Skeins on Tori

Monica Vazirani Joint with Sam Gunningham and David Jordan

UC Davis

July 17, 2024

Topological Quantum Field Theory Seminar University of Lisbon

- SL₂ skeins: skein algebra, skein module, skein category
- SL_N skeins
- dim SkMod_{SL_N}(T^3)
- Hochschild homology HH₀ of skein category for T², Morita equivalences
- role of DAHA and elliptic Schur-Weyl duality

where skeins arise: quantum topology Witten-Reshetikhin-Turaev TQFT deformation of *G*-character stacks, coordinate ring of character variety HOMFLYPT invariant of knots and links

\mathcal{A} -Skein algebra of (oriented) surface Σ

 $M = \Sigma \times I = \Sigma \times [0,1]$

FIGURE 2. An example of a ribbon graph and its colouring. Image from [Coo19, Section 4.2]

skein picture

FIGURE 2. An example of a ribbon graph and its colouring. Image from [Coo19, Section 4.2]

$SL_2 \qquad \mathcal{A} = \operatorname{Rep}_q SL_2$

V = 2-dimensional irrep of SL₂ labels all ribbons Recall $V \simeq V^*$ and any fin. dim. irrep is a summand of some $V^{\otimes d}$

(local) SL₂ skein relations $e_{0}^{r_{1}} \times - e_{0}^{r_{1}} \times = (e_{1}, e_{0}^{r_{1}})$ 9/27 - 3/27-1 = &- ~) id var projection VOV -> /~V -> VOV sign idempotent $e^{(2)} = \frac{1}{L_{23}} (q. id - q^{1/2} T)$ $= q^{1/2} + q^{1/2}$ crossing less

$SL_N \qquad \mathcal{A} = \operatorname{Rep}_q SL_N$

V = N-dimensional irrep of SL_N Recall any fin. dim. irrep is a summand of some $V^{\otimes d}$

SL_N skein relations

$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}$

$\text{SkAlg}_{\text{SL}_2}(\Sigma)$

dim

$\text{SkAlg}_{\text{SL}_2}(\Sigma)$

dim

00 b(x) \sim

$SkAlg_{SL_2}(\Sigma)$

 $S^1 imes I$ $S^1 \times S^1$ Σ $\mathbf{I} \times \mathbf{I}$ 1 32 1 Juisson C const * dim \sim ∞ spherical DAHA h(x] algebra

Monica Vazirani (UC Davis)

Skeins on Tori

relative skein algebra $\operatorname{SkAlg}_{\operatorname{SL}_2,d}(\Sigma), d = 1$

d points/disks in $\Sigma \times \{0\}$ and $\Sigma \times \{1\}$ that ribbons (all labeled *V*) can end on.

relative skein algebra $\operatorname{SkAlg}_{\operatorname{SL}_2,d}(\Sigma), d = 1$

d points/disks in $\Sigma \times \{0\}$ and $\Sigma \times \{1\}$ that ribbons (all labeled *V*) can end on.

relative skein algebra $\operatorname{SkAlg}_{\operatorname{SL}_2,d}(\Sigma), d = 1$

d points/disks in $\Sigma \times \{0\}$ and $\Sigma \times \{1\}$ that ribbons (all labeled *V*) can end on.

skein relation

surprising skein relation for d = 1, $\Sigma = T^2 = S^1 \times S^1$

$$\mathrm{SkAlg}_{\mathsf{SL}_2,1}(\Sigma) \simeq \mathcal{K}[x,y]/(x^2-1,y^2-1)$$

References, citations, related work

Frohman Gelca Kauffmann bracket skein algebra, SL₂ Terwilliger Koornwinder Morton Samuelson elliptic Hall algebra and spherical DAHA Bullock Przytycki Bullock Frohman Kania-Bartoszynska Bittman Chandler Mellit Novarini Ben-Zvi Brochier Jordan Cooke Gunningham Jordan Safronov

the *G*-skein module of a closed oriented 3-manifold *M* is finite-dimensional

Conjecture of Witten:

Theorem (Gunningham-Jordan-Safronov)

Let q be generic, M be a closed oriented 3-manifold, and G a connected reductive algebraic group. Then

dim SkMod_{*G*}(*M*) < ∞ .

Let's compute these dimensions for $G = SL_N$, $M = S^1 \times S^1 \times S^1$.

dim skein module of 3-torus

$T^3 = S^1 \times S^1 \times S^1$

For N = 2, 3, 4, ... we compute dim SkMod_{SL_N} $(T^3) = 9, 29, 75, 131, 266, 357, 617, 810, 1207, 1386, 2272, ...$

Theorem (Gunningham-Jordan-V-Yang)

The SL_N-skein module of the 3-torus T^3 has dimension

$\dim \operatorname{SkMod}_{\operatorname{SL}_N}(\mathcal{T}^3) = \sum_{\lambda \vdash N} \operatorname{gcd}(\lambda)^3 = \sum_{\nu \in (\mathbb{Z}/N\mathbb{Z})^{\oplus 3}} \mathcal{P}(\operatorname{gcd}(\nu, N))$

where $\mathcal{P}(d)$ = the number of partitions of d

dim skein module of 3-torus

 $T^3 = S^1 \times S^1 \times S^1$

For N = 2, 3, 4, ... we compute dim SkMod_{SL_N} $(T^3) = 9, 29, 75, 131, 266, 357, 617, 810, 1207, 1386, 2272, ...$

Theorem (Gunningham-Jordan-V-Yang)

The SL_N -skein module of the 3-torus T^3 has dimension

$$\dim \operatorname{SkMod}_{\operatorname{SL}_N}(T^3) = \sum_{\lambda \vdash N} \operatorname{gcd}(\lambda)^3 = \sum_{\nu \in (\mathbb{Z}/N\mathbb{Z})^{\oplus 3}} \mathcal{P}(\operatorname{gcd}(\nu, N))$$

where $\mathcal{P}(d)$ = the number of partitions of d

HH₀ for 2-torus, i.e. $M = T^2 \times I$

For $N = 2, 3, 4, \dots$ we compute dim HH₀(SkAlg_{SL_N}(T^2)) = 5, 11, 23, 31, 60, 63, 109, 126, 183, 176, 330, 269, ...

Theorem (Gunningham-Jordan-V-Yang)

The dimensions of the zeroeth Hochschild homology of the skein algebras of the 2-torus T^2 for $G = SL_N$ is given by

$$\dim \mathsf{HH}_0(\mathsf{SkAlg}_{\mathsf{SL}_N}(\mathcal{T}^2)) = \sum_{\lambda \vdash \mathcal{N}} \mathsf{gcd}(\lambda)^2 = \sum_{\nu \in (\mathbb{Z}/N\mathbb{Z})^{\oplus 2}} \mathcal{P}(\mathsf{gcd}(\nu, \mathcal{N}))$$

compare formulas

Theorem (Gunningham-Jordan-V-Yang)

(1) The SL_N-skein module of the 3-torus T^3 has dimension

$$\dim \operatorname{SkMod}_{\operatorname{SL}_N}(T^3) = \sum_{\lambda \vdash N} \operatorname{gcd}(\lambda)^3$$
$$= \sum_{(v_1, v_2, v_3) \in (\mathbb{Z}/N\mathbb{Z})^{\oplus 3}} \mathcal{P}(\operatorname{gcd}(v_1, v_2, v_3, N))$$

(2) The dimensions of the zeroeth Hochschild homology of the skein algebras of the 2-torus T^2 for $G = SL_N$ is given by

$$\begin{split} \dim \mathsf{HH}_0(\mathsf{SkAlg}_{\mathsf{SL}_N}(\mathcal{T}^2)) &= \sum_{\lambda \vdash \mathcal{N}} \mathsf{gcd}(\lambda)^2 \\ &= \sum_{(v_1, v_2) \in (\mathbb{Z}/N\mathbb{Z})^{\oplus 2}} \mathcal{P}(\mathsf{gcd}(v_1, v_2, \mathcal{N})) \end{split}$$

$\mathcal{P}(\mathbf{g}$	gcd($(v_1, v_2, 2))$	P(1)=1 P(z)=2	ع ¹ ۲+۱
	1	2		
1	1	1	dim HH ₀ (SI	$\operatorname{kAlg}(T^2)) = 5$
2	1	2		

$$\begin{array}{c|c} \mathcal{P}(\gcd(\mathbf{v_1},\mathbf{v_2},\mathbf{v_3},2)) \\ \hline \mathbf{v_3} = 1 & 1 & 2 \\ \hline 1 & 1 & 1 \\ 2 & 1 & 1 \\ \end{array} & \begin{array}{c|c} \mathbf{v_3} = 2 & 1 & 2 \\ \hline 1 & 1 & 1 \\ 2 & 1 & 2 \\ \end{array} & \begin{array}{c|c} \mathbf{v_3} = 2 & 1 & 2 \\ \hline 1 & 1 & 1 \\ \end{array} & \begin{array}{c|c} \mathbf{v_3} = 2 & 1 & 2 \\ \hline 1 & 1 & 1 \\ \end{array} & \begin{array}{c|c} \mathbf{v_3} = 2 & 1 & 2 \\ \hline \mathbf{v_3} = 2 & 1 & 2 \\ \hline 1 & 1 & 1 \\ \end{array} & \begin{array}{c|c} \mathbf{v_3} = \mathbf{v_3} \\ \end{array} & \begin{array}{c|c} \mathbf{v_3} = 2 & \mathbf{v_3} \\ \hline \mathbf{v_3} = 2 & \mathbf{v_3} \\ \hline \mathbf{v_3} = 2 & \mathbf{v_3} \\ \hline \mathbf{v_3} = \mathbf{v_3} \\ \end{array} & \begin{array}{c|c} \mathbf{v_3} = \mathbf{v_3} \\ \mathbf{v_3} = \mathbf{v_3} \\ \hline \mathbf{v_3} = \mathbf{v_3} \\ \end{array} & \begin{array}{c|c} \mathbf{v_3} = \mathbf{v_3} \\ \mathbf{v_3} = \mathbf{v_3} \\ \hline \mathbf{v_3} \\ \hline \mathbf{v_3} = \mathbf{v_3} \\ \hline \mathbf{v_3} \\ \hline \mathbf{v_3}$$

same 4 as before

N = 6

$gcd(\mathbf{v},6)$	1	2	3	4	5	6	$\mathcal{P}(gcd(\mathbf{V},6))$	1	2	3	4	5	6
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	2	1	2	1	2	2	1	2	1	2	1	2
3	1	1	3	1	1	3	3	1	1	3	1	1	3
4	1	2	1	2	1	2	4	1	2	1	2	1	2
5	1	1	1	1	1	1	5	1	1	1	1	1	1
6	1	2	3	2	1	6	6	1	2	3	2	1	11
$k=2, \Sigma=60$					k =	3 , ∑] = 266				r		0
Tª							Γ ³				1	(6)	= 11

$HH_0(SkAlg(T^2))$ versus $SkMod(T^3)$

grading by $H_1(T^2; \mathbb{Z}/N\mathbb{Z}) = (\mathbb{Z}/N\mathbb{Z})^{\oplus 2}$

grading by $H_1(T^3; \mathbb{Z}/N\mathbb{Z}) = (\mathbb{Z}/N\mathbb{Z})^{\oplus 3}$

contribution from $HH_0(SkAlg(T^2))$ lives in degree (*, *, 0) piece

elliptic Schur-Weyl duality

at specifized perameters

SkAlg_{SL_N}(\mathcal{T}^2) Morita equivalent to antispherical DAHA $e^- \mathbb{H} e^$ shift isomorphism \implies Morita equivalent to $e^+(\mathcal{K}_{\omega}[\Lambda \oplus \Lambda] \# \mathcal{K}[\mathcal{S}_N])e^+$ $= \mathcal{K}_{\omega}[\Lambda \oplus \Lambda]^{\mathcal{S}_N}$

Morita equivalent to $\mathcal{K}_{\omega}[\Lambda \oplus \Lambda] \# \mathcal{K}[\mathcal{S}_N]$

compute $HH_0(\mathcal{K}_{\omega}[\Lambda \oplus \Lambda] \# \mathcal{K}[\mathcal{S}_N])$ by hand.

SKASSLINN (T2) <---- DAHA Htw

 $\dim = \sum_{\lambda \vdash N} \gcd(\lambda)^2$

elliptic Schur-Weyl duality to understand $SkAlg(T^2)$

elliptic Schur-Weyl duality to understand $SkAlg(T^2)$

elliptic Schur-Weyl duality to understand $SkAlg(T^2)$

related work

Monica Vazirani (UC Davis)

extras

Proposition (GJV)
•
$$e^- \in \mathbb{H}$$
 is a full idempotent
• $e^- \in SkAlg_{SL_N,N}(T^2)$ is a full idempotent

Corollary
$$e^{-SkAlg_{N}}e^{-M_{N}}$$

 $\mathbb{H}_{N} \simeq SkAlg_{SL_{N},N}(T^{2})$ $M_{or} + e^{-H_{N}}e^{-SkAlg_{O}}$

Corollary

can use braids instead of tangles

THANK 00 k(yt. 1/2) Harok (xt. xt) = Jata op DANA GL shift H_{1}^{A} eH1 $k(y_1^{\dagger}, y_1^{\dagger}) + \frac{1}{2} \circ k(x_1^{\dagger}, x_1^{\dagger}) \times y_1 - x_1 = 1$ et HG, gt)¢+ × = (t-E)|| $X_i - X_i Y_i = q Y_i X_i - X_i$ X; y;-yn= & y...yn X;

Monica Vazirani (UC Davis)