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Kakeya Problem on RY

What is the smallest area which is required to rotate a unit line
segment by 180 degrees in the plane?
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Kakeya Problem on RY

What is the smallest area which is required to rotate a unit line
segment by 180 degrees in the plane?

A Kakeya set is a compact subset K C R, d > 2, which contains
a unit line segment in every direction.
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Kakeya Problem on RY

What is the smallest area which is required to rotate a unit line
segment by 180 degrees in the plane?

A Kakeya set is a compact subset K C R, d > 2, which contains
a unit line segment in every direction.

Besicovitch (1920)

There exists a Kakeya set in R with zero Lebesgue measure.
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Kakeya Problem on RY

What is the smallest area which is required to rotate a unit line
segment by 180 degrees in the plane?

A Kakeya set is a compact subset K C R, d > 2, which contains
a unit line segment in every direction.

Besicovitch (1920)

There exists a Kakeya set in RY with zero Lebesgue measure.

Kakeya Set Conjecture on RY
If K C RY is a Kakeya set, then dimy(K) = d.
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Fourier transform on RY
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Fourier transform on RY

@ This defines a contraction from L! to L
o It extends to a unitary operator on L?

e It extends to contraction from LP to LP', if 1 <p<2and
1, 1 _
T o= 1
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Restriction Problem on R?

Given 1 < p < 2, for which exponents 1 < g < oo does

/Sc,l [F(w)|?do(w) S (I, gs, hold?
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Restriction Problem on R?

Given 1 < p <2, for which exponents 1 < g < oo does
/Sc,l [F(w)|?do(w) S (I, gs, hold?

Restriction Conjecture. 1 < p < d+1’ q < %P’
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Restriction Problem on R?

Given 1 < p < 2, for which exponents 1 < g < oo does
flw)ld < ?
L @) 00() S 11y ey ol
Restriction Conjecture. 1 < p < d+1’ g < Z—jp’

Stein—-Tomas (1975). 1 <p < 231;, qg=2
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Restriction Problem on R?

Given 1 < p < 2, for which exponents 1 < g < co does
/Sc,l [F(w)|?do(w) S (I, gs, hold?

Restriction Conjecture. 1 < p < d+1’ q < %P’

Stein—Tomas (1975). 1 < p < 23—1;, qg=2

Curvature plays a role: Any smooth compact hypersurface of
nonvanishing Gaussian curvature will do.
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Restriction Problem on R?

Given 1 < p < 2, for which exponents 1 < g < oo does

f(w)| < |19 5
/Sd_l f(w)9do(w) S [If]], g hold?

[y

Restriction Conjecture. 1 < p < dz—fl, g < Z%p'

=

Stein—Tomas (1975). 1 <p < 2%, g=2

Curvature plays a role: Any smooth compact hypersurface of
nonvanishing Gaussian curvature will do.
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Bochner—Riesz Conjecture on R?

In what sense do Fourier series/integrals converge?

G _ 57 €Y’
SXf = Spf, where Sj(€) = ( —~ 2>
R +

° ”Sisf.HLp(Rd) S “f”Lp(Rd) iff 6§ >0 and d’% — %| < %—1—57
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Bochner—Riesz Conjecture on R?

In what sense do Fourier series/integrals converge?
)

Sof = SB7, where SB(e) = (1 L
rI = , where R R2 .

o 1S3l ooy S Il ooy i8>0 and d|} — 1| < 1 +47

Kakeya Maximal Function Conjecture on RY

aeRd |T ’ TS (a)
e Ve > 0dC < 00 Hﬁ; ”Ld(Sd DS < GO Hf”Ld(Rd) ?
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Bochner—Riesz Conjecture on R

In what sense do Fourier series/integrals converge?

T HAY
Sf = SXF, where SH(€) = ( - >

o ||S2F | o(rey S Ifllo(rey ifF6 >0 and d|} — 2| <3 +67

o Ve > 0dC. <00 ||f5*HLd(Sd—1) 5 Cgfs_stHLd(Rd) ?

More recently:
o (2-decoupling (2015)
e Vinogradov's Mean-Value Theorem (2016)
@ Local Smoothing Conjecture (solved in R+ only in 2020)
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Why should any nontrivial restriction inequality hold?

The adjoint of the restriction operator, Rf = ﬂSd—l, is the
extension operator, £f = fo, given by

il = /S (@)X do(w)
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Why should any nontrivial restriction inequality hold?

The adjoint of the restriction operator, Rf = ﬂSd—l, is the
extension operator, £f = fo, given by

il = /S (@)X do(w)

Their composition is ERf = f *x &, and & decays at co:
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Why should any nontrivial restriction inequality hold?

The adjoint of the restriction operator, Rf = ﬂSd—l, is the
extension operator, £f = fo, given by

il = / F(w)e™™ do(w)
Sd—1
Their composition is ERf = f *x &, and & decays at co:

/ ei)\(lf\w’|2)% n(w’) dw'’
R (1—[o']?)?

1-d

[o(Aeq)| =~ S A+
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Why should any nontrivial restriction inequality hold?

The adjoint of the restriction operator, Rf = ﬂSd—l, is the
extension operator, £f = fo, given by

Fo(x) = /S (@)X do(w)

Their composition is ERf = f x &, and ¢ decays at oo:

/ el')\(l—‘w’|2)% n(w’) dw’
e (1= |w2)?

1—d

SEA+AD=

lo(\eq)| ~
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Riesz diagram for the restriction operator to S9!

1
q
A
1
Restriction
Conjecture
d+1
2d
1
2
Stein—Tomas
0
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Finite fields
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Finite fields

Three cards form a SET if, with respect to each feature, they are
all alike or all different

00 ¢4¢ 0 08
W 88 N ¢

000 00 &
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Finite fields

Three cards form a SET if, with respect to each feature, they are
all alike or all different

00 ¢4¢ 0 08
W 88 N ¢

000 00 &

Applications to error correcting codes, cryptographic algorithms. ..
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Harmonic analysis on finite fields

o [F =T, finite field with g = p" elements, p odd prime
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Harmonic analysis on finite fields

o [F =T, finite field with g = p" elements, p odd prime

o ¥ is similar to RY:

Vector space structure

Diversity of directions

Two distinct lines in F¢ can intersect in at most one point
Two distinct points in F¢ belong to exactly one line

D. Oliveira e Silva, IST Sharp extension inequalities on finite fields



Harmonic analysis on finite fields

o [F =T, finite field with g = p" elements, p odd prime
o ¥ is similar to RY:
Vector space structure
Diversity of directions
Two distinct lines in F¢ can intersect in at most one point
Two distinct points in F¢ belong to exactly one line
o 9 is not similar to RY:
o No distinction between large and small angles
e No scaling
o Exotic geometry (later)
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o ¥ is similar to RY:
e Vector space structure
e Diversity of directions
e Two distinct lines in F¥ can intersect in at most one point
e Two distinct points in F? belong to exactly one line
o 9 is not similar to RY:
o No distinction between large and small angles
e No scaling
o Exotic geometry (later)

o 9 (counting measure) vs. F¥* (normalized counting measure)
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Harmonic analysis on finite fields

o [F =T, finite field with g = p" elements, p odd prime
o ¥ is similar to RY:
e Vector space structure
e Diversity of directions
e Two distinct lines in F¥ can intersect in at most one point
e Two distinct points in F? belong to exactly one line
o 9 is not similar to RY:
o No distinction between large and small angles
e No scaling
o Exotic geometry (later)
o 9 (counting measure) vs. F¥* (normalized counting measure)
o Kakeya Set Conjecture and Kakeya Maximal Function

Conjecture on ¥ were proposed by Wolff (1999) and
famously solved via the polynomial method (Dvir 2009 &
Ellenberg—Oberlin-Tao 2010)
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Harmonic analysis on finite fields

F =, finite field with g = p" elements, p odd prime
F9 is similar to RY:
e Vector space structure
e Diversity of directions
e Two distinct lines in F¥ can intersect in at most one point
e Two distinct points in F? belong to exactly one line
F9 is not similar to R:
o No distinction between large and small angles
e No scaling
o Exotic geometry (later)

¥ (counting measure) vs. F¥* (normalized counting measure)

Kakeya Set Conjecture and Kakeya Maximal Function
Conjecture on ¥ were proposed by Wolff (1999) and
famously solved via the polynomial method (Dvir 2009 &
Ellenberg—Oberlin-Tao 2010)

Other discrete analogues: Hickman—Wright (2018), Dhar-Duvir
(2021), Arsovski (2024), Dhar (2024), Salvatore (2022)
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Restriction Problem on F¢ (Mockenhaupt-Tao 2004)
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Restriction Problem on F¢ (Mockenhaupt-Tao 2004)

H(fU)VHLS(]Fd dx) < Re(r = 9)[Ifl|Lr(z.d0)

(fo)V(x):= sz Je(x - &

Here, e(x) := exp(ﬁg”(x))

and Tr, : Fg — [, is the trace
n—1

Trp(x) :=x+xP+ ...+ xP
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Restriction Problem on F¢ (Mockenhaupt-Tao 2004)

H(fU)VHLS(]Fd dx) < Re(r = 9)[Ifl|Lr(z.d0)

(fo)V(x):= \Z]Zf Je(x - &

£ex

Here, e(x) := exp(ﬁg”(x))

and Tr, : Fg — [, is the trace
n—1

Trp(x) :=x+xP+ ...+ xP
@ Possible choices of “surfaces” X:
o P :={(&,7) € F¥* x F* : 7 = ¢%}
o M :={(¢&7,0) e FU-D* x F2* : 75 = £2}\ {0}
o M2 :={(&,m,7) EFd* xF¥* xF*: 1 =¢-n}
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Restriction Problem on F¢ (Mockenhaupt-Tao 2004)

H(fU)VHLS(]Fd dx) < Re(r = 9)[Ifl|Lr(z.d0)

(fo)V(x):= \Z]Zf Je(x - &

£ex

Here, e(x) := exp(ﬁg”(x))

and Tr, : Fg — [, is the trace
n—1

Trp(x) :=x+xP+ ...+ xP
@ Possible choices of “surfaces” X:
o P :={(&,7) € F¥* x F* : 7 = ¢%}
o M :={(¢&7,0) e FU-D* x F2* : 75 = £2}\ {0}
o M2 :={(&,m,7) EFd* xF¥* xF*: 1 =¢-n}

o Mockenhaupt-Tao: R%(2 — 4) holds if ¥ € {P!,P?, 2}
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Restriction Problem on F¢ (Mockenhaupt-Tao 2004)

H(fU)VHLS(]Fd dx) < Re(r = 9)[Ifl|Lr(z.d0)

(fo)V(x):= sz Je(x - &

Here, e(x) := exp(ﬁg”(x))

and Tr, : Fg — [, is the trace
n—1

Trp(x) :=x+xP+ ...+ xP
@ Possible choices of “surfaces” X:
o P :={(&,7) € F¥* x F* : 7 = ¢%}
o M :={(¢&7,0) e FU-D* x F2* : 75 = £2}\ {0}
o M2 :={(&,m,7) EFd* xF¥* xF*: 1 =¢-n}
o Mockenhaupt-Tao: R%(2 — 4) holds if ¥ € {P!,P?, 2}

@ losevich, Koh, Lee, Lewko, Pham, Rudnev, Shkredov, Yeom...
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Restriction Problem on F¢ (Mockenhaupt-Tao 2004)

H(fU)VHLS(]Fd dx) < Re(r = 9)[Ifl|Lr(z.d0)

(fo)V(x):= \Z]Zf Je(x - &

£ex

Here, e(x) := exp(ﬁg”(x))

and Tr, : Fg — [, is the trace
n—1

Trp(x) :=x+xP+ ...+ xP

@ Possible choices of “surfaces” X:

o P :={(&,7) € F¥* x F* : 7 = ¢%}

o M :={(&7,0) e FUD* xF*: 70 = ¢°}\ {0}

o M2 :={(&,m,7) EFd* xF¥* xF*: 1 =¢-n}
o Mockenhaupt-Tao: R%(2 — 4) holds if ¥ € {P!,P?, 2}
@ losevich, Koh, Lee, Lewko, Pham, Rudnev, Shkredov, Yeom...
o Lewko (2019): “Restriction implies Kakeya” on F¢
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Restriction Problem on F¢ (Mockenhaupt-Tao 2004)

H(fU)VHLS(]Fd dx) < Re(r = 9)[Ifl|Lr(z.d0)

(fo)V(x):= \Z]Zf Je(x - &

£ex

Here, e(x) := exp(ﬁg”(x))

and Tr, : Fg — [, is the trace
n—1

Trp(x) :=x+xP+ ...+ xP
@ Possible choices of “surfaces” ¥:

o P :={(&,7) € F¥* x F* : 7 = ¢%}

o M :={(&7,0) e FUD* xF*: 70 = ¢°}\ {0}

o M2 :={(&,m,7) EFd* xF¥* xF*: 1 =¢-n}
Mockenhaupt-Tao: R&(2 — 4) holds if ¥ € {P!, P2, 2%}
losevich, Koh, Lee, Lewko, Pham, Rudnev, Shkredov, Yeom...
Lewko (2019): “Restriction implies Kakeya" on F¢

Restriction Conjecture on F9 is still an open problem
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Sharp restriction theory




Sharp parabolic restriction on R¢

o Schrédinger: uy = iAu, u(0,-) = f € L2(RY)
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Sharp parabolic restriction on R¢

o Schrodinger: uy = iAu, u(0,-) = f € L2(RY)

e 27| < Syl fll 2 (e (1)

2ty (R1+d) —
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Sharp parabolic restriction on R¢

o Schrodinger: uy = iAu, u(0,-) = f € L2(RY)

e 27| < Sql|fll 2(re) (1)

2ty (R1+d) —

Extension on the paraboloid {(7,£) € R4 : 7 = |¢]?}
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Sharp parabolic restriction on R¢

o Schrodinger: uy = iAu, u(0,-) = f € L2(RY)

e 27| < Sql|fll 2(re) (1)

2ty (R1+d) —

Extension on the paraboloid {(7,£) € R4 : 7 = |¢]?}
e Sharp versions for d € {1,2}, i.e., when 2|(2 + £)?
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Sharp parabolic restriction on R¢

o Schrodinger: uy = iAu, u(0,-) = f € L2(RY)

€21l 245 g2,y < Sl Fllizee 1)

Extension on the paraboloid {(7,£) € R4 : 7 = |¢]?}

e Sharp versions for d € {1,2}, i.e., when 2|(2 + £)?
Ozawa—Tsutsumi (1998)

Hundertmark—Zharnitsky (2006), Foschi (2007)
Bennett-Bez—Carbery—Hundertmark (2009)
Gongalves (2019)
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Sharp parabolic restriction on R¢

o Schrodinger: uy = iAu, u(0,-) = f € L2(RY)

€21l 245 g2,y < Sl Fllizee 1)

Extension on the paraboloid {(7,£) € R4 : 7 = |¢]?}

e Sharp versions for d € {1,2}, i.e., when 2|(2 + £)?
Ozawa—Tsutsumi (1998)

Hundertmark—Zharnitsky (2006), Foschi (2007)
Bennett-Bez—Carbery—Hundertmark (2009)
Gongalves (2019)

Gaussians are the unique maximizers of (1) when d € {1,2}
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Sharp parabolic restriction on R¢

o Schrodinger: uy = iAu, u(0,-) = f € L2(RY)
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Gongalves (2019)

Gaussians are the unique maximizers of (1) when d € {1,2}
Conjecture (Lieb): this holds for all d > 1
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Sharp parabolic restriction on R¢

o Schrodinger: uy = iAu, u(0,-) = f € L2(RY)

le™ 1], < Sallfll2(re) (1)

2+%(R1+d) >

Extension on the paraboloid {(7,£&) € R1T9 : 7 = |¢|?}

e Sharp versions for d € {1,2}, i.e., when 2|(2 + %)?
o Ozawa—Tsutsumi (1998)

Hundertmark—Zharnitsky (2006), Foschi (2007)
Bennett-Bez—Carbery—Hundertmark (2009)
Gongalves (2019)
Gaussians are the unique maximizers of (1) when d € {1,2}
Conjecture (Lieb): this holds for all d > 1

Christ—Quilodran (2014)

Lletl < p<2+ % and g = %p’. Gaussians are critical points for
LP — L9 extension from the paraboloid if and only if p = 2.

= = = =
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Sharp parabolic restriction on R¢

o Schrodinger: uy = iAu, u(0,-) = f € L2(RY)
€471 28 gy < Sal ey 1)

Extension on the paraboloid {(7,£) € R4 : 7 = |¢]?}
e Sharp versions for d € {1,2}, i.e., when 2|(2 + £)?
o Ozawa-Tsutsumi (1998)
o Hundertmark-Zharnitsky (2006), Foschi (2007)
o Bennett—Bez—Carbery—Hundertmark (2009)
o Gongalves (2019)
Gaussians are the unique maximizers of (1) when d € {1,2}
Conjecture (Lieb): this holds for all d > 1

Christ—Quilodran (2014)

Letl< p<2+ % and q = d+2 p’. Gaussians are critical points for
LP — L9 extension from the parabo/01d if and only if p = 2.

Carneiro—Oliveira—Sousa (2022): “Gaussians never extremize
Strichartz inequalities for hyperbolic paraboloids’ (Existence v'
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Sharp conic restriction on R?

o Wave: uy = Au, (u,u)(0,-) = (f,g) € Hz x H2
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Sharp conic restriction on R?

o Wave: uy = Au, (u,u)(0,-) = (f,g) € Hz x H2

sin —A
[costev=a)f + TR g < Wall(F 8)1],3
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Sharp conic restriction on R?

o Wave: uy = Au, (u,u)(0,-) = (f,g) € Hz x H2

[costev=a)f + TR g < Wall(F 8)1],3

Extension on the 2-cone {(7,&) € R4 : 72 = |£|?}

L
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Sharp conic restriction on R?

o Wave: uy = Au, (u,u)(0,-) = (f,g) € Hz x H2
[eosttv=R)F + OTBg | Ly < Wall(Fo8)1, 3
€2)

@ Sharp version by Foschi (2007): ((1+ -2 )7,0) maximizes
(2) if d = 3.

L~d

Extension on the 2-cone {(7,£&) € R+

QH
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Sharp conic restriction on R?

o Wave: uy = Au, (u,u)(0,-) = (f,g) € Hz x H2

sin —A
|cosev=a)r + LB g 2% ey < WOI(F. 0I5
Extension on the 2-cone {(7,&) € R4 : 72 = |£|?}

d

@ Sharp version by Foschi (2007): ((1+ |- |2)1%,0) maximizes
(2) if d = 3. Conj. all d > 2, disproved if 2|d by Negro (2023)
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Sharp conic restriction on R?

o Wave: uy = Au, (u,u)(0,-) = (f,g) € Hz x H2

sin —A
|cosev=a)r + LB g 2% ey < WOI(F. 0I5
Extension on the 2-cone {(7,&) € R4 : 72 = |£|?}

d

@ Sharp version by Foschi (2007): ((1+ |- |2)1%,0) maximizes
(2) if d = 3. Conj. all d > 2, disproved if 2|d by Negro (2023)

NB. [(1+ |- [2) 2°](€) = calé| " exp(—[€])
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Sharp conic restriction on R?

o Wave: uy = Au, (u,u)(0,-) = (f,g) € Hz x H2

sin —A
[costev=a)f + TR g < Wall(F 8)1],3

Extension on the 2-cone {(7,&) € R4 : 72 = |£|?}

@ Sharp version by Foschi (2007): ((1+ |- |2)%,0) maximizes
(2) if d = 3. Conj. all d > 2, disproved if 2|d by Negro (2023)

NB. [(1+]- \2)%]/\(5) = cq|€|~ exp(—|€|) ~ Foschians:

f(€) = |€| L exp(Al€] + b- € +¢), |Re(b)| < — Re(A)
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Sharp conic restriction on R?

o Wave: uy = Au, (u,u)(0,-) = (f,g) € Hz x H2

[eosttv=R)F + OTBg | Ly < Wall(Fo8)1, 3

Extension on the 2-cone {(7,&) € R4 : 72 = |£|?}

@ Sharp version by Foschi (2007): ((1+ |- |2)%,0) maximizes
(2) if d = 3. Conj. all d > 2, disproved if 2|d by Negro (2023)

NB. [(1+]- \2)%]/\(5) = cq|€|~ exp(—|€|) ~ Foschians:

L~d

f(€) = |€| L exp(Al€] + b- € +¢), |Re(b)| < — Re(A)

Negro—OS—StovaII—Tautges (2023)

Letd >2and1 < p< 55 andq= d“p Foschians are critical
points for the LP — L9 extens:on from the 1-cone if and only if
p = 2. Existence of maximizers v .
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What about sharp discrete

restriction inequalities?




Sharp restriction theory on F9: new results |

Theorem 1 (Gonzélez-Riquelme-0S, 2024)

It holds that R5,(2 — 4) = (L + g — g72)%, i.e.

1
16F0) ez < (1+q q)ufup(m @)

is sharp, and equality holds if f : P> — C is a constant function.
Moreover, any maximizer of (2) has constant modulus.
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Sharp restriction theory on F9: new results |

Theorem 1 (Gonzélez-Riquelme-0S, 2024)

N

It holds that R%,(2 = 4) = (14+ gt — g ?)3, e

1
1) Mg < (145 = 25 ) Wlborgy (2

is sharp, and equality holds if f : P> — C is a constant function.
Moreover, any maximizer of (2) has constant modulus.

Theorem 2 (Gonzélez-Riquelme-0S, 2024)

Let g = p" and w € Fq be such that g =1 mod 4 and w? = —1.
Then f : P2 — C is a maximizer of (2) if and only if there exist
A e C\ {0} and a, b, c € Fy, such that

- 27iTrp(an + b¢ + cn()

f(n(1, w) + (1, —w)) = Aex ;
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Sharp restriction theory on F¢: new results I

Theorem 3 (Gonzélez-Riquelme-0S, 2024)
Let p > 3. It holds that R%,(2 = 6) = (1+ g1 — g2)s, ie.

1
1(F)Y [Se ez < (1+q q)ufumlda 3)

is sharp, and equality holds if f : P! — C is a constant function.
Moreover, any maximizer of (3) has constant modulus.
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Sharp restriction theory on F¢: new results I

Theorem 3 (Gonzélez-Riquelme—0S, 2024)

Let p > 3. It holds that R%, (2 = 6) = (1 + g1 — g2)s, ie.

1 1
1(F o) [1Eoez,ax) < <1 +g qz) 11122 (pt 40 (3)

is sharp, and equality holds if f : P! — C is a constant function.
Moreover, any maximizer of (3) has constant modulus.

Theorem 4 (Gonzélez-Riquelme-0S, 2024)

It holds that R%u(2 — 4) = (L+ g~ — g72)4, and f : H? — C is
a maximizer if and only if there exist A € C\ {0} and
a,b,c € Fq, such that

) 27iTra(an + b¢ + cnq)

f(n(1,1) +¢(1,-1)) = Nex ;
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Sharp restriction theory on F9: new results |lI

Theorem 5 (Gonzalez-Riquelme-0S, 2024)
Let g= —1 mod 4. The extension inequality

405 4 3
q*(¢°> — 2¢* +29°> — 3q + 3)
1CF) ¥ 1o e ax) < CENCESIE Ifllz2qrs 0y (4)

is sharp, and equality holds if f : T3 — C is a constant function.
Moreover, any maximizer of (4) has constant modulus.
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Sharp restriction theory on F9: new results |lI

Theorem 5 (Gonzalez-Riquelme-0S, 2024)
Let g= —1 mod 4. The extension inequality

405 4 3
q*(¢°> — 2¢* +29°> — 3q + 3)
1CF) ¥ 1o e ax) < CENCESIE Ifllz2qrs 0y (4)

is sharp, and equality holds if f : T3 — C is a constant function.
Moreover, any maximizer of (4) has constant modulus.

ra:={(1,0)¢c Fg* (1o = €%}
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Sharp restriction theory on F9: new results |lI

Theorem 5 (Gonzalez-Riquelme-0S, 2024)
Let g= —1 mod 4. The extension inequality

405 4 3
q*(¢°> — 2¢* +29°> — 3q + 3)
1CF) ¥ 1o e ax) < CENCESIE Ifllz2qrs 0y (4)

is sharp, and equality holds if f : T3 — C is a constant function.
Moreover, any maximizer of (4) has constant modulus.

ra:={(1,0)¢c Fg* cro = €%}, T3 ={(& 1,0) € Fg* 240’ = €%
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Sharp restriction theory on F9: new results |lI

Theorem 5 (Gonzélez-Riquelme—0S, 2024)
Let g= —1 mod 4. The extension inequality

40 5 4 3
q*(9° —2q9" + 29> — 3qg + 3)
||(f’/)v||t4(wg,dx) < (q—1)3(q2 +1)3 ||f‘|£i2(r3,dl/) (4)

is sharp, and equality holds if f : T3 — C is a constant function.
Moreover, any maximizer of (4) has constant modulus.

M5 :={(&7.0) €Fg" 170 = €2}, 7§ = {(§,7,0) €Fg" : 72 +0° = €2}

Theorem 6 (Gonzélez-Riquelme-0S, 2024)

Constants are not critical points for the L*(¥,dv) — L*(F}, dx)
extension inequality from ¥ € {3, T3}.

™7 = = =

D. Oliveira e Silva, IST Sharp extension inequalities on finite fields



Algebraic extension < Counting problem
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Algebraic extension < Counting problem

The extension inequality

1(fo) [l 2% (e ax) < RE(2 = 2K)[Fll12(5 a0

is equivalent to the combinatorial inequality

2
k
k
NI Y TIfe)] <cs@—20 Y Ife)
£eFd Eﬁé:gkzs i=1 gex

in the sense that they have the same set of maximizers, and the
corresponding best constants are related via

Ci(2 — 2k) = g X |*RE(2 — 2k)%K

D. Oliveira e Silva, IST Sharp extension inequalities on finite fields



Elementary number theory over finite fields
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Elementary number theory over finite fields

o Legendre symbol.

5 1 if a# 0 is a square in [Fj,
() =< —1 if aisnot asquareinF,
P 0 fa=0

is a completely multiplicative function of its top argument
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Elementary number theory over finite fields

o Legendre symbol.

5 1 if a# 0 is a square in [Fj,
() =< —1 if aisnot asquareinF,
P 0 fa=0

is a completely multiplicative function of its top argument
e Gauss sums. If a £ 0, then

S(a) =Y e(ax?) = <a

x€Fp P

)5(1), where

1 ifp=1 mod4
Su):5¢V$a”d5P::{i if p=—1 mod 4

D. Oliveira e Silva, IST

Sharp extension inequalities on finite fields



Elementary number theory over finite fields

o Legendre symbol.

5 1 if a# 0 is a square in [Fj,
() =< —1 if aisnot asquareinF,
P 0 fa=0

is a completely multiplicative function of its top argument
e Gauss sums. If a £ 0, then

S(a) =Y e(ax?) = <a

x€Fp P

)5(1), where

1 ifp=1 mod4
Su):5¢V$a”d5P::{i if p=—1 mod 4

e Quadratic reciprocity. Given arbitrary odd positive coprime

integers p and r,
(P) <r> _ (_1)(;;—1)40—1)

D. Oliveira e Silva, IST

Sharp extension inequalities on finite fields



Geometry of finite fields: exotic behaviour

Conics Q(c, r) :={(x,y) € F2 : x> — cy? = r} come in five
different sizes:
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Geometry of finite fields: exotic behaviour

Conics Q(c, r) :={(x,y) € F2 : x> — cy? = r} come in five
different sizes:

° [Q(0,0)[ =4
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Geometry of finite fields: exotic behaviour

Conics Q(c, r) :={(x,y) € F2 : x> — cy? = r} come in five
different sizes:

° [Q(0,0)=g¢q

@ |Q(c,0)] =1if cis not a square in Fy
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Geometry of finite fields: exotic behaviour

Conics Q(c, r) :={(x,y) € F2 : x> — cy? = r} come in five
different sizes:

° [9(0,0)] = ¢

@ |Q(c,0)] =1if cis not a square in Fy

o |Q(c,0)| =2qg—1if c#0is asquare in F,

Related: Circles of radius zero in F2 are (sometimes) unions of two lines with a common point
q P
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Geometry of finite fields: exotic behaviour

Conics Q(c, r) :={(x,y) € F2 : x> — cy? = r} come in five
different sizes:
° [Q(0,0)[=q
@ |Q(c,0)] =1if cis not a square in Fy
o |Q(c,0)| =2qg—1if c#0is asquare in F,
Related: Circles of radius zero in ]Fﬁ are (sometimes) unions of two lines with a common point
e |Q(c,r)=q—1if c#0is asquarein Fgand r #0

Change variables (x, y) — (x — ay, x + ay) with o = c:

1{(u,v) EIE%: uv = r}| = [{(u, ) ue Fi}=q-1
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Geometry of finite fields: exotic behaviour

Conics Q(c, r) :={(x,y) € F2 : x> — cy? = r} come in five
different sizes:
0 1Q(0,0)| = g
e |9(c,0)| =1if cis not a square in F,
e |Q(c,0)| =2g—1if c #0is asquare in Fy
Related: Circles of radius zero in F2 are (sometimes) unions of two lines with a common point
o |Q(c,r))=qg—1if c#0isasquarein Fgand r #0
Change variables (x, y) — (x — ay, x + ay) with a? = c:
[{(u,v) € IF?] cuv=r} = |{(u,rut): v e Fr}=q—1
o |Q(c,r)]=q+1if cisnot asquarein Fyand r #0

Consider the quadratic field extension Fg(c)/Fq, where o € ]leg satisfies o = c:

1Q(e, Nl = {(x,y) €Fg: (x+ay)(x —ay) = r}
= Hxy) €Fg: (x+ay)T = r}]
={aeFq(a): a¥ =r}|=g+1

D. Oliveira e Silva, IST Sharp extension inequalities on finite fields



Two-fold convolution measure on P2
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Two-fold convolution measure on P2

We have 0¥ = §p + K
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Two-fold convolution measure on P2

We have ¢V = §p + K, where the Bochner—Riesz kernel K satisfies
K(x,0) =0 and, if t # 0,

2

K<x’f>=|§z| Do elx-€+16%) = p25(0)e(~5)
(£,6%)eP?
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Two-fold convolution measure on P2

We have ¢V = §p + K, where the Bochner—Riesz kernel K satisfies
K(x,0) =0 and, if t # 0,

K<x’f>=|§z| Do elx-€+16%) = p25(0)e(~5)
(£,6%)eP?

Here, S(t) = Y, cp, e(ts?) = (g) S(1) and S(1) = £,\/p.
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Two-fold convolution measure on P2

We have ¢V = §p + K, where the Bochner—Riesz kernel K satisfies
K(x,0) =0 and, if t # 0,

2

Kot = g 3 elx- 6+ 1) = pS(ePe(—5)
(£.€%)ep?
Here, S(t) = Yep, e(ts?) = (£) S(1) and S(1) = ¢py/p. Then:
(7:%0)(€:7) = (" P1(€,7)
=1+pt 3 SO e(-F)e(-x &) e(-tr)

(x,t)EFZ xFy

D. Oliveira e Silva, IST Sharp extension inequalities on finite fields



Two-fold convolution measure on P2

We have ¢V = §p + K, where the Bochner—Riesz kernel K satisfies
K(x,0) =0 and, if t # 0,

Kot = g 3 elx- 6+ 1) = pS(ePe(—5)
(£.€%)ep?
Here, S(t) = Yep, e(ts?) = (£) S(1) and S(1) = ¢py/p. Then:
(7:%0)(€:7) = (" P1(€,7)
=1+pt 3 SO e(-F)e(-x &) e(-tr)

(x,t)EFZ xFy

Fubini and x-shift yield:

1 e _ &
("*0)<577>=1+€%p‘1Ze(t(’fj—f)):p{pi”l fr=5
tely
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Two-fold convolution measure on P2

We have ¢V = §p + K, where the Bochner—Riesz kernel K satisfies
K(x,0) =0 and, if t # 0,

Kot = g 3 elx- 6+ 1) = pS(ePe(—5)
(£.€%)ep?
Here, S(t) = Yep, e(ts?) = (£) S(1) and S(1) = ¢py/p. Then:
(7:%0)(€:7) = (" P1(€,7)
=1+pt 3 SO e(-F)e(-x &) e(-tr)

(x,t)EFZ xFy

Fubini and x-shift yield:

1 e _ &
("*0)<577>=1+€%p‘1Ze(t(’fj—f)):p{pi”l fr=5
tely

Orthogonality in the last step.
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Two-fold convolution measure on P2

We have ¢V = §p + K, where the Bochner—Riesz kernel K satisfies
K(x,0) =0 and, if t # 0,

Kot = g 3 elx- 6+ 1) = pS(ePe(—5)
(£.€%)ep?
Here, S(t) = Yep, e(ts?) = (£) S(1) and S(1) = ¢py/p. Then:
(7:%0)(€:7) = (" P1(€,7)
=1+pt 3 SO e(-F)e(-x &) e(-tr)

(x,t)EFZ xFy

Fubini and x-shift yield:

(ox0)(§,7) = 1+€,23p_1 Z e(t(%_T)) — 1

p
teFy

Orthogonality in the last step. Alt. five conic sizes (also-q ==p
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Convolution measures on F?

Proposition (Paraboloids)

Let d, k > 2 and p > k be an odd prime. Let ¢ = ops denote the
normalized surface measure on the paraboloid P* C F4™. Then

o*(&,7) = 1+ &5 ‘o, 7), (€ 7)€ Tt

where e, € {1, i} depending on whether p = (£1) mod 4, and

Pli g2y —1 2|d
(P=1)(k+1)
(&, 7) = (=1 ( 1()( 21)(171{7 /i~ Y ¢ 2
P— P v —T
ep/P(—1) + 2(k) (&) < /:; ) 21d,2/k
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Convolution measures on F?

Proposition (Paraboloids)

Let d, k > 2 and p > k be an odd prime. Let ¢ = ops denote the
normalized surface measure on the paraboloid P* C F4™. Then

d(1

ok (e,7) = 1+ 206V e, 1), (,7) e FIH

where e, € {1, i} depending on whether p = (£1) mod 4, and
PLir—gzig 1 2|d
( )0kt
p(¢, 1) =< (1) (p) Pl{r ek — 1) 21d,k
2
ep/B(—1) R Tl () (£141) 544k

Proof: Fourier inversion, orthogonality, Gauss sums, quadratic
reciprocity
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Muito obrigado

Oliveira e Silva, IST Sharp extension inequalities on finite fields
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