Sharp extension inequalities on finite fields

Diogo Oliveira e Silva (joint with C. González-Riquelme: <2405.16647>)

> Geometria em Lisboa 16 July 2024

 $2Q$

 \rightarrow \equiv \rightarrow

Positive vs. Oscillatory

SIGN UNCERTAINTY PRINCIPLE

重

What is the smallest area which is required to rotate a unit line segment by 180 degrees in the plane?

御き メミメメ ミメー

重

What is the smallest area which is required to rotate a unit line segment by 180 degrees in the plane?

 $2Q$

€

 $\left\{ \begin{array}{c} 1 \end{array} \right.$

What is the smallest area which is required to rotate a unit line segment by 180 degrees in the plane?

 $2Q$

€

What is the smallest area which is required to rotate a unit line segment by 180 degrees in the plane?

What is the smallest area which is required to rotate a unit line segment by 180 degrees in the plane?

What is the smallest area which is required to rotate a unit line segment by 180 degrees in the plane?

What is the smallest area which is required to rotate a unit line segment by 180 degrees in the plane?

A **Kakeya set** is a compact subset $K \subset \mathbb{R}^d$, $d \geq 2$, which contains a unit line segment in every direction.

 Ω

What is the smallest area which is required to rotate a unit line segment by 180 degrees in the plane?

A **Kakeya set** is a compact subset $K \subset \mathbb{R}^d$, $d \geq 2$, which contains a unit line segment in every direction.

Besicovitch (1920)

There exists a Kakeya set in \mathbb{R}^d with zero Lebesgue measure.

へのへ

What is the smallest area which is required to rotate a unit line segment by 180 degrees in the plane?

A **Kakeya set** is a compact subset $K \subset \mathbb{R}^d$, $d \geq 2$, which contains a unit line segment in every direction.

Besicovitch (1920)

There exists a Kakeya set in \mathbb{R}^d with zero Lebesgue measure.

Kakeya Set Conjecture on \mathbb{R}^d

If $K \subset \mathbb{R}^d$ is a Kakeya set, then $\dim_H(K) = d$.

Fourier transform on \mathbb{R}^d

$$
\widehat{f}(\xi) = \int_{\mathbb{R}^d} f(x) e^{-2\pi ix \cdot \xi} dx
$$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

活

 299

Fourier transform on \mathbb{R}^d

$$
\widehat{f}(\xi) = \int_{\mathbb{R}^d} f(x) e^{-2\pi ix \cdot \xi} \, \mathrm{d}x
$$

メロメメ 倒 メメ きょくきょう

重

 299

Fourier transform on \mathbb{R}^d

$$
\widehat{f}(\xi) = \int_{\mathbb{R}^d} f(x) e^{-2\pi ix \cdot \xi} \, \mathrm{d}x
$$

- This defines a contraction from L^1 to L^∞
- It extends to a unitary operator on L^2
- It extends to contraction from L^p to $L^{p'}$, if $1\leq p\leq 2$ and $\frac{1}{p}+\frac{1}{p^{\prime}}$ $\frac{1}{\rho'}=1$

 Ω

Given $1 \le p \le 2$, for which exponents $1 \le q \le \infty$ does

$$
\int_{\mathbb{S}^{d-1}} |\widehat{f}(\boldsymbol{\omega})|^q \,\mathrm{d}\sigma(\boldsymbol{\omega}) \lesssim \|f\|_{L^p(\mathbb{R}^d)}^q \quad \text{hold?}
$$

 $4.17 \times$

メタト メミト メミトリ ミ

Given $1 \le p \le 2$, for which exponents $1 \le q \le \infty$ does

$$
\int_{\mathbb{S}^{d-1}} |\widehat{f}(\boldsymbol{\omega})|^q \, {\rm d}\sigma(\boldsymbol{\omega}) \lesssim \|f\|_{L^p(\mathbb{R}^d)}^q \quad \text{hold?}
$$

Restriction Conjecture. $1 \leq p < \frac{2d}{d+1}, \quad q \leq \frac{d-1}{d+1}p'$

御 ▶ イヨ ▶ イヨ ▶ │ ヨ

Given $1 \leq p \leq 2$, for which exponents $1 \leq q \leq \infty$ does

$$
\int_{\mathbb{S}^{d-1}} |\widehat{f}(\boldsymbol{\omega})|^q \,\mathrm{d}\sigma(\boldsymbol{\omega}) \lesssim \|f\|_{L^p(\mathbb{R}^d)}^q \quad \text{hold?}
$$

Restriction Conjecture. $1 \leq p < \frac{2d}{d+1}, \quad q \leq \frac{d-1}{d+1}p'$

Stein–Tomas (1975). $1 \leq p \leq 2\frac{d+1}{d+3}$, $q=2$

K 御 ▶ K 君 ▶ K 君 ▶ ○ 君

Given $1 \leq p \leq 2$, for which exponents $1 \leq q \leq \infty$ does

$$
\int_{\mathbb{S}^{d-1}} |\widehat{f}(\boldsymbol{\omega})|^q \,\mathrm{d}\sigma(\boldsymbol{\omega}) \lesssim \|f\|_{L^p(\mathbb{R}^d)}^q \quad \text{hold?}
$$

Restriction Conjecture. $1 \leq p < \frac{2d}{d+1}, \quad q \leq \frac{d-1}{d+1}p'$

Stein–Tomas (1975).
$$
1 \le p \le 2\frac{d+1}{d+3}
$$
, $q = 2$

Curvature plays a role: Any smooth *compact* hypersurface of nonvanishing Gaussian curvature will do.

桐 トラ ヨ トラ ヨ トリーヨ

Given $1 \leq p \leq 2$, for which exponents $1 \leq q \leq \infty$ does

$$
\int_{\mathbb{S}^{d-1}} |\widehat{f}(\boldsymbol{\omega})|^q \,\mathrm{d}\sigma(\boldsymbol{\omega}) \lesssim \|f\|_{L^p(\mathbb{R}^d)}^q \quad \text{hold?}
$$

Restriction Conjecture. $1 \leq p < \frac{2d}{d+1}, \quad q \leq \frac{d-1}{d+1}p'$

Stein–Tomas (1975).
$$
1 \le p \le 2\frac{d+1}{d+3}
$$
, $q = 2$

Curvature plays a role: Any smooth *compact* hypersurface of nonvanishing Gaussian curvature will do.

Bochner–Riesz Conjecture on \mathbb{R}^d

In what sense do Fourier series/integrals converge?

$$
\widehat{S_R^{\delta}f} = S_R^{\delta} \widehat{f}, \text{ where } S_R^{\delta}(\xi) = \left(1 - \frac{|\xi|^2}{R^2}\right)_+^{\delta}
$$

 $\bullet \: \|S_1^\delta f\|_{L^p(\mathbb{R}^d)} \lesssim \|f\|_{L^p(\mathbb{R}^d)}$ iff $\delta > 0$ and $d|\frac{1}{2}-\frac{1}{p}$ $\frac{1}{\rho}|<\frac{1}{2}+\delta$?

桐 トラ ミトラ ミドレー

重

Bochner–Riesz Conjecture on \mathbb{R}^d

In what sense do Fourier series/integrals converge?

$$
\widehat{S_R^{\delta}f} = S_R^{\delta} \widehat{f}, \text{ where } S_R^{\delta}(\xi) = \left(1 - \frac{|\xi|^2}{R^2}\right)_+^{\delta}
$$

$$
\bullet \ \|S_1^\delta f\|_{L^p(\mathbb{R}^d)} \lesssim \|f\|_{L^p(\mathbb{R}^d)} \text{ iff } \delta > 0 \text{ and } d\|_{2}^{\frac{1}{2}} - \frac{1}{p}\| < \frac{1}{2} + \delta?
$$

Kakeya Maximal Function Conjecture on \mathbb{R}^d

$$
f^*_\delta(\boldsymbol \omega) = \sup_{\boldsymbol a \in \mathbb{R}^d} \frac{1}{|\mathcal T^\delta|} \int_{\mathcal T_{\boldsymbol \omega}^\delta(\boldsymbol a)} |f|
$$

 $\bullet \ \forall \varepsilon > 0 \exists \, \textsf{\textit{C}}_{\varepsilon} < \infty : \|f^{*}_{\delta}\|_{L^{d}(\mathbb{S}^{d-1})} \lesssim \textsf{\textit{C}}_{\varepsilon} \delta^{-\varepsilon} \|f\|_{L^{d}(\mathbb{R}^{d})} \, ;$

へのへ

Bochner–Riesz Conjecture on \mathbb{R}^d

In what sense do Fourier series/integrals converge?

$$
\widehat{S_R^{\delta}f} = S_R^{\delta} \widehat{f}, \text{ where } S_R^{\delta}(\xi) = \left(1 - \frac{|\xi|^2}{R^2}\right)_+^{\delta}
$$

$$
\bullet \ \|S_1^\delta f\|_{L^p(\mathbb{R}^d)} \lesssim \|f\|_{L^p(\mathbb{R}^d)} \text{ iff } \delta > 0 \text{ and } d\|_{2}^{\frac{1}{2}} - \frac{1}{p}\| < \frac{1}{2} + \delta?
$$

Kakeya Maximal Function Conjecture on \mathbb{R}^d

$$
f^*_{\delta}(\boldsymbol{\omega}) = \sup_{\boldsymbol{a} \in \mathbb{R}^d} \frac{1}{|\mathcal{T}^{\delta}|} \int_{\mathcal{T}^{\delta}_{\boldsymbol{\omega}}(\boldsymbol{a})} |f|
$$

$$
\bullet\ \forall \varepsilon>0\exists\, \mathcal{C}_\varepsilon<\infty: \|f^*_\delta\|_{L^d(\mathbb{S}^{d-1})}\lesssim \mathcal{C}_\varepsilon\delta^{-\varepsilon}\|f\|_{L^d(\mathbb{R}^d)}\,?
$$

More recently:

- ℓ^2 -decoupling (2015)
- Vinogradov's Mean-Value Theorem (2016)
- L[o](#page-19-0)cal Smoothi[n](#page-21-0)g Conjecture (solved [in](#page-0-0) \mathbb{R}^{2+1} \mathbb{R}^{2+1} \mathbb{R}^{2+1} \mathbb{R}^{2+1} \mathbb{R}^{2+1} on[ly](#page-22-0) in [2](#page-92-0)[02](#page-0-0)[0\)](#page-92-0) Ω

D. Oliveira e Silva, IST [Sharp extension inequalities on finite fields](#page-0-0)

The adjoint of the restriction operator, $\mathcal{R}f = f|_{\mathbb{S}^{d-1}}$, is the extension operator, $\mathcal{E}f = f\hat{\sigma}$, given by

$$
\widehat{f\sigma}(\mathbf{x}) = \int_{\mathbb{S}^{d-1}} f(\omega) e^{i\omega \cdot \mathbf{x}} \,\mathrm{d}\sigma(\omega)
$$

The adjoint of the restriction operator, $\mathcal{R}f = f|_{\mathbb{S}^{d-1}}$, is the extension operator, $\mathcal{E}f = f\hat{\sigma}$, given by

$$
\widehat{f\sigma}(\mathbf{x}) = \int_{\mathbb{S}^{d-1}} f(\omega) e^{i\omega \cdot \mathbf{x}} \,\mathrm{d}\sigma(\omega)
$$

Their composition is $\mathcal{ER}f = f * \hat{\sigma}$, and $\hat{\sigma}$ decays at ∞ :

へのへ

The adjoint of the restriction operator, $\mathcal{R}f = f|_{\mathbb{S}^{d-1}}$, is the extension operator, $\mathcal{E}f = f\hat{\sigma}$, given by

$$
\widehat{f\sigma}(\boldsymbol{x}) = \int_{\mathbb{S}^{d-1}} f(\boldsymbol{\omega}) e^{i\boldsymbol{\omega} \cdot \boldsymbol{x}} \,\mathrm{d}\sigma(\boldsymbol{\omega})
$$

Their composition is $\mathcal{ER}f = f * \hat{\sigma}$, and $\hat{\sigma}$ decays at ∞ :

$$
|\widehat{\sigma}(\lambda \mathbf{e}_d)| \simeq \left| \int_{\mathbb{R}^{d-1}} e^{i\lambda (1-|\boldsymbol{\omega}'|^2)^{\frac{1}{2}}}\frac{\eta(\boldsymbol{\omega}') \, \mathrm{d}\boldsymbol{\omega}'}{(1-|\boldsymbol{\omega}'|^2)^{\frac{1}{2}}}\right| \lesssim (1+|\lambda|)^{\frac{1-d}{2}}
$$

へのへ

The adjoint of the restriction operator, $\mathcal{R}f = f|_{\mathbb{S}^{d-1}}$, is the extension operator, $\mathcal{E}f = f\hat{\sigma}$, given by

$$
\widehat{f\sigma}(\mathbf{x}) = \int_{\mathbb{S}^{d-1}} f(\boldsymbol{\omega}) e^{i\boldsymbol{\omega} \cdot \mathbf{x}} \,\mathrm{d}\sigma(\boldsymbol{\omega})
$$

Their composition is $\mathcal{ER}f = f * \hat{\sigma}$, and $\hat{\sigma}$ decays at ∞ :

$$
|\widehat{\sigma}(\lambda \bm{e}_d)| \simeq \left|\int_{\mathbb{R}^{d-1}} e^{i\lambda (1-|\bm{\omega}'|^2)^{\frac{1}{2}}}\frac{\eta(\bm{\omega}') \, \mathrm{d} \bm{\omega}'}{(1-|\bm{\omega}'|^2)^{\frac{1}{2}}}\right| \lesssim (1+|\lambda|)^{\frac{1-d}{2}}
$$

ה מר

Riesz diagram for the restriction operator to \mathbb{S}^{d-1}

D. Oliveira e Silva, IST [Sharp extension inequalities on finite fields](#page-0-0)

Finite fields

D. Oliveira e Silva, IST [Sharp extension inequalities on finite fields](#page-0-0)

メロメメ 倒 メメ きょくきょう

目

 299

Finite fields

Three cards form a SET if, with respect to each feature, they are all alike or all different

メロメ メ御 メメ ミメメ ミメ

 $2Q$

€

Finite fields

Three cards form a SET if, with respect to each feature, they are all alike or all different

Applications to error correcting codes, cryptographic algorithms. . .

イロメ マ桐 メメモ レマモメ

つくい

 $\mathbb{F} = \mathbb{F}_q$ finite field with $q = p^n$ elements, p odd prime

重

 $2Q$

 $\overline{200}$ $\overline{200}$ $\overline{200}$ $\overline{200}$ $\overline{200}$ $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{$

- $\mathbb{F} = \mathbb{F}_q$ finite field with $q = p^n$ elements, p odd prime
- \mathbb{F}^d is <u>similar</u> to \mathbb{R}^d :
	- Vector space structure
	- Diversity of directions
	- Two distinct lines in \mathbb{F}^d can intersect in at most one point
	- Two distinct points in \mathbb{F}^d belong to exactly one line

 $\overline{200}$ $\overline{200}$ $\overline{200}$ $\overline{200}$ $\overline{200}$ $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{$

- $\mathbb{F} = \mathbb{F}_q$ finite field with $q = p^n$ elements, p odd prime
- \mathbb{F}^d is <u>similar</u> to \mathbb{R}^d :
	- Vector space structure
	- Diversity of directions
	- Two distinct lines in \mathbb{F}^d can intersect in at most one point
	- Two distinct points in \mathbb{F}^d belong to exactly one line
- \mathbb{F}^d is <u>not similar</u> to \mathbb{R}^d :
	- No distinction between large and small angles

 $\overline{200}$ $\overline{200}$ $\overline{200}$ $\overline{200}$ $\overline{200}$ $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{$

- No scaling
- Exotic geometry (later)

つくい

- $\mathbb{F} = \mathbb{F}_q$ finite field with $q = p^n$ elements, p odd prime
- \mathbb{F}^d is <u>similar</u> to \mathbb{R}^d :
	- Vector space structure
	- Diversity of directions
	- Two distinct lines in \mathbb{F}^d can intersect in at most one point
	- Two distinct points in \mathbb{F}^d belong to exactly one line
- \mathbb{F}^d is <u>not similar</u> to \mathbb{R}^d :
	- No distinction between large and small angles

 $\overline{200}$ $\overline{200}$ $\overline{200}$ $\overline{200}$ $\overline{200}$ $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{$

- No scaling
- Exotic geometry (later)
- \mathbb{F}^d (counting measure) vs. \mathbb{F}^{d*} (normalized counting measure)

へのへ

- $\mathbb{F} = \mathbb{F}_q$ finite field with $q = p^n$ elements, p odd prime
- \mathbb{F}^d is <u>similar</u> to \mathbb{R}^d :
	- Vector space structure
	- Diversity of directions
	- Two distinct lines in \mathbb{F}^d can intersect in at most one point
	- Two distinct points in \mathbb{F}^d belong to exactly one line
- \mathbb{F}^d is <u>not similar</u> to \mathbb{R}^d :
	- No distinction between large and small angles

 $\overline{200}$ $\overline{200}$ $\overline{200}$ $\overline{200}$ $\overline{200}$ $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{200}$, $\overline{$

- No scaling
- Exotic geometry (later)
- \mathbb{F}^d (counting measure) vs. \mathbb{F}^{d*} (normalized counting measure)
- Kakeya Set Conjecture and Kakeya Maximal Function **Conjecture** on \mathbb{F}^d were proposed by Wolff (1999) and famously solved via the polynomial method (Dvir 2009 & Ellenberg–Oberlin–Tao 2010)

へのへ

- $\mathbb{F} = \mathbb{F}_q$ finite field with $q = p^n$ elements, p odd prime
- \mathbb{F}^d is <u>similar</u> to \mathbb{R}^d :
	- Vector space structure
	- Diversity of directions
	- Two distinct lines in \mathbb{F}^d can intersect in at most one point
	- Two distinct points in \mathbb{F}^d belong to exactly one line
- \mathbb{F}^d is <u>not similar</u> to \mathbb{R}^d :
	- No distinction between large and small angles
	- No scaling
	- Exotic geometry (later)
- \mathbb{F}^d (counting measure) vs. \mathbb{F}^{d*} (normalized counting measure)
- Kakeya Set Conjecture and Kakeya Maximal Function **Conjecture** on \mathbb{F}^d were proposed by Wolff (1999) and famously solved via the polynomial method (Dvir 2009 & Ellenberg–Oberlin–Tao 2010)

Other discrete analogues: Hickman–Wright (2018), Dhar–Dvir (2021), Arsovski (2024), Dhar (2024), Salva[tor](#page-34-0)[e](#page-36-0)[\(](#page-36-0)[2](#page-29-0)[0](#page-30-0)[2](#page-35-0)[2](#page-36-0)[\)](#page-0-0)
D. Oliveira e Silva, IST [Sharp extension inequalities on finite fields](#page-0-0)

 \equiv

$$
\|(f\sigma)^{\vee}\|_{L^{s}(\mathbb{F}^{d},dx)} \leq \mathsf{R}_{\Sigma}^{*}(r \to s) \|f\|_{L^{r}(\Sigma,d\sigma)}
$$

$$
(f\sigma)^{\vee}(\mathbf{x}) := \frac{1}{|\Sigma|} \sum_{\xi \in \Sigma} f(\xi) e(\mathbf{x} \cdot \xi)
$$

Here,
$$
e(x) := \exp(\frac{2\pi i \text{Tr}_n(x)}{p})
$$
 and $\text{Tr}_n : \mathbb{F}_q \to \mathbb{F}_p$ is the trace

$$
\text{Tr}_n(x) := x + x^p + \dots + x^{p^{n-1}}
$$

 \equiv

$$
\|(f\sigma)^{\vee}\|_{L^{s}(\mathbb{F}^{d},dx)} \leq \mathbf{R}_{\Sigma}^{*}(r \to s)\|f\|_{L^{r}(\Sigma,d\sigma)}
$$

$$
(f\sigma)^{\vee}(\mathbf{x}) := \frac{1}{|\Sigma|} \sum_{\xi \in \Sigma} f(\xi)e(\mathbf{x} \cdot \xi)
$$

Here,
$$
e(x) := \exp(\frac{2\pi i \text{Tr}_n(x)}{p})
$$
 and $\text{Tr}_n : \mathbb{F}_q \to \mathbb{F}_p$ is the trace

$$
\text{Tr}_n(x) := x + x^p + \dots + x^{p^{n-1}}
$$

Possible choices of "surfaces" Σ:

$$
\begin{array}{ll}\mathbb{P}^d:=\{(\pmb{\xi},\tau)\in\mathbb{F}^{d*}\times\mathbb{F}^*:\tau=\pmb{\xi}^2\}\\ \bullet\;\Gamma^d:=\{(\pmb{\xi},\tau,\sigma)\in\mathbb{F}^{(d-1)*}\times\mathbb{F}^{2*}:\tau\sigma=\pmb{\xi}^2\}\setminus\{\pmb{0}\}\\ \bullet\;\mathbb{H}^{2d}:=\{(\pmb{\xi},\pmb{\eta},\tau)\in\mathbb{F}^{d*}\times\mathbb{F}^{d*}\times\mathbb{F}^*:\ \tau=\pmb{\xi}\cdot\pmb{\eta}\}\end{array}
$$

重

$$
\|(f\sigma)^{\vee}\|_{L^{s}(\mathbb{F}^{d},dx)} \leq \mathbf{R}_{\Sigma}^{*}(r \to s)\|f\|_{L^{r}(\Sigma,d\sigma)}
$$

$$
(f\sigma)^{\vee}(\mathbf{x}) := \frac{1}{|\Sigma|} \sum_{\xi \in \Sigma} f(\xi)e(\mathbf{x} \cdot \xi)
$$

Here,
$$
e(x) := \exp(\frac{2\pi i \text{Tr}_n(x)}{p})
$$
 and $\text{Tr}_n : \mathbb{F}_q \to \mathbb{F}_p$ is the trace

$$
\text{Tr}_n(x) := x + x^p + \dots + x^{p^{n-1}}
$$

Possible choices of "surfaces" Σ:

\n- \n
$$
\mathbb{P}^d := \{ (\xi, \tau) \in \mathbb{F}^{d*} \times \mathbb{F}^* : \tau = \xi^2 \}
$$
\n
\n- \n $\Gamma^d := \{ (\xi, \tau, \sigma) \in \mathbb{F}^{(d-1)*} \times \mathbb{F}^{2*} : \tau\sigma = \xi^2 \} \setminus \{ 0 \}$ \n
\n- \n $\mathbb{H}^{2d} := \{ (\xi, \eta, \tau) \in \mathbb{F}^{d*} \times \mathbb{F}^{d*} \times \mathbb{F}^* : \tau = \xi \cdot \eta \}$ \n
\n

Mockenhaupt–Tao: $\mathbf{R}^*_{\Sigma}(2 \to 4)$ holds if $\Sigma \in \{\mathbb{P}^1, \mathbb{P}^2, \Gamma^2\}$

$$
\|(f\sigma)^{\vee}\|_{L^{s}(\mathbb{F}^{d},dx)} \leq \mathbf{R}_{\Sigma}^{*}(r \to s)\|f\|_{L^{r}(\Sigma,d\sigma)}
$$

$$
(f\sigma)^{\vee}(\mathbf{x}) := \frac{1}{|\Sigma|} \sum_{\xi \in \Sigma} f(\xi)e(\mathbf{x} \cdot \xi)
$$

Here,
$$
e(x) := \exp(\frac{2\pi i \text{Tr}_n(x)}{p})
$$
 and $\text{Tr}_n : \mathbb{F}_q \to \mathbb{F}_p$ is the trace

$$
\text{Tr}_n(x) := x + x^p + \dots + x^{p^{n-1}}
$$

• Possible choices of "surfaces" Σ :

\n- \n
$$
\mathbb{P}^d := \{ (\xi, \tau) \in \mathbb{F}^{d*} \times \mathbb{F}^* : \tau = \xi^2 \}
$$
\n
\n- \n $\Gamma^d := \{ (\xi, \tau, \sigma) \in \mathbb{F}^{(d-1)*} \times \mathbb{F}^{2*} : \tau\sigma = \xi^2 \} \setminus \{0\}$ \n
\n- \n $\mathbb{H}^{2d} := \{ (\xi, \eta, \tau) \in \mathbb{F}^{d*} \times \mathbb{F}^{d*} \times \mathbb{F}^* : \tau = \xi \cdot \eta \}$ \n
\n

Mockenhaupt–Tao: $\mathbf{R}^*_{\Sigma}(2 \to 4)$ holds if $\Sigma \in \{\mathbb{P}^1, \mathbb{P}^2, \Gamma^2\}$

• Iosevich, Koh, Lee, Lewko, Pham, Rudney, Shkredov, Yeom...

$$
\|(f\sigma)^{\vee}\|_{L^{s}(\mathbb{F}^{d},dx)} \leq \mathbf{R}_{\Sigma}^{*}(r \to s)\|f\|_{L^{r}(\Sigma,d\sigma)}
$$

$$
(f\sigma)^{\vee}(\mathbf{x}) := \frac{1}{|\Sigma|} \sum_{\xi \in \Sigma} f(\xi)e(\mathbf{x} \cdot \xi)
$$

Here,
$$
e(x) := \exp(\frac{2\pi i \text{Tr}_n(x)}{p})
$$
 and $\text{Tr}_n : \mathbb{F}_q \to \mathbb{F}_p$ is the trace

$$
\text{Tr}_n(x) := x + x^p + \dots + x^{p^{n-1}}
$$

• Possible choices of "surfaces" Σ :

\n- \n
$$
\mathbb{P}^d := \{ (\xi, \tau) \in \mathbb{F}^{d*} \times \mathbb{F}^* : \tau = \xi^2 \}
$$
\n
\n- \n $\Gamma^d := \{ (\xi, \tau, \sigma) \in \mathbb{F}^{(d-1)*} \times \mathbb{F}^{2*} : \tau\sigma = \xi^2 \} \setminus \{ 0 \}$ \n
\n- \n $\mathbb{H}^{2d} := \{ (\xi, \eta, \tau) \in \mathbb{F}^{d*} \times \mathbb{F}^{d*} \times \mathbb{F}^* : \tau = \xi \cdot \eta \}$ \n
\n

- Mockenhaupt–Tao: $\mathbf{R}^*_{\Sigma}(2 \to 4)$ holds if $\Sigma \in \{\mathbb{P}^1, \mathbb{P}^2, \Gamma^2\}$
- **Iosevich, Koh, Lee, Lewko, Pham, Rudney, Shkredov, Yeom...**
- Lewko (2019): "Restriction implies Kakeya" on \mathbb{F}^d

∽≏ດ

$$
\|(f\sigma)^{\vee}\|_{L^{s}(\mathbb{F}^{d},dx)} \leq \mathbf{R}_{\Sigma}^{*}(r \to s)\|f\|_{L^{r}(\Sigma,d\sigma)}
$$

$$
(f\sigma)^{\vee}(\mathbf{x}) := \frac{1}{|\Sigma|} \sum_{\xi \in \Sigma} f(\xi)e(\mathbf{x} \cdot \xi)
$$

Here,
$$
e(x) := \exp(\frac{2\pi i \text{Tr}_n(x)}{p})
$$
 and $\text{Tr}_n : \mathbb{F}_q \to \mathbb{F}_p$ is the trace

$$
\text{Tr}_n(x) := x + x^p + \dots + x^{p^{n-1}}
$$

 \bullet Possible choices of "surfaces" Σ:

\n- \n
$$
\mathbb{P}^d := \{ (\xi, \tau) \in \mathbb{F}^{d*} \times \mathbb{F}^* : \tau = \xi^2 \}
$$
\n
\n- \n $\Gamma^d := \{ (\xi, \tau, \sigma) \in \mathbb{F}^{(d-1)*} \times \mathbb{F}^{2*} : \tau\sigma = \xi^2 \} \setminus \{ 0 \}$ \n
\n- \n $\mathbb{H}^{2d} := \{ (\xi, \eta, \tau) \in \mathbb{F}^{d*} \times \mathbb{F}^{d*} \times \mathbb{F}^* : \tau = \xi \cdot \eta \}$ \n
\n

- Mockenhaupt–Tao: $\mathbf{R}^*_{\Sigma}(2 \to 4)$ holds if $\Sigma \in \{\mathbb{P}^1, \mathbb{P}^2, \Gamma^2\}$
- **Iosevich, Koh, Lee, Lewko, Pham, Rudney, Shkredov, Yeom...**
- Lewko (2019): "Restriction implies Kakeya" on \mathbb{F}^d
- RestrictionCo[n](#page-41-0)jectu[r](#page-43-0)e on \mathbb{F}^d \mathbb{F}^d \mathbb{F}^d is still an [op](#page-43-0)[en](#page-35-0) [p](#page-42-0)r[ob](#page-0-0)[le](#page-92-0)m

Sharp restriction theory

D. Oliveira e Silva, IST [Sharp extension inequalities on finite fields](#page-0-0)

na an ⊞an an ⊞an I

重

Schrödinger: $u_t = i\Delta u$, $u(0, \cdot) = f \in L^2(\mathbb{R}^d)$

4 0 8

御 ト メ ヨ ト メ ヨ トー

重

• Schrödinger:
$$
u_t = i\Delta u
$$
, $u(0, \cdot) = f \in L^2(\mathbb{R}^d)$

$$
\|e^{it\Delta}f\|_{L^{2+\frac{4}{d}}(\mathbb{R}^{1+d})}\leq \mathsf{S}_{d}\|f\|_{L^{2}(\mathbb{R}^{d})}
$$
(1)

COLLA

メタト メミト メミト

重

• Schrödinger:
$$
u_t = i\Delta u
$$
, $u(0, \cdot) = f \in L^2(\mathbb{R}^d)$

$$
||e^{it\Delta}f||_{L^{2+\frac{4}{d}}(\mathbb{R}^{1+d})} \leq S_d||f||_{L^2(\mathbb{R}^d)}
$$
 (1)

Extension on the **paraboloid** $\{(\tau,\xi)\in\mathbb{R}^{1+d} : \tau=|\xi|^2\}$

御 ▶ イヨ ▶ イヨ ▶ ...

重

Schrödinger: $u_t = i\Delta u$, $u(0, \cdot) = f \in L^2(\mathbb{R}^d)$

$$
||e^{it\Delta}f||_{L^{2+\frac{4}{d}}(\mathbb{R}^{1+d})} \leq S_d||f||_{L^2(\mathbb{R}^d)}
$$
 (1)

Extension on the **paraboloid** $\{(\tau,\xi)\in\mathbb{R}^{1+d} : \tau=|\xi|^2\}$

Sharp versions for $d \in \{1,2\}$, i.e., when $2|(2+\frac{4}{d})$?

and East Bar

Schrödinger: $u_t = i\Delta u$, $u(0, \cdot) = f \in L^2(\mathbb{R}^d)$

$$
||e^{it\Delta}f||_{L^{2+\frac{4}{d}}(\mathbb{R}^{1+d})} \leq S_d||f||_{L^2(\mathbb{R}^d)}
$$
 (1)

Extension on the **paraboloid** $\{(\tau,\xi)\in\mathbb{R}^{1+d} : \tau=|\xi|^2\}$

- Sharp versions for $d \in \{1,2\}$, i.e., when $2|(2+\frac{4}{d})$?
	- Ozawa–Tsutsumi (1998)
	- Hundertmark–Zharnitsky (2006), Foschi (2007)
	- Bennett–Bez–Carbery–Hundertmark (2009)
	- Gonçalves (2019)

A + + = + + = +

Schrödinger: $u_t = i\Delta u$, $u(0, \cdot) = f \in L^2(\mathbb{R}^d)$

$$
||e^{it\Delta}f||_{L^{2+\frac{4}{d}}(\mathbb{R}^{1+d})} \leq S_d||f||_{L^2(\mathbb{R}^d)}
$$
 (1)

Extension on the **paraboloid** $\{(\tau,\xi)\in\mathbb{R}^{1+d} : \tau=|\xi|^2\}$

- Sharp versions for $d \in \{1,2\}$, i.e., when $2|(2+\frac{4}{d})$?
	- Ozawa–Tsutsumi (1998)
	- Hundertmark–Zharnitsky (2006), Foschi (2007)
	- Bennett–Bez–Carbery–Hundertmark (2009)
	- Gonçalves (2019)

Gaussians are the unique maximizers of (1) when $d \in \{1, 2\}$

A + + = + + = +

Schrödinger: $u_t = i\Delta u$, $u(0, \cdot) = f \in L^2(\mathbb{R}^d)$

$$
||e^{it\Delta}f||_{L^{2+\frac{4}{d}}(\mathbb{R}^{1+d})} \leq S_d||f||_{L^2(\mathbb{R}^d)}
$$
 (1)

Extension on the **paraboloid** $\{(\tau,\xi)\in\mathbb{R}^{1+d} : \tau=|\xi|^2\}$

- Sharp versions for $d \in \{1,2\}$, i.e., when $2|(2+\frac{4}{d})$?
	- Ozawa–Tsutsumi (1998)
	- Hundertmark–Zharnitsky (2006), Foschi (2007)
	- Bennett–Bez–Carbery–Hundertmark (2009)
	- Gonçalves (2019)

Gaussians are the unique maximizers of (1) when $d \in \{1, 2\}$ Conjecture (Lieb): this holds for all $d \geq 1$

A + + = + + = +

Schrödinger: $u_t = i\Delta u$, $u(0, \cdot) = f \in L^2(\mathbb{R}^d)$

$$
||e^{it\Delta}f||_{L^{2+\frac{4}{d}}(\mathbb{R}^{1+d})} \leq S_d||f||_{L^{2}(\mathbb{R}^{d})}
$$
(1)

Extension on the **paraboloid** $\{(\tau, \xi) \in \mathbb{R}^{1+d} : \tau = |\xi|^2\}$

- Sharp versions for $d \in \{1,2\}$, i.e., when $2|(2+\frac{4}{d})$?
	- Ozawa–Tsutsumi (1998)
	- Hundertmark–Zharnitsky (2006), Foschi (2007)
	- Bennett–Bez–Carbery–Hundertmark (2009)
	- Gonçalves (2019)

Gaussians are the unique maximizers of (1) when $d \in \{1, 2\}$ Conjecture (Lieb): this holds for all $d \geq 1$

Christ–Quilodrán (2014)

Let $1 < p < 2 + \frac{2}{d}$ and $q = \frac{d+2}{d}$ $\frac{+2}{d}$ p'. Gaussians are critical points for $L^p \to L^q$ extension from the paraboloid if and only if $p = 2$.

 α α

• Schrödinger:
$$
u_t = i\Delta u
$$
, $u(0, \cdot) = f \in L^2(\mathbb{R}^d)$

$$
\|e^{it\Delta}f\|_{L^{2+\frac{4}{d}}(\mathbb{R}^{1+d})} \leq \mathbf{S}_d \|f\|_{L^2(\mathbb{R}^d)}
$$
(1)

Extension on the **paraboloid** $\{(\tau,\xi)\in\mathbb{R}^{1+d} : \tau=|\xi|^2\}$

- Sharp versions for $d \in \{1,2\}$, i.e., when $2|(2+\frac{4}{d})$?
	- Ozawa–Tsutsumi (1998)
	- Hundertmark–Zharnitsky (2006), Foschi (2007)
	- Bennett–Bez–Carbery–Hundertmark (2009)
	- Gonçalves (2019)

Gaussians are the unique maximizers of (1) when $d \in \{1, 2\}$ Conjecture (Lieb): this holds for all $d \geq 1$

Christ-Quilodrán (2014)

Let $1 < p < 2 + \frac{2}{d}$ and $q = \frac{d+2}{d}$ $\frac{+2}{d}$ p'. Gaussians are critical points for $L^p \to L^q$ extension from the paraboloid if and only if $p = 2$.

Carneiro–Oliveira–Sousa (2022): "Gaussians never extremize Strichartz in[e](#page-92-0)qualities for **hyperbolic parab[olo](#page-51-0)[ids](#page-53-0)**["](#page-43-0) σ ([E](#page-53-0)[xi](#page-0-0)[ste](#page-92-0)[nc](#page-0-0)e $\sqrt{}$ [\)](#page-92-0)

D. Oliveira e Silva, IST [Sharp extension inequalities on finite fields](#page-0-0)

• Wave:
$$
u_{tt} = \Delta u
$$
, $(u, u_t)(0, \cdot) = (f, g) \in \dot{H}^{\frac{1}{2}} \times \dot{H}^{-\frac{1}{2}}$

4.000

メ団 トメ 君 トメ 君 トー

目

• Wave:
$$
u_{tt} = \Delta u
$$
, $(u, u_t)(0, \cdot) = (f, g) \in \dot{H}^{\frac{1}{2}} \times \dot{H}^{-\frac{1}{2}}$

$$
\left\| \cos(t\sqrt{-\Delta})f + \frac{\sin(t\sqrt{-\Delta})}{\sqrt{-\Delta}}g \right\|_{\mathcal{L}^2 \dot{H}^{-1}(\mathbb{R}^{1+d})} \leq \mathbf{W}_d \|(f, g)\|_{\mathcal{H}^{\frac{1}{2}}}
$$

4. 0. 8.

K 御 × × 差 × × 差 × …

目

• Wave:
$$
u_{tt} = \Delta u
$$
, $(u, u_t)(0, \cdot) = (f, g) \in \dot{H}^{\frac{1}{2}} \times \dot{H}^{-\frac{1}{2}}$

$$
\left\| \cos(t\sqrt{-\Delta})f + \frac{\sin(t\sqrt{-\Delta})}{\sqrt{-\Delta}}g \right\|_{L^2 \frac{d+1}{d-1}(\mathbb{R}^{1+d})} \leq \mathbf{W}_d \|(f, g)\|_{\mathcal{H}^{\frac{1}{2}}}
$$

Extension on the 2-cone $\{(\tau,\xi)\in\mathbb{R}^{1+d}:\tau^2=|\xi|^2\}$

KILLER

メ御 トメ ヨ トメ ヨ トー

重

• Wave:
$$
u_{tt} = \Delta u
$$
, $(u, u_t)(0, \cdot) = (f, g) \in \dot{H}^{\frac{1}{2}} \times \dot{H}^{-\frac{1}{2}}$

$$
\left\| \cos(t\sqrt{-\Delta})f + \frac{\sin(t\sqrt{-\Delta})}{\sqrt{-\Delta}}g \right\|_{L^2 \frac{d+1}{d-1}(\mathbb{R}^{1+d})} \leq \mathbf{W}_d \|(f, g)\|_{\mathcal{H}^{\frac{1}{2}}}
$$

Extension on the 2-cone $\{(\tau,\xi)\in\mathbb{R}^{1+d}:\tau^2=|\xi|^2\}$

Sharp version by Foschi (2007): $((1+|\cdot|^2)^{\frac{1-d}{2}},0)$ maximizes (2) if $d = 3$.

A + + = + + = + +

重

• Wave:
$$
u_{tt} = \Delta u
$$
, $(u, u_t)(0, \cdot) = (f, g) \in \dot{H}^{\frac{1}{2}} \times \dot{H}^{-\frac{1}{2}}$

$$
\left\| \cos(t\sqrt{-\Delta})f + \frac{\sin(t\sqrt{-\Delta})}{\sqrt{-\Delta}}g \right\|_{L^2 \frac{d+1}{d-1}(\mathbb{R}^{1+d})} \leq \mathbf{W}_d \|(f, g)\|_{\mathcal{H}^{\frac{1}{2}}}
$$

Extension on the 2-cone $\{(\tau,\xi)\in\mathbb{R}^{1+d}:\tau^2=|\xi|^2\}$

Sharp version by Foschi (2007): $((1+|\cdot|^2)^{\frac{1-d}{2}},0)$ maximizes (2) if $d = 3$. Conj. all $d > 2$, disproved if $2/d$ by Negro (2023)

A + + = + + = + +

• Wave:
$$
u_{tt} = \Delta u
$$
, $(u, u_t)(0, \cdot) = (f, g) \in \dot{H}^{\frac{1}{2}} \times \dot{H}^{-\frac{1}{2}}$

$$
\left\| \cos(t\sqrt{-\Delta})f + \frac{\sin(t\sqrt{-\Delta})}{\sqrt{-\Delta}}g \right\|_{L^2 \frac{d+1}{d-1}(\mathbb{R}^{1+d})} \leq \mathbf{W}_d \|(f, g)\|_{\mathcal{H}^{\frac{1}{2}}}
$$

Extension on the 2-cone $\{(\tau,\xi)\in\mathbb{R}^{1+d}:\tau^2=|\xi|^2\}$

Sharp version by Foschi (2007): $((1+|\cdot|^2)^{\frac{1-d}{2}},0)$ maximizes (2) if $d = 3$. Conj. all $d \ge 2$, disproved if $2|d$ by Negro (2023)

NB. $[(1+|\cdot|^2)^{\frac{1-d}{2}}]^{\wedge}(\xi)=c_d |\xi|^{-1} \exp(-|\xi|)$

• Wave:
$$
u_{tt} = \Delta u
$$
, $(u, u_t)(0, \cdot) = (f, g) \in \dot{H}^{\frac{1}{2}} \times \dot{H}^{-\frac{1}{2}}$

$$
\left\| \cos(t\sqrt{-\Delta})f + \frac{\sin(t\sqrt{-\Delta})}{\sqrt{-\Delta}}g \right\|_{L^2 \frac{d+1}{d-1}(\mathbb{R}^{1+d})} \leq \mathbf{W}_d \|(f, g)\|_{\mathcal{H}^{\frac{1}{2}}}
$$

Extension on the 2-cone $\{(\tau,\xi)\in\mathbb{R}^{1+d}:\tau^2=|\xi|^2\}$

Sharp version by Foschi (2007): $((1+|\cdot|^2)^{\frac{1-d}{2}},0)$ maximizes (2) if $d = 3$. Conj. all $d > 2$, disproved if $2/d$ by Negro (2023)

NB.
$$
[(1+|\cdot|^2)^{\frac{1-d}{2}}]^{\wedge}(\xi) = c_d |\xi|^{-1} \exp(-|\xi|) \rightsquigarrow
$$
 Foschians:

$$
\widehat{f}_{\star}(\xi) = |\xi|^{-1} \exp(A|\xi| + b \cdot \xi + c), \quad |\operatorname{Re}(b)| < -\operatorname{Re}(A)
$$

• Wave:
$$
u_{tt} = \Delta u
$$
, $(u, u_t)(0, \cdot) = (f, g) \in \dot{H}^{\frac{1}{2}} \times \dot{H}^{-\frac{1}{2}}$

$$
\left\| \cos(t\sqrt{-\Delta})f + \frac{\sin(t\sqrt{-\Delta})}{\sqrt{-\Delta}}g \right\|_{L^2 \frac{d+1}{d-1}(\mathbb{R}^{1+d})} \leq \mathbf{W}_d \|(f, g)\|_{\mathcal{H}^{\frac{1}{2}}}
$$

Extension on the 2-cone $\{(\tau,\xi)\in\mathbb{R}^{1+d}:\tau^2=|\xi|^2\}$

- Sharp version by Foschi (2007): $((1+|\cdot|^2)^{\frac{1-d}{2}},0)$ maximizes (2) if $d = 3$. Conj. all $d > 2$, disproved if $2/d$ by Negro (2023)
- NB. $[(1+|\cdot|^2)^{\frac{1-d}{2}}]^{\wedge}(\xi)=c_d |\xi|^{-1} \exp(-|\xi|) \rightsquigarrow$ Foschians:

$$
\widehat{f}_{\star}(\xi) = |\xi|^{-1} \exp(A|\xi| + b \cdot \xi + c), \quad |\operatorname{Re}(b)| < -\operatorname{Re}(A)
$$

Negro–OS–Stovall–Tautges (2023)

Let $d\geq 2$ and $1< p < \frac{2d}{d-1}$ and $q=\frac{d+1}{d-1}p'$. Foschians are critical points for the $L^p \to L^q$ extension from the 1-cone if and only if $p = 2$. Existence of maximizers $\sqrt{ }$.

メロメ メタメ メミメ メミメー

ă

What about sharp discrete restriction inequalities?

D. Oliveira e Silva, IST [Sharp extension inequalities on finite fields](#page-0-0)

Theorem 1 (González-Riquelme–OS, 2024)

It holds that
$$
\mathbf{R}_{\mathbb{P}^2}^*(2 \to 4) = (1 + q^{-1} - q^{-2})^{\frac{1}{4}}
$$
, i.e.

$$
\| (f\sigma)^{\vee}\|_{L^{4}(\mathbb F_q^3, \mathrm{d} \mathbf{x})}^4 \leq \left(1+\frac{1}{q}-\frac{1}{q^2}\right) \| f \|_{L^{2}(\mathbb F^2, \mathrm{d} \sigma)}^4 \tag{2}
$$

is sharp, and equality holds if $f: \mathbb{P}^2 \to \mathbb{C}$ is a constant function. Moreover, any maximizer of [\(2\)](#page-62-0) has constant modulus.

$Theorem 1$ (González-Riquelme–OS, 2024)

It holds that
$$
\mathbf{R}_{\mathbb{P}^2}^*(2 \to 4) = (1 + q^{-1} - q^{-2})^{\frac{1}{4}}
$$
, i.e.

$$
\| (f\sigma)^{\vee}\|_{L^{4}(\mathbb{F}_{q}^{3},\mathsf{d}x)}^{4} \leq \left(1+\frac{1}{q}-\frac{1}{q^{2}}\right) \| f \|_{L^{2}(\mathbb{P}^{2},\mathsf{d}\sigma)}^{4} \tag{2}
$$

is sharp, and equality holds if $f : \mathbb{P}^2 \to \mathbb{C}$ is a constant function. Moreover, any maximizer of [\(2\)](#page-62-0) has constant modulus.

Theorem 2 (González-Riquelme–OS, 2024)

Let $q = p^n$ and $w \in \mathbb{F}_q$ be such that $q \equiv 1 \mod 4$ and $w^2 = -1$. Then $f: \mathbb{P}^2 \to \mathbb{C}$ is a maximizer of [\(2\)](#page-62-0) if and only if there exist $\lambda \in \mathbb{C} \setminus \{0\}$ and a, b, $c \in \mathbb{F}_q$, such that

$$
f(\eta(1, w) + \zeta(1, -w)) = \lambda \exp \frac{2\pi i \text{Tr}_n(a\eta + b\zeta + c\eta\zeta)}{p}
$$

Theorem 3 (González-Riquelme–OS, 2024)

Let
$$
p > 3
$$
. It holds that $\mathbf{R}_{\mathbb{P}^1}^*(2 \to 6) = (1 + q^{-1} - q^{-2})^{\frac{1}{6}}$, i.e.

$$
\| (f\sigma)^{\vee}\|_{L^{6}(\mathbb F_q^2, \mathsf{d} \mathsf{x})}^6 \leq \left(1+\frac{1}{q}-\frac{1}{q^2}\right) \| f \|_{L^{2}(\mathbb F^1, \mathsf{d} \sigma)}^6 \tag{3}
$$

is sharp, and equality holds if $f: \mathbb{P}^1 \to \mathbb{C}$ is a constant function. Moreover, any maximizer of [\(3\)](#page-64-1) has constant modulus.

Theorem 3 (González-Riquelme–OS, 2024)

Let
$$
p > 3
$$
. It holds that $\mathbf{R}_{\mathbb{P}^1}^*(2 \to 6) = (1 + q^{-1} - q^{-2})^{\frac{1}{6}}$, i.e.

$$
\| (f\sigma)^{\vee}\|_{L^{6}(\mathbb{F}_{q}^{2},\mathsf{d}x)}^{6} \leq \left(1+\frac{1}{q}-\frac{1}{q^{2}}\right) \| f \|_{L^{2}(\mathbb{P}^{1},\mathsf{d}\sigma)}^{6}
$$
(3)

is sharp, and equality holds if $f: \mathbb{P}^1 \to \mathbb{C}$ is a constant function. Moreover, any maximizer of [\(3\)](#page-64-1) has constant modulus.

Theorem 4 (González-Riquelme–OS, 2024)

It holds that ${\bold R}^*_{\mathbb{H}^2}(2\to 4)=(1+q^{-1}-q^{-2})^{\frac{1}{4}}$, and $f:\mathbb{H}^2\to \mathbb{C}$ is a maximizer if and only if there exist $\lambda \in \mathbb{C} \setminus \{0\}$ and a, b, $c \in \mathbb{F}_q$, such that

$$
f(\eta(1,1)+\zeta(1,-1))=\lambda\exp\frac{2\pi i\text{Tr}_n(a\eta+b\zeta+c\eta\zeta)}{p}
$$

 \circ \circ

Theorem 5 (González-Riquelme–OS, 2024)

Let $q \equiv -1 \mod 4$. The extension inequality

$$
\|(f\nu)^{\vee}\|_{L^{4}(\mathbb F_q^4, \mathrm{d} \mathbf{x})}^4 \leq \frac{q^4(q^5-2q^4+2q^3-3q+3)}{(q-1)^3(q^2+1)^3} \|f\|_{L^{2}(\Gamma^3, \mathrm{d} \nu)}^4 \quad \textbf{(4)}
$$

is sharp, and equality holds if $f : \Gamma^3 \to \mathbb{C}$ is a constant function. Moreover, any maximizer of [\(4\)](#page-66-1) has constant modulus.

Theorem 5 (González-Riquelme–OS, 2024)

Let $q \equiv -1 \mod 4$. The extension inequality

$$
\|(f\nu)^{\vee}\|_{L^{4}(\mathbb{F}_{q}^{4},\mathrm{d}x)}^{4}\leq \frac{q^{4}(q^{5}-2q^{4}+2q^{3}-3q+3)}{(q-1)^{3}(q^{2}+1)^{3}}\|f\|_{L^{2}(\Gamma^{3},\mathrm{d}\nu)}^{4}\quad \, (4)
$$

is sharp, and equality holds if $f : \Gamma^3 \to \mathbb{C}$ is a constant function. Moreover, any maximizer of [\(4\)](#page-66-1) has constant modulus.

$$
\mathsf{\Gamma}^3_0:=\{(\boldsymbol{\xi},\tau,\sigma)\in\mathbb{F}_q^{4*}:\tau\sigma=\boldsymbol{\xi}^2\}
$$

Theorem 5 (González-Riquelme–OS, 2024)

Let $q \equiv -1 \mod 4$. The extension inequality

$$
\|(f\nu)^{\vee}\|_{L^{4}(\mathbb{F}_{q}^{4},\mathrm{d}x)}^{4}\leq \frac{q^{4}(q^{5}-2q^{4}+2q^{3}-3q+3)}{(q-1)^{3}(q^{2}+1)^{3}}\|f\|_{L^{2}(\Gamma^{3},\mathrm{d}\nu)}^{4}\quad \, (4)
$$

is sharp, and equality holds if $f : \Gamma^3 \to \mathbb{C}$ is a constant function. Moreover, any maximizer of [\(4\)](#page-66-1) has constant modulus.

$$
\Gamma_0^3:=\{(\xi,\tau,\sigma)\in \mathbb{F}_q^{4*}:\tau\sigma=\xi^2\},\ \Upsilon_0^3:=\{(\xi,\tau,\sigma)\in \mathbb{F}_q^{4*}:\tau^2+\sigma^2=\xi^2\}
$$

Theorem 5 (González-Riquelme–OS, 2024)

Let $q \equiv -1 \mod 4$. The extension inequality

$$
\|(f\nu)^{\vee}\|_{L^{4}(\mathbb F_q^4, \mathrm{d} \mathbf{x})}^4 \leq \frac{q^4(q^5-2q^4+2q^3-3q+3)}{(q-1)^3(q^2+1)^3} \|f\|_{L^{2}(\Gamma^3, \mathrm{d} \nu)}^4 \quad \textbf{(4)}
$$

is sharp, and equality holds if $f : \Gamma^3 \to \mathbb{C}$ is a constant function. Moreover, any maximizer of [\(4\)](#page-66-1) has constant modulus.

$$
\Gamma_0^3:=\{(\xi,\tau,\sigma)\in \mathbb{F}_q^{4*}:\tau\sigma=\xi^2\},\ \Upsilon_0^3:=\{(\xi,\tau,\sigma)\in \mathbb{F}_q^{4*}:\tau^2+\sigma^2=\xi^2\}
$$

Theorem 6 (González-Riquelme–OS, 2024)

Constants are not critical points for the $L^2(\Sigma, d\nu) \to L^4(\mathbb{F}_p^4, d\mathbf{x})$ extension inequality from $\Sigma \in \{\Gamma_0^3, \Upsilon_0^3\}$.

Algebraic extension \Leftrightarrow Counting problem

a mille

K 御 ▶ K 唐 ▶ K 唐 ▶ ...

È

Algebraic extension \Leftrightarrow Counting problem

Proposition

The extension inequality

$$
\|(f\sigma)^\vee\|_{L^{2k}(\mathbb F_q^d,\mathsf{d}\mathbf{x})}\leq \mathbf{R}^*_{\mathsf{\Sigma}}(2\to 2k)\|f\|_{L^2(\mathsf{\Sigma},\mathsf{d}\sigma)}
$$

is equivalent to the combinatorial inequality

$$
\sum_{\xi \in \mathbb{F}_q^d} \left| \sum_{\substack{\xi_1 + \ldots + \xi_k = \xi \\ \xi_j \in \Sigma}} \prod_{i=1}^k f(\xi_i) \right|^2 \leq C_{\Sigma}^*(2 \to 2k) \left(\sum_{\xi \in \Sigma} |f(\xi)|^2 \right)^k
$$

in the sense that they have the same set of maximizers, and the corresponding best constants are related via

$$
\mathbf{C}_{\Sigma}^{*}(2 \rightarrow 2k) = q^{-d} |\Sigma|^{k} \mathbf{R}_{\Sigma}^{*}(2 \rightarrow 2k)^{2k}
$$

 $4.49 \times 4.72 \times$

4 0 1

É

 \rightarrow \equiv \rightarrow
D. Oliveira e Silva, IST [Sharp extension inequalities on finite fields](#page-0-0)

a mille

御き メミメメ ミメー

重

 299

Legendre symbol.

$$
\left(\frac{a}{p}\right) := \left\{ \begin{array}{ll} 1 & \text{if } a \neq 0 \text{ is a square in } \mathbb{F}_p \\ -1 & \text{if } a \text{ is not a square in } \mathbb{F}_p \\ 0 & \text{if } a = 0 \end{array} \right.
$$

is a completely multiplicative function of its top argument

御 ▶ イヨ ▶ イヨ ▶ ...

重

Legendre symbol.

$$
\left(\frac{a}{p}\right) := \begin{cases} 1 & \text{if } a \neq 0 \text{ is a square in } \mathbb{F}_p \\ -1 & \text{if } a \text{ is not a square in } \mathbb{F}_p \\ 0 & \text{if } a = 0 \end{cases}
$$

is a completely multiplicative function of its top argument • Gauss sums. If $a \neq 0$, then

$$
S(a) := \sum_{x \in \mathbb{F}_p} e(ax^2) = \left(\frac{a}{p}\right) S(1), \text{ where}
$$

$$
S(1) = \varepsilon_p \sqrt{p} \text{ and } \varepsilon_p = \begin{cases} 1 & \text{if } p \equiv 1 \mod 4 \\ i & \text{if } p \equiv -1 \mod 4 \end{cases}
$$

K 御 ▶ K 唐 ▶ K 唐 ▶ ...

重

Legendre symbol.

$$
\left(\frac{a}{p}\right) := \begin{cases} 1 & \text{if } a \neq 0 \text{ is a square in } \mathbb{F}_p \\ -1 & \text{if } a \text{ is not a square in } \mathbb{F}_p \\ 0 & \text{if } a = 0 \end{cases}
$$

is a completely multiplicative function of its top argument • Gauss sums. If $a \neq 0$, then

$$
S(a) := \sum_{x \in \mathbb{F}_p} e(ax^2) = \left(\frac{a}{p}\right) S(1), \text{ where}
$$

$$
S(1) = \varepsilon_p \sqrt{p} \text{ and } \varepsilon_p = \begin{cases} 1 & \text{if } p \equiv 1 \mod 4 \\ i & \text{if } p \equiv -1 \mod 4 \end{cases}
$$

Quadratic reciprocity. Given arbitrary odd positive coprime integers p and r ,

$$
\left(\frac{p}{r}\right)\left(\frac{r}{p}\right) = (-1)^{\frac{(p-1)(r-1)}{4}}
$$

Conics $\mathcal{Q}(c,r) := \{(x,y) \in \mathbb{F}_q^2 : x^2 - cy^2 = r\}$ come in five different sizes:

御き メミメメミメー

重

Conics $\mathcal{Q}(c,r) := \{(x,y) \in \mathbb{F}_q^2 : x^2 - cy^2 = r\}$ come in five different sizes:

$$
\bullet\ |\mathcal{Q}(0,0)|=q
$$

御き メミメメミメー

重

Conics $\mathcal{Q}(c,r) := \{(x,y) \in \mathbb{F}_q^2 : x^2 - cy^2 = r\}$ come in five different sizes:

- $|Q(0, 0)| = q$
- $|Q(c, 0)| = 1$ if c is not a square in \mathbb{F}_q

御き メミメメミメー

 $2Q$

遥

Conics $\mathcal{Q}(c,r) := \{(x,y) \in \mathbb{F}_q^2 : x^2 - cy^2 = r\}$ come in five different sizes:

- $|Q(0, 0)| = q$
- $|Q(c, 0)| = 1$ if c is not a square in \mathbb{F}_q
- $|Q(c, 0)| = 2q 1$ if $c \neq 0$ is a square in \mathbb{F}_q

Related: Circles of radius zero in \mathbb{F}_{q}^{2} are (sometimes) unions of two lines with a common point

御き メミメメミメー

Conics $\mathcal{Q}(c,r) := \{(x,y) \in \mathbb{F}_q^2 : x^2 - cy^2 = r\}$ come in five different sizes:

- $|Q(0, 0)| = q$
- $|Q(c, 0)| = 1$ if c is not a square in \mathbb{F}_q
- $|Q(c, 0)| = 2q 1$ if $c \neq 0$ is a square in \mathbb{F}_q

Related: Circles of radius zero in \mathbb{F}_{q}^{2} are (sometimes) unions of two lines with a common point

 $|\mathcal{Q}(\mathfrak{c},r)| = q - 1$ if $\mathfrak{c} \neq 0$ is a square in \mathbb{F}_q and $r \neq 0$

Change variables $(x, y) \mapsto (x - \alpha y, x + \alpha y)$ with $\alpha^2 = c$:

 $\left|\{(u,v)\in \mathbb{F}_q^2:\ uv=r\}\right| = \left|\{(u, ru^{-1}): u \in \mathbb{F}_q^{\times}\}\right| = q-1$

オート オート オート

Conics $\mathcal{Q}(c,r) := \{(x,y) \in \mathbb{F}_q^2 : x^2 - cy^2 = r\}$ come in five different sizes:

- $|Q(0, 0)| = q$
- $|Q(c, 0)| = 1$ if c is not a square in \mathbb{F}_q
- $|Q(c, 0)| = 2q 1$ if $c \neq 0$ is a square in \mathbb{F}_q

Related: Circles of radius zero in \mathbb{F}_{q}^{2} are (sometimes) unions of two lines with a common point

 $|Q(c, r)| = q - 1$ if $c \neq 0$ is a square in \mathbb{F}_q and $r \neq 0$

Change variables $(x, y) \mapsto (x - \alpha y, x + \alpha y)$ with $\alpha^2 = c$: $\left|\{(u,v)\in \mathbb{F}_q^2:\ uv=r\}\right| = \left|\{(u, ru^{-1}): u \in \mathbb{F}_q^{\times}\}\right| = q-1$

 $|Q(c, r)| = q + 1$ if c is not a square in \mathbb{F}_q and $r \neq 0$

Consider the quadratic field extension $\mathbb{F}_q(\alpha)/\mathbb{F}_q$, where $\alpha\in \mathbb{F}_q^{\text{alg}}$ satisfies $\alpha^2=c$:

$$
|Q(c, r)| = |\{(x, y) \in \mathbb{F}_q^2 : (x + \alpha y)(x - \alpha y) = r\}|
$$

= |\{(x, y) \in \mathbb{F}_q^2 : (x + \alpha y)^{q+1} = r\}|
= |\{a \in \mathbb{F}_q(\alpha) : a^{q+1} = r\}| = q + 1

K 御 ▶ K 唐 ▶ K 唐 ▶ ...

つくい

D. Oliveira e Silva, IST [Sharp extension inequalities on finite fields](#page-0-0)

 299

 $\mathcal{A}=\mathbb{C}[\mathbf{I}+\mathbf{I}+\mathbf{f}] \mathbf{D} \mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbb{C}[\mathbf{I}+\mathbf{I}] \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{$ $\mathcal{A}=\mathbb{C}[\mathbf{I}+\mathbf{I}+\mathbf{f}] \mathbf{D} \mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbb{C}[\mathbf{I}+\mathbf{I}] \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{$ $\mathcal{A}=\mathbb{C}[\mathbf{I}+\mathbf{I}+\mathbf{f}] \mathbf{D} \mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbb{C}[\mathbf{I}+\mathbf{I}] \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{$ $\mathcal{A}=\mathbb{C}[\mathbf{I}+\mathbf{I}+\mathbf{f}] \mathbf{D} \mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbb{C}[\mathbf{I}+\mathbf{I}] \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{$ $\mathcal{A}=\mathbb{C}[\mathbf{I}+\mathbf{I}+\mathbf{f}] \mathbf{D} \mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbb{C}[\mathbf{I}+\mathbf{I}] \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{$ $\mathcal{A}=\mathbb{C}[\mathbf{I}+\mathbf{I}+\mathbf{f}] \mathbf{D} \mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbb{C}[\mathbf{I}+\mathbf{I}] \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{$ $\mathcal{A}=\mathbb{C}[\mathbf{I}+\mathbf{I}+\mathbf{f}] \mathbf{D} \mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbb{C}[\mathbf{I}+\mathbf{I}] \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{$ $\mathcal{A}=\mathbb{C}[\mathbf{I}+\mathbf{I}+\mathbf{f}] \mathbf{D} \mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbb{C}[\mathbf{I}+\mathbf{I}] \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{$ $\mathcal{A}=\mathbb{C}[\mathbf{I}+\mathbf{I}+\mathbf{f}] \mathbf{D} \mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbb{C}[\mathbf{I}+\mathbf{I}] \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{$ $\mathcal{A}=\mathbb{C}[\mathbf{I}+\mathbf{I}+\mathbf{f}] \mathbf{D} \mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbb{C}[\mathbf{I}+\mathbf{I}] \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{$ $\mathcal{A}=\mathbb{C}[\mathbf{I}+\mathbf{I}+\mathbf{f}] \mathbf{D} \mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbb{C}[\mathbf{I}+\mathbf{I}] \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{$

We have $\sigma^\vee = \delta_0 + \mathcal{K}$

 299

 $\mathcal{A}=\mathbb{C}[\mathbf{I}+\mathbf{I}+\mathbf{f}] \mathbf{D} \mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbb{C}[\mathbf{I}+\mathbf{I}] \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{$ $\mathcal{A}=\mathbb{C}[\mathbf{I}+\mathbf{I}+\mathbf{f}] \mathbf{D} \mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbb{C}[\mathbf{I}+\mathbf{I}] \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{$ $\mathcal{A}=\mathbb{C}[\mathbf{I}+\mathbf{I}+\mathbf{f}] \mathbf{D} \mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbb{C}[\mathbf{I}+\mathbf{I}] \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{$ $\mathcal{A}=\mathbb{C}[\mathbf{I}+\mathbf{I}+\mathbf{f}] \mathbf{D} \mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbb{C}[\mathbf{I}+\mathbf{I}] \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{$ $\mathcal{A}=\mathbb{C}[\mathbf{I}+\mathbf{I}+\mathbf{f}] \mathbf{D} \mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbb{C}[\mathbf{I}+\mathbf{I}] \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{$ $\mathcal{A}=\mathbb{C}[\mathbf{I}+\mathbf{I}+\mathbf{f}] \mathbf{D} \mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbb{C}[\mathbf{I}+\mathbf{I}] \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{$ $\mathcal{A}=\mathbb{C}[\mathbf{I}+\mathbf{I}+\mathbf{f}] \mathbf{D} \mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbb{C}[\mathbf{I}+\mathbf{I}] \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{$ $\mathcal{A}=\mathbb{C}[\mathbf{I}+\mathbf{I}+\mathbf{f}] \mathbf{D} \mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbb{C}[\mathbf{I}+\mathbf{I}] \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{$ $\mathcal{A}=\mathbb{C}[\mathbf{I}+\mathbf{I}+\mathbf{f}] \mathbf{D} \mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbb{C}[\mathbf{I}+\mathbf{I}] \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{$ $\mathcal{A}=\mathbb{C}[\mathbf{I}+\mathbf{I}+\mathbf{f}] \mathbf{D} \mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbb{C}[\mathbf{I}+\mathbf{I}] \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{$ $\mathcal{A}=\mathbb{C}[\mathbf{I}+\mathbf{I}+\mathbf{f}] \mathbf{D} \mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbb{C}[\mathbf{I}+\mathbf{I}] \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{$

We have $\sigma^\vee = \delta_0 + \mathcal{K}$, where the $Bochner\!\!-\!\!Riesz$ kernel $\mathcal K$ satisfies $K(\mathbf{x}, 0) = 0$ and, if $t \neq 0$,

$$
K(\mathbf{x},t) = \frac{1}{|\mathbb{P}^2|} \sum_{(\xi,\xi^2) \in \mathbb{P}^2} e(\mathbf{x} \cdot \xi + t \xi^2) = p^{-2} S(t)^2 e(-\frac{\mathbf{x}^2}{4t})
$$

 $2Q$

 $\mathcal{A}=\mathbb{C}[\mathbf{I}+\mathbf{I}+\mathbf{f}] \mathbf{D} \mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbb{C}[\mathbf{I}+\mathbf{I}] \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{$ $\mathcal{A}=\mathbb{C}[\mathbf{I}+\mathbf{I}+\mathbf{f}] \mathbf{D} \mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbb{C}[\mathbf{I}+\mathbf{I}] \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{$ $\mathcal{A}=\mathbb{C}[\mathbf{I}+\mathbf{I}+\mathbf{f}] \mathbf{D} \mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbb{C}[\mathbf{I}+\mathbf{I}] \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{$ $\mathcal{A}=\mathbb{C}[\mathbf{I}+\mathbf{I}+\mathbf{f}] \mathbf{D} \mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbb{C}[\mathbf{I}+\mathbf{I}] \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{$ $\mathcal{A}=\mathbb{C}[\mathbf{I}+\mathbf{I}+\mathbf{f}] \mathbf{D} \mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbb{C}[\mathbf{I}+\mathbf{I}] \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{$ $\mathcal{A}=\mathbb{C}[\mathbf{I}+\mathbf{I}+\mathbf{f}] \mathbf{D} \mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbb{C}[\mathbf{I}+\mathbf{I}] \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{$ $\mathcal{A}=\mathbb{C}[\mathbf{I}+\mathbf{I}+\mathbf{f}] \mathbf{D} \mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbb{C}[\mathbf{I}+\mathbf{I}] \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{$ $\mathcal{A}=\mathbb{C}[\mathbf{I}+\mathbf{I}+\mathbf{f}] \mathbf{D} \mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbb{C}[\mathbf{I}+\mathbf{I}] \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{$ $\mathcal{A}=\mathbb{C}[\mathbf{I}+\mathbf{I}+\mathbf{f}] \mathbf{D} \mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbb{C}[\mathbf{I}+\mathbf{I}] \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{$ $\mathcal{A}=\mathbb{C}[\mathbf{I}+\mathbf{I}+\mathbf{f}] \mathbf{D} \mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbb{C}[\mathbf{I}+\mathbf{I}] \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{$ $\mathcal{A}=\mathbb{C}[\mathbf{I}+\mathbf{I}+\mathbf{f}] \mathbf{D} \mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbb{C}[\mathbf{I}+\mathbf{I}] \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{I} \quad \text{and} \quad \mathcal{B}=\mathbf{I}+\mathbf{I}+\mathbf{$

We have $\sigma^\vee = \delta_0 + \mathcal{K}$, where the $Bochner\!\!-\!\!Riesz$ kernel $\mathcal K$ satisfies $K(\mathbf{x}, 0) = 0$ and, if $t \neq 0$,

$$
K(\mathbf{x},t) = \frac{1}{|\mathbb{P}^2|} \sum_{(\xi,\xi^2) \in \mathbb{P}^2} e(\mathbf{x} \cdot \xi + t \xi^2) = p^{-2} S(t)^2 e(-\frac{\mathbf{x}^2}{4t})
$$

Here, $S(t)=\sum_{s\in\mathbb{F}_\rho}e(ts^2)=\left(\frac{t}{\rho}\right)$ $\left(\frac{t}{\rho}\right) S(1)$ and $S(1) = \varepsilon_{\rho} \sqrt{\rho}.$

 $\mathcal{A}^{\mathcal{A}}(\Omega, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A})$ $\mathcal{A}^{\mathcal{A}}(\Omega, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A})$ $\mathcal{A}^{\mathcal{A}}(\Omega, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A})$ $\mathcal{A}^{\mathcal{A}}(\Omega, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A})$ $\mathcal{A}^{\mathcal{A}}(\Omega, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A})$ $\mathcal{A}^{\mathcal{A}}(\Omega, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A})$ $\mathcal{A}^{\mathcal{A}}(\Omega, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A})$ $\mathcal{A}^{\mathcal{A}}(\Omega, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A})$ $\mathcal{A}^{\mathcal{A}}(\Omega, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A})$ $\mathcal{A}^{\mathcal{A}}(\Omega, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A})$ $\mathcal{A}^{\mathcal{A}}(\Omega, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A})$

We have $\sigma^\vee = \delta_0 + \mathcal{K}$, where the $Bochner\!\!-\!\!Riesz$ kernel $\mathcal K$ satisfies $K(\mathbf{x}, 0) = 0$ and, if $t \neq 0$,

$$
K(\mathbf{x},t) = \frac{1}{|\mathbb{P}^2|} \sum_{(\xi,\xi^2) \in \mathbb{P}^2} e(\mathbf{x} \cdot \xi + t\xi^2) = p^{-2}S(t)^2 e(-\frac{\mathbf{x}^2}{4t})
$$

Here, $S(t)=\sum_{s\in\mathbb{F}_\rho}e(ts^2)=\left(\frac{t}{\rho}\right)$ $\left(\frac{t}{p}\right)$ S(1) and S(1) = $\varepsilon_p\sqrt{\rho}$. Then: $(\sigma * \sigma)(\boldsymbol{\xi}, \tau) = [(\sigma^\vee)^2]^\wedge(\boldsymbol{\xi}, \tau)$ $= 1 + p^{-4}$ $(\boldsymbol{x},t) \in \mathbb{F}_p^2 {\times} \mathbb{F}_p^{\times}$ $S(t)^4$ e($-\frac{x^2}{2t}$ $\frac{\mathbf{x}^2}{2t}$)e(− $\mathbf{x} \cdot \mathbf{\xi}$) $\overline{\phantom{a_{1}}}$ $=e(-\frac{1}{2})$ $\frac{1}{2t}(x+t\xi)^2$)e($\frac{t\xi^2}{2}$ $\frac{5}{2}$) $e(-t\tau)$

 $\mathcal{A}^{\mathcal{A}}(\Omega, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A})$ $\mathcal{A}^{\mathcal{A}}(\Omega, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A})$ $\mathcal{A}^{\mathcal{A}}(\Omega, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A})$ $\mathcal{A}^{\mathcal{A}}(\Omega, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A})$ $\mathcal{A}^{\mathcal{A}}(\Omega, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A})$ $\mathcal{A}^{\mathcal{A}}(\Omega, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A})$ $\mathcal{A}^{\mathcal{A}}(\Omega, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A})$ $\mathcal{A}^{\mathcal{A}}(\Omega, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A})$ $\mathcal{A}^{\mathcal{A}}(\Omega, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A})$ $\mathcal{A}^{\mathcal{A}}(\Omega, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A})$ $\mathcal{A}^{\mathcal{A}}(\Omega, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A})$

 Ω

We have $\sigma^\vee = \delta_0 + \mathcal{K}$, where the $Bochner\!\!-\!\!Riesz$ kernel $\mathcal K$ satisfies $K(\mathbf{x}, 0) = 0$ and, if $t \neq 0$,

$$
K(\mathbf{x},t) = \frac{1}{|\mathbb{P}^2|} \sum_{(\xi,\xi^2) \in \mathbb{P}^2} e(\mathbf{x} \cdot \xi + t\xi^2) = p^{-2}S(t)^2 e(-\frac{\mathbf{x}^2}{4t})
$$

Here,
$$
S(t) = \sum_{s \in \mathbb{F}_p} e(ts^2) = \left(\frac{t}{p}\right) S(1)
$$
 and $S(1) = \varepsilon_p \sqrt{p}$. Then:
\n
$$
(\sigma * \sigma)(\xi, \tau) = [(\sigma^{\vee})^2]^{\wedge} (\xi, \tau)
$$
\n
$$
= 1 + p^{-4} \sum_{(\mathbf{x}, t) \in \mathbb{F}_p^2 \times \mathbb{F}_p^{\times}} S(t)^4 \underbrace{e(-\frac{\mathbf{x}^2}{2t})e(-\mathbf{x} \cdot \xi)}_{= e(-\frac{1}{2t}(\mathbf{x} + t\xi)^2)e(\frac{t\xi^2}{2})} e(-t\tau)
$$

Fubini and x -shift yield:

$$
(\sigma*\sigma)(\xi,\tau)=1+\varepsilon_{\rho}^2\rho^{-1}\sum_{t\in\mathbb{F}_\rho^\times}e(t(\tfrac{\xi^2}{2}-\tau))=\frac{1}{\rho}\left\{\begin{array}{ll}\rho\pm\rho\mp 1 & \text{ if } \tau=\frac{\xi^2}{2}\\ \rho\mp 1 & \text{ otherwise}\end{array}\right.
$$

 $\mathcal{A}^{\mathcal{A}}(\Omega, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A})$ $\mathcal{A}^{\mathcal{A}}(\Omega, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A})$ $\mathcal{A}^{\mathcal{A}}(\Omega, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A})$ $\mathcal{A}^{\mathcal{A}}(\Omega, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A})$ $\mathcal{A}^{\mathcal{A}}(\Omega, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A})$ $\mathcal{A}^{\mathcal{A}}(\Omega, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A})$ $\mathcal{A}^{\mathcal{A}}(\Omega, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A})$ $\mathcal{A}^{\mathcal{A}}(\Omega, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A})$ $\mathcal{A}^{\mathcal{A}}(\Omega, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A})$ $\mathcal{A}^{\mathcal{A}}(\Omega, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A})$ $\mathcal{A}^{\mathcal{A}}(\Omega, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A}) \geq \mathcal{A}(\overline{\Omega}, \mathcal{A})$

We have $\sigma^\vee = \delta_0 + \mathcal{K}$, where the $Bochner\!\!-\!\!Riesz$ kernel $\mathcal K$ satisfies $K(\mathbf{x}, 0) = 0$ and, if $t \neq 0$,

$$
K(\mathbf{x},t) = \frac{1}{|\mathbb{P}^2|} \sum_{(\xi,\xi^2) \in \mathbb{P}^2} e(\mathbf{x} \cdot \xi + t\xi^2) = p^{-2}S(t)^2 e(-\frac{\mathbf{x}^2}{4t})
$$

Here,
$$
S(t) = \sum_{s \in \mathbb{F}_p} e(ts^2) = \left(\frac{t}{p}\right) S(1)
$$
 and $S(1) = \varepsilon_p \sqrt{p}$. Then:
\n
$$
(\sigma * \sigma)(\xi, \tau) = [(\sigma^{\vee})^2]^{\wedge} (\xi, \tau)
$$
\n
$$
= 1 + p^{-4} \sum_{(\mathbf{x}, t) \in \mathbb{F}_p^2 \times \mathbb{F}_p^{\times}} S(t)^4 \underbrace{e(-\frac{\mathbf{x}^2}{2t})e(-\mathbf{x} \cdot \xi)}_{= e(-\frac{1}{2t}(\mathbf{x} + t\xi)^2)e(\frac{t\xi^2}{2})} e(-t\tau)
$$

Fubini and x -shift yield:

$$
(\sigma \ast \sigma)(\xi, \tau) = 1 + \varepsilon_p^2 \rho^{-1} \sum_{t \in \mathbb{F}_p^\times} e(t(\frac{\xi^2}{2} - \tau)) = \frac{1}{\rho} \left\{ \begin{array}{ll} \rho \pm \rho \mp 1 & \text{if } \tau = \frac{\xi^2}{2} \\ \rho \mp 1 & \text{otherwise} \end{array} \right.
$$

Orthogonality in the la[s](#page-81-0)tste[p](#page-92-0).

D. Oliveira e Silva, IST [Sharp extension inequalities on finite fields](#page-0-0)

We have $\sigma^\vee = \delta_0 + \mathcal{K}$, where the $Bochner\!\!-\!\!Riesz$ kernel $\mathcal K$ satisfies $K(\mathbf{x}, 0) = 0$ and, if $t \neq 0$,

$$
K(\mathbf{x},t) = \frac{1}{|\mathbb{P}^2|} \sum_{(\xi,\xi^2) \in \mathbb{P}^2} e(\mathbf{x} \cdot \xi + t\xi^2) = p^{-2}S(t)^2 e(-\frac{\mathbf{x}^2}{4t})
$$

Here,
$$
S(t) = \sum_{s \in \mathbb{F}_p} e(ts^2) = \left(\frac{t}{p}\right) S(1)
$$
 and $S(1) = \varepsilon_p \sqrt{p}$. Then:
\n
$$
(\sigma * \sigma)(\xi, \tau) = [(\sigma^{\vee})^2]^{\wedge} (\xi, \tau)
$$
\n
$$
= 1 + p^{-4} \sum_{(\mathbf{x}, t) \in \mathbb{F}_p^2 \times \mathbb{F}_p^{\times}} S(t)^4 \underbrace{e(-\frac{\mathbf{x}^2}{2t})e(-\mathbf{x} \cdot \xi)}_{= e(-\frac{1}{2t}(\mathbf{x} + t\xi)^2)e(\frac{t\xi^2}{2})} e(-t\tau)
$$

Fubini and x -shift yield:

$$
(\sigma \ast \sigma)(\xi, \tau) = 1 + \varepsilon_p^2 \rho^{-1} \sum_{t \in \mathbb{F}_p^\times} e(t(\frac{\xi^2}{2} - \tau)) = \frac{1}{\rho} \left\{ \begin{array}{ll} \rho \pm \rho \mp 1 & \text{if } \tau = \frac{\xi^2}{2} \\ \rho \mp 1 & \text{otherwise} \end{array} \right.
$$

 $\frac{5}{2}$)

Orthogonality in the last step. Alt. five coni[c s](#page-88-0)i[ze](#page-90-0)[s](#page-81-0)[\(](#page-82-0)[a](#page-89-0)[l](#page-90-0)[so](#page-0-0) $q = p^n$ $q = p^n$ [\).](#page-0-0) 290 D. Oliveira e Silva, IST [Sharp extension inequalities on finite fields](#page-0-0)

Proposition (Paraboloids)

Let d, $k \ge 2$ and $p > k$ be an odd prime. Let $\sigma = \sigma_{\mathbb{P}^d}$ denote the normalized surface measure on the paraboloid $\mathbb{P}^d\subset \mathbb{F}_p^{d+1}.$ Then

$$
\sigma^{*k}(\xi,\tau)=1+\varepsilon_{\boldsymbol{\rho}}^{\boldsymbol{d}(k+1)}\boldsymbol{\rho}\tfrac{^{d(1-k)}}{2}\varphi(\xi,\tau),\quad (\xi,\tau)\in\mathbb{F}_{\boldsymbol{\rho}}^{\boldsymbol{d}+1}
$$

where $\varepsilon_p \in \{1, i\}$ depending on whether $p \equiv (\pm 1)$ mod 4, and

$$
\varphi(\xi,\tau) = \begin{cases}\n\rho \mathbf{1}_{\{\tau = \xi^2/k\}} - 1 & 2|d \\
(-1)^{\frac{(p-1)(k+1)}{4}} \left(\frac{p}{k}\right) \left(\rho \mathbf{1}_{\{\tau = \xi^2/k\}} - 1\right) & 2 \nmid d, k \\
\varepsilon_p \sqrt{p}(-1)^{\frac{(p-1)(\ell+1)}{4} + \frac{p^2 - 1}{8} \nu_2(k)} \left(\frac{p}{\ell}\right) \left(\frac{\xi^2/k - \tau}{p}\right) & 2 \nmid d, 2|k\n\end{cases}
$$

へのへ

Proposition (Paraboloids)

Let d, $k > 2$ and $p > k$ be an odd prime. Let $\sigma = \sigma_{\text{pd}}$ denote the normalized surface measure on the paraboloid $\mathbb{P}^d\subset \mathbb{F}_p^{d+1}.$ Then

$$
\sigma^{*k}(\boldsymbol{\xi},\tau)=1+\varepsilon_{\boldsymbol{\rho}}^{\boldsymbol{d}(\boldsymbol{k}+\boldsymbol{1})}\rho^{\frac{\boldsymbol{d}(1-k)}{2}}\varphi(\boldsymbol{\xi},\tau),\quad (\boldsymbol{\xi},\tau)\in\mathbb{F}_{\boldsymbol{\rho}}^{\boldsymbol{d}+1}
$$

where $\varepsilon_p \in \{1, i\}$ depending on whether $p \equiv (\pm 1)$ mod 4, and

$$
\varphi(\xi,\tau) = \begin{cases}\n\rho \mathbf{1}_{\{\tau = \xi^2/k\}} - 1 & 2|d \\
(-1)^{\frac{(p-1)(k+1)}{4}} \left(\frac{p}{k}\right) \left(\rho \mathbf{1}_{\{\tau = \xi^2/k\}} - 1\right) & 2 \nmid d, k \\
\varepsilon_{p\sqrt{p}}(-1)^{\frac{(p-1)(\ell+1)}{4} + \frac{p^2 - 1}{8}\nu_2(k)} \left(\frac{p}{\ell}\right) \left(\frac{\xi^2/k - \tau}{p}\right) & 2 \nmid d, 2|k\n\end{cases}
$$

Proof: Fourier inversion, orthogonality, Gauss sums, quadratic reciprocity

へのへ

Muito obrigado

D. Oliveira e Silva, IST [Sharp extension inequalities on finite fields](#page-0-0)

 $4.171 \pm$

K 御 ▶ K 唐 ▶ K 唐 ▶ ...

重

 298