions can differ depending on the region in the complex plane. These regions are separated by Stokes lines.

- This phenomenon can be seen as a consequence of an underlying structure called resurgence framework
- It is intricately related to asymptotic series and re-summations of them

Even though the former discussion was in $\mathbb R$ it is straightforward to take it to $\mathbb C$ by replacing the cos in the integral of the Airy function by an exponential.

Resurgence: A Short Story

- Setting: Let us solve a differential equation via a power series ansatz Example: Euler Equation
- Problem: The Series might be divergent ⇒ Improve convergence by Borel transform
- Solution?: Perform analytic continuation of the underlying series

 \Rightarrow Transform back via Laplace transformation (not unique because of singularities!!)

- Not the full story: Observe that we need to include more sectors ' to obtain a full solution
- A bigger picture: the mechanism that relates these sectors is called Resurgence

Introduction Why Resurgence? Curing Divergences? Discovering Aliens Aliens, First Contact

What to expect:

Conclusion

What to expect:

Pictures!!

Aliens, First Contact Co

Conclusion

Introduction

- Why Resurgence?
- **Curing Divergences?**
- **Discovering Aliens**
- Aliens, First Contact
- Conclusion

Resurgence and Nonlinear Differential Equations

Linear Case:

Solution is a superposition of linearly independent solutions:

 $f(\mathbf{x}) = \mathbf{A} \cdot f_1(\mathbf{x}) + \mathbf{B} \cdot f_2(\mathbf{x}) + \dots$

Integration parameters are independent of the coordinates.

Non-linear Case:

We can still write a now <u>infinite</u> superposition of sectors (that are not necessarily solutions of the equation):

 $g(x) = A(x) \cdot g_1(x) + B(x) \cdot g_2(x) + ...$

The combination of the sectors that solves the equation is coordinate dependent. Resurgence is a mechanism to determine the sectors and to fix how the parameters A, B, ... depend on the coordinates.

This series structure is called trans-series. This is due to the fact that the sectors contain different exponential contributions. In some sense this is a series in exponential contributions.

Conclusion

A Glimpse of Resurgence

Non linear differential equation (example):

$$\frac{\mathrm{d}}{\mathrm{d}z}f(z,\sigma)-f(z,\sigma)^2=0$$

Ansatz:

$$f(z,\sigma) = \sum_{n=0}^{\infty} \sigma^n f^{(n)}(z), \quad \longleftarrow \text{ transseries structure}$$

$$\Rightarrow f(z,\sigma)^2 = \sum_{n=0}^{\infty} \sigma^n \sum_{j=0}^n f^{(n-j)}(z) f^{(j)}(z)$$

Then the following recursion emerges:

$$f^{(n)'}(z) = \sum_{j=0}^{n} f^{(n-j)}(z) f^{(j)}(z)$$
(1)

• Sectors are related

• This can be seen as a consequence of a more general structure called Alien Calculus

Too good to be true?

Conclusio

Introduction

Why Resurgence?

Curing Divergences?

Discovering Aliens

Aliens, First Contact

Conclusion

Overview: Resumation

Overview:

Divergent Series

The Euler Equation:

$$rac{\mathrm{d}}{\mathrm{d}x}g(x) + g(x) = rac{1}{x}, \;\; ext{Series Ansatz:} \;\; g(z) = \sum_{n=1}^{\infty} \, n! \, \left(rac{1}{x}
ight)^n$$

This Series is divergent!

Series:

$$\mathbb{C}[[z^{-1}]] = \left\{ \phi(z) = \sum_{n \ge 0} a_n z^{-n} \Big| a_0, a_1, \dots \in \mathbb{C} \right\}$$

Gevrey-s Divergent Series $\phi(z) = \sum_{n \ge 0} a_n z^{-n} \in \mathbb{C}[[z^{-1}]]$ for which there exist A, B > 0 such that $|a_n| \le AB^n (n!)^s$. We denote this vector space by $\mathbb{C}[[z^{-1}]]_s$

Convergent Series

$$\mathbb{C}\{\eta\} = \Big\{$$
 Series with positive radius of convergence

Conclusion

Divergent Series

The Euler Equation:

$$rac{\mathrm{d}}{\mathrm{d}x}g(x)+g(x)=rac{1}{x},\;\;$$
 Series Ansatz: $g(z)=\sum_{n=1}^{\infty}\,n!\,\left(rac{1}{x}
ight)^n$

This Series is divergent!

Series:

$$\mathbb{C}[[z^{-1}]] = \left\{ \left. \phi(z) \right. = \left. \sum_{n \ge 0} a_n \, z^{-n} \right| a_0, \, a_1, \, \dots \in \mathbb{C} \right\}$$

Gevrey-1 Divergent Series $\phi(z) = \sum_{n\geq 0} a_n z^{-n} \in \mathbb{C}[[z^{-1}]]$ for which there exist A, B > 0 such that $|a_n| \leq AB^n (n!)^1$. We denote this vector space by $\mathbb{C}[[z^{-1}]]_1$

Convergent Series

$$\mathbb{C}\{\eta\} = \Big\{$$
 Series with positive radius of convergence

The Borel Plane

Borel Transformation

$$\mathcal{B}: z^{-1}\mathbb{C}[[z^{-1}]]_1 \longrightarrow \mathbb{C}\{\zeta\}$$
(2)
$$\sum_{n=0}^{\infty} a_n z^{-n-1} \longrightarrow \sum_{n=0}^{\infty} a_n \frac{\zeta^n}{n!}$$
(3)

takes Gevrey-1 to convergent Series!

$$g(z) = \sum_{n=1}^{\infty} n! (-1)^n (1/z)^n \longrightarrow \sum_{n=1}^{\infty} (-\zeta)^n$$

A Tecnicality

On the Borel Plane the product is a convolution. We need an identity element that we call $\delta.$ Therefore:

$$\mathcal{B}: \mathbb{C}[[z^{-1}]]_1 \longrightarrow \mathbb{C}\delta \oplus \mathbb{C}\{\zeta\}$$
(4)

Conclusion

Germs and Analytic Continuation along a Path

Germ

On the space of functions holomorphic in a neighborhood of a point p we can put the equivalence relation:

$$f \sim g \Leftrightarrow \exists \text{ neighborhood } U \ni p : f|_U = g|_U$$

The set of germs at p is defined the quotient set.

Analytic continuation along a path

Collection of Pairs (f_t, U_t) such that:

Let f be holomorphic in the domain U. If an analytic continuation of f to a connected open set $V \supset U$ exists, then the analytic continuation is unique.

Omega Continuability

Omega Continuable Germ

 Ω non-empty closed discrete subset of \mathbb{C} and $\hat{\phi}(\zeta) \in \mathbb{C}\{\zeta\}$ be holomorphic germ at the origin. We say $\hat{\phi}$ is an Ω -continuable germ if there exists R > 0 of $\hat{\phi}$ such that the disk $\mathbb{D}_R^* \cap \Omega = \emptyset$ and $\hat{\phi}$ admits analytic continuation along any path in $\mathbb{C} \setminus \Omega$ originating from \mathbb{D}_R^* . We will call:

$$\hat{\mathcal{R}}_{\Omega} := \{ \text{all } \Omega \text{-continuable germs} \} \subset \mathbb{C}\{\zeta\}$$
 (5)

Inverse of the Borel transformation

Resummation

Laplace Transformation for $\hat{\psi} \in \hat{\mathcal{R}}_{\Omega}$:

$$\left(\mathcal{L}^{\Theta}\hat{\psi}\right)(z) = \int_{0}^{\infty} e^{-z\,\zeta e^{i\Theta}}\hat{\psi}\left(\zeta e^{i\Theta}\right)\,e^{i\Theta}\mathsf{d}\zeta \tag{6}$$

The re-summed now convergent expression:

$$S^{\Theta}\psi(z) = \left(\mathcal{L}^{\Theta}\mathcal{B}[\psi]\right)(z) \tag{7}$$

Conclusion

The Example of the Euler Series

As an example consider z = 1. Convergence implies $\Theta = 0$:

$$\mathcal{S}^{0}\left(\sum_{n=1}^{\infty} n! \left(\frac{1}{z}\right)^{n}\right)(1) = \mathcal{L}^{0}\left(\frac{1}{1+\zeta}\right)(1) = \int_{0}^{\infty} e^{-\zeta} \frac{1}{1+\zeta} \,\mathrm{d}\zeta \quad (8)$$
$$= 0.596347$$

Can we re-sum at every point?

Conclusion

Introduction

- Why Resurgence?
- **Curing Divergences?**
- **Discovering Aliens**
- Aliens, First Contact
- Conclusion

Conclusion

Central Question:

Suppose we have an omega continuable germ holomorphic around the origin. Can we access information about the singularities of the underlying function?

Euler Example:

Here it is easy because we know the analytic continuation of the series. This is not the normal case!!!

We want to understand the singularity at -1 purely from this holomorphic germ.

We need to enlarge our dictionary:

- 1. Singularities
- 2. Simple Singularities
- 3. Alien operators

Conclusion

Singularities: Spiral Continuation

Spiral Continuation

Let f be a function holomorphic in the Disk D to which the (locally only) singular point 0 is adherent. f has spiral continuation around 0 if for every L > 0 there exists $\rho > 0$ such that f can be analytically continued along any path of length L starting in $D \cap \mathbb{D}_{\rho}^{*}$ and staying in \mathbb{D}_{ρ}^{*} .

Singularities: The Space of Singularities

The space of singular germs (ANA) On the set of all $\check{f} : \mathcal{V}(h) \to \mathbb{C}$ we put:

$$\check{f}_1 \sim \check{f}_2 \, \Leftrightarrow \, \check{f}_1 \equiv \check{f}_2 \, {\sf on} \, \mathcal{V}(h_1) \cap \mathcal{V}(h_2)$$

and define ANA as the quotient set.

Let $f : \mathbb{C}^* \to \mathbb{C}$. The corresponding elements of ANA are:

$$S(1/\eta)+R(\eta), \quad ext{with:} \ R(\eta)=\sum_{n\geq 0}^{\infty}a_n\eta^n, \quad S(1/\eta)=\sum_{n>0}^{\infty}a_{-n}(1/\eta)^n$$

The space of singularities (SING)

Clearly the convergent series are contained in ANA: $\mathbb{C}\{\eta\} \hookrightarrow$ ANA. We define the space of singularities as the quotient SING := ANA / $\mathbb{C}\{\eta\}$. We have the natural projection:

$$sing_0 : ANA \rightarrow SING$$

 $\operatorname{sing}_0\left(S(1/\eta) + R(\eta)\right) = \left[S(1/\eta)\right]_{\sim_{\mathbb{C}\{\eta\}}} \cong S(1/\eta) + \operatorname{any holomorphic part}$

Simple Singularities

Simple Singularities

We say a function f has a simple singularity at 0 if locally around 0 it can be written as:

$$f(\zeta) \approx \frac{a}{\zeta} + \hat{\varphi}(\zeta) \log(\zeta) + R(\zeta), \ a \in \mathbb{C}, \ \hat{\varphi}, \ R \in \mathbb{C}\{\zeta\}$$

Space of Simple Singularities

We call SING^{simp} \subset SING the space of simple singularities

Discovering Aliens

Aliens, First Contact

Conclusion

Alien Operators: What they do

Alien Operators

Let $\omega \in \Omega$, γ is a path in $\mathbb{C} \setminus \Omega$ starting at $\gamma_0 \in \mathbb{D}_{\rho}^*$ and ending at γ_1 such that $D \subset \mathbb{C} \setminus \Omega$ is an open disk centered at γ_1 to which ω is adherent. Then we define an alien Operator as:

$$\begin{array}{l} A_{\omega}^{\gamma}: \mathbb{C}\delta \oplus \hat{\mathcal{R}}_{\Omega} \longrightarrow \mathsf{SING} \\ c\delta + \hat{\varphi} \longrightarrow \mathsf{sing}_{0}\left(\check{f}\left(\zeta\right)\right), \ \zeta \in \pi^{-1}(-\omega + D) \end{array}$$

with:
$$\eta \rightarrow f(\eta) := \operatorname{cont}_{\gamma} \hat{\varphi} \left(\omega + \eta \right)$$

Basically the alien operator A_{ω}^{γ} zooms in on the singularity at ω of the function underlying the holomorphic germ $\hat{\varphi}$.

.

Aliens to Cross Singularities

Euler example to concretely see alien operators at work:

$$\sum_{n=1}^{\infty} (-\zeta)^n \to \frac{1}{1+\zeta} \Rightarrow A^{\gamma}_{\omega} \left(\sum_{n=1}^{\infty} (-\zeta)^n \right) = \frac{1}{1+\zeta} \leftarrow \text{ Linear Eq.}$$

We remember the Laplace Transformation for $\hat{\psi} \in \hat{\mathcal{R}}_{\Omega}$:

$$\left(\mathcal{L}^{\Theta}\hat{\psi}\right)(z) = \int_{0}^{\infty} e^{-z\,\zeta e^{i\Theta}}\hat{\psi}\left(\zeta e^{i\Theta}\right)\,e^{i\Theta}\mathrm{d}\zeta$$

By closing the integration contour at infinity we can conclude:

$$\left(\mathcal{L}^{\pi^+} - \mathcal{L}^{\pi^-}\right) \frac{1}{1+\zeta} = 2\pi i e^z \qquad (9)$$

Concluding the Euler Example

Again consider z = 1:

$$S^{0}\left(\sum_{n=1}^{\infty} n! \left(\frac{1}{z}\right)^{n}\right)(1) = \int_{0}^{\infty} e^{-\zeta} \frac{1}{1+\zeta} \,\mathrm{d}\zeta = 0.596347$$

Crossing the singularity $\Leftrightarrow 2\pi i$ Therefore the result is not unique:

$$\mathcal{S}^{0}\left(\sum_{n=1}^{\infty} n! \left(\frac{1}{z}\right)^{n}\right)(1) = 0.596347 + 2\pi i e n, \ n \in \mathbb{Z}$$

This is the full solution.

Conclusion

Introduction

- Why Resurgence?
- **Curing Divergences?**
- **Discovering Aliens**
- Aliens, First Contact
- Conclusion

A Bigger Picture

Having concluded the simple example of the Euler series we want to understand the most important equation of resurgence. Therefore we need to again enlarge our dictionary: We need:

- introduce more general alien operators
- simple resurgent functions
- introduce the bridge equation

In the following we want to give an overview, because a better treatment would be very time intensive.

More Alien Operators

It turns out that for more complicated situations it makes sense to define more powerful operators:

Stokes Automorphism

In order to cross a ray of singularities we use the Stokes automorphism:

Discovering Aliens

Aliens, First Contact

Conclusion

Alien Operators: Simple Resurgent Functions

Simple Singularities

We say a function f has a simple singularity at 0 if locally around 0 it can be written as:

$$f(\zeta) \approx \frac{a}{\zeta} + \hat{\varphi}(\zeta) \log(\zeta) + R(\zeta), \ a \in \mathbb{C}, \ \hat{\varphi}, \ R \in \mathbb{C}\{\zeta\}$$

Resurgent Functions

We call a $c\delta + \hat{\varphi} \in \mathbb{C}\delta \oplus \hat{\mathcal{R}}_{\Omega}$ an Ω -resurgent function with $\hat{\varphi}$ an Ω -continuable germ and c a complex number.

Simple Resurgent Function

A simple Ω -resurgent function is a resurgent function $\stackrel{\nabla}{\varphi}$ such that $\forall \, \omega, \, \gamma, \, A^{\gamma}_{\omega} \stackrel{\nabla}{\varphi}$ is a simple singularity. The space of simple resurgent functions is called $\mathbb{C}\delta \oplus \hat{\mathcal{R}}^{simp}_{\Omega}$

The action of alien operators on simple resurgent functions is:

$$\stackrel{\triangledown}{\varphi} \in \mathbb{C}\delta \oplus \hat{\mathcal{R}}_{\Omega}^{\mathsf{simp}} \ \Rightarrow \ A_{\omega}^{\gamma} \stackrel{\triangledown}{\varphi} \in \ \mathbb{C}\delta \oplus \hat{\mathcal{R}}_{-\omega+\Omega}^{\mathsf{simp}}$$

The Name Resurgence

- Imagine the set Ω is closed, meaning $\omega\in\Omega\,\Rightarrow\,\omega+\Omega=\Omega$
- $\bullet\,$ Then alien operators take simple $\Omega\text{-resurgent}$ functions to itself
- The structure of simple resurgent functions is as follows:

$$\phi(\zeta) \approx \frac{a}{\zeta - A} + \hat{\varphi}(\zeta - A) \log(\zeta - A) + R(\zeta), \ a \in \mathbb{C}, \ \hat{\varphi}, \ R \in \mathbb{C}\{\zeta\},$$

where ϕ and φ are trans-series sectors.

We say, that φ resurges at A. This can be written for all the sectors, giving rise to the name Resurgence.

The Bridge Equation

Consider a differential equation for $\Phi(z)$. Trans-series Ansatz:

$$\Phi(z) = \sum_{n} \sigma^{n} e^{-\frac{A \cdot n}{z}} \Phi_{n}(z)$$

Then the alien derivative fullfills:

•
$$\dot{\Delta}_{\omega}$$
 are derivations!
• $\left[\dot{\Delta}_{\omega}, \frac{\partial}{\partial z}\right] = 0$ and $\left[\frac{\partial}{\partial \sigma}, \frac{\partial}{\partial z}\right] = 0$

 \Rightarrow If there is a differential equation for $\frac{\partial \Phi}{\partial \sigma}$ also $\dot{\Delta}_{\omega} \Phi$ fullfills it!

 \Rightarrow They are related by a function in σ (constant in z):

$$\dot{\Delta}_{\omega} \Phi(z,\sigma) = \frac{S_{\omega}(\sigma)}{\partial \sigma} \frac{\partial \Phi}{\partial \sigma}(z,\sigma)$$

- relates alien operators with traditional derivatives
- The function $S_{\omega}(\sigma)$ encodes information about the differential equation

act Conclusion

Introduction

- Why Resurgence?
- **Curing Divergences?**
- **Discovering Aliens**
- Aliens, First Contact

Conclusion

Conclusion

- Resurgence is a tool to deal with divergent series
- It can be used to solve differential equations
- It is based on alien calculus
- As such it provides information about how the so called trans-series sectors are related.
- Bridge equation relates to ´normal´ analysis