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Introduction: the ideia of Ergodic Theory

The general scenario:

A space X ;

σ-algebra A in X ;

An invariant measure µ and

A transformation T : X → X , (the dynamical system.)

A measure µ is said to be T -invariant if µ(T−1(A)) = µ(A) for
every A ∈ A.

Given any point x ∈ X we have its orbit:

x ,T (x),T 2(x), ...,T n(x)...
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Some Interesting Questions

1 Let A ⊂ X , A ∈ A and µ(A) > 0. Is there any point x ∈ A
such that T n(x) ∈ A for some n ≥ 1?

2 If they exist, how many ”returning” points are there? and
more...

3 How many times they are coming back?
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Recurrence

Answering the questions, we have the classical Poincare’s Recur-
rence Theorem:

Theorem 1.

Let T : X → X a measurable transformation and let µ be a finite
T -invariant measure in X . If A ⊂ X is measurable, then the set

B = {x ∈ A : T nx ∈ A for infinitely many n ∈ N}

has measure µ(B) = µ(A).
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Recurrence

Proof: We have

B = A ∩

( ∞⋂
n=1

∞⋃
k=n

T−k(A)

)
= A \

∞⋃
n=1

(
A \

∞⋃
k=n

T−k(A)

)
. (1)

Moreover,

A \
∞⋃
k=n

T−k(A) ⊂
∞⋃
k=0

T−k(A) \ T−n
( ∞⋃

k=0

T−k(A)

)
. (2)

On the other hand, since µ is T -invariant we have

µ

( ∞⋃
k=0

T−k(A)

)
= µ

(
T−n

( ∞⋃
k=0

T−k(A)

))
(3)
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Recurrence

Moreover, since

∞⋃
k=0

T−k(A) ⊃
∞⋃
k=n

T−k(A) = T−n

( ∞⋃
k=0

T−k(A)

)

and µ is finite, it follows from (2) and (3) that

µ

(
A \

∞⋃
k=n

T−k(A)

)
≤ µ

( ∞⋃
k=0

T−k(A)

)
−µ

(
T−n

∞⋃
k=0

T−k(A)

)
= 0

and from (1) we conclude that µ(B) = µ(A).
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Recurrence:The Decimal Expansion

T : [0, 1]→ [0, 1], T (x) = 10x−[10x ], where [10x ] represents the
greatest integer less or equal to 10x , that is, T (x) is the fractional
part of 10x .
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Decimal Expansion Transformation

This transformation is related to the decimal expansion algorithm:
if x is given by

x = 0.a0a1a2a3..., aj ∈ {0, 1, 2, ..., 9},

then its image is given by

T (x) = 0.a1a2a3a4...

and for every n ≥ 1 we have that

T n(x) = 0.anan+1an+2an+3...

We also have an important thing: Lebesgue measure m in [0, 1] is
T -invariant.
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Recurrence:The Decimal Expansion

Now let E7 be the set of all x ∈ [0, 1] which decimal expansion starts
with the digit 7, that is, a0 = 7.

By the Poincare’s recurrence theorem, there are infinite numbers
n ≥ 1 such that T n(x) ∈ E7, that is, an = 7 for infinite numbers
n ∈ N.

Almost every number x which decimal expansion starts with
7 has infinite digits equal to 7.
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Another Interesting Question: The Idea of Frequency

What can we say about the frequency with which an orbit
visits a given set?
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Frequency

Let T : X → X and A ⊂ X . Given x ∈ X and n ∈ N, we define

τn(A, x) := card{k ∈ {0, 1, ..., n − 1} : T k(x) ∈ A}.

This is the same as writing

τn(A, x) =
n−1∑
k=0

χA(T k(x)),

where χA is the characteristic function of the set A. When the limit

τ(A, x) := lim
n→∞

τn(A, x)

n
= lim

n→∞

1

n

n−1∑
k=0

χA(T k(x))

exists, it gives the frequency with which the orbit of x visits the set
A.
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Frequency

By Poincare’s recurrence theorem, τn(A, x) → ∞ when n → ∞,
for µ-almost every x ∈ A, but it gives no information about the
frequency.

So,
In what conditions the frequency exists?
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Boltzmann Ergodic Hypothesis

This question started when the physicist Ludwig Boltzmann (1844-
1906) was developing the Kinetic Theory of Gases.

Boltzmann needed of an important condition, which is known to-
day as the Ergodic Hypothesis. Mathematically, the hypothesis is
stated as follows:

Ergodic Hypothesis: For systems describing the movement of par-
ticles, the frequency τ(A, x) for any measurable set A exists and is
proportional to the measure of A, for almost every point x .

In modern Ergodic Theory, this is the subject considered by Birkhoff’s
Ergodic Theorem.
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Birkhoff’s Ergodic Theorem

Before the statement of the theorem, some important definitions:

Definition 2.

Given a transformation T : X → X , we say that:
1 A set A ⊂ X is T -invariant if T−1(A) = A.
2 A function φ : X → R is T -invariant if φ(T (x)) = φ(x) for

every x ∈ X .

And now, the formal statement of the Theorem:
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Birkhoff’s Ergodic Theorem

Theorem 3.

( Birkhoff’s Ergodic Theorem) Let T : X → X be a measurable
transformation and let µ be a finite T -invariant measure in X . If
φ ∈ L1(X , µ), then the limit

φT (x) := lim
n→∞

1

n

n−1∑
k=0

φ(T k(x))

exists for µ-almost every x ∈ X and
1 φT is T -invariant almost everywhere.
2 φT ∈ L1(X , µ) and ∫

X
φTdµ =

∫
X
φdµ.
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Birkhoff’s Ergodic Theorem

In particular, when φ = χA, we obtain the result for the frequency:

τ(A, x) := lim
n→∞

τn(A, x)

n
= lim

n→∞

1

n

n−1∑
k=0

χA(T k(x))

with τ(A, x) ∈ L1(X , µ) and
∫
X τ(A, x)dµ = µ(A).

Since,

1

n

n−1∑
k=0

φ(T k+1(x)) =
n + 1

n
· 1

n + 1

n∑
k=0

φ(T k(x))− φ(x)

n
,

φT (T (x)) is well defined ⇐⇒ φT (x) is well defined and

φT (T (x)) = φT (x).
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Ergodicity

Here we introduce an important concept in ergodic theory: the no-
tion of ergodic measure.

Definition 4.

Let T : X → X be a transformation and µ a measure in X . µ is
called ergodic with respect to T if the measure of any T -invariant
subset A ⊂ X satisfies µ(A) = 0 or µ(X \ A) = 0. In this case
we also say that T is ergodic with respect to µ or that the system
(T , µ) is ergodic.

We note that an ergodic measure is not necessarily invariant.
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Birkhoff’s Theorem for Invariant Ergodic Measures

Now we consider the particular case of ergodic invariant measures.

Theorem 5.

Let T : X → X be a measurable transformation and let µ be T -
invariant ergodic measure in X with µ(X ) < ∞. If φ ∈ L1(X , µ),
then

lim
n→∞

1

n

n−1∑
k=0

φ(T k(x)) =
1

µ(X )

∫
X
φdµ

for µ-almost every x ∈ X .

Taking in particular φ = χA for some subset A ⊂ X we obtain the
result asked for Boltzmann in his Ergodic Hypothesis:

τ(A, x) = lim
n→∞

τn(A, x)

n
=
µ(A)

µ(X )
for µ-almost every x ∈ X .
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Ergodicity

In most cases, to show that a measure is ergodic is not a
simple task!

In general, there is no algorithm to determine if a measure is ergodic.

For example, in some cases we can use a little bit of Fourier analysis
with some criterion.
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Some simple applications

Now we use some of these tools from Ergodic Theory to obtain
some interesting results of Number Theory.

These are just simple cases and there are a lot of more sophisticated
applications.
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Fractional Parts of Polynomials

Consider the polynomial P(t) = a0t
r + a1t

r−1 + · · · + ar , where
r ∈ N and a0, a1, ..., ar ∈ R.

Definition 6.

The numbers Pn = P(n) mod 1 ∈ [0, 1), for n ∈ N, are called the
fractional parts of the polynomial P.

Now we introduce the notion of uniformly distributed sequence.

Definition 7.

We say that a sequence (yk)k∈N ⊂ [0, 1] is uniformly distributed if

lim
n→∞

1

n

n∑
k=0

φ(yk) =

∫ 1

0
φ(x)dx

for every continuous function φ : [0, 1]→ R.
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Fractional Parts of Polynomials

Degree 1: Given r = 1, a0 = α ∈ R \Q, and a1 = β ∈ R, we have
Pn = T n(β), where T (x) = x + α mod 1 (Irrational Traslation).

T is Ergodic w.r.t. m (using the criterion and Fourier
coefficients);

The Lebesgue measure m is T -invariant.

By B.E.T for ergodic invariant measures, for any continuous function
φ : [0, 1]→ R, we have

lim
n→∞

1

n

n∑
k=0

φ(Pk) = lim
n→∞

1

n

n∑
k=0

φ(T k(β)) =

∫ 1

0
φ(x)dx

for Lebesgue-almost every β ∈ R. Then, (Pn)n∈N with P(t) =
αt+β is uniformly distributed for Lebesgue-almost every β ∈ R.
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Fractional Parts of Polynomials

Now we consider polynomials of degree 2.

Proposition 8.

Given α ∈ R \Q, the sequence (Pn)n∈N of fractional parts of the
polynomial P(t) = αt2 + βt + γ is uniformly distributed for
Lebesgue-almost every (β, γ) ∈ R2.

Proof: Let T : T2 → T2 be defined by

T (x , y) = (x + α, y + 2x + α) mod 1

T n(x , y) = (x+nα, αn2+2nx+y) mod 1 = (x+nα,Pn) mod 1

for every n ∈ N, with β = 2x and γ = y .
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Fractional Parts of Polynomials

We have that

m is T -invariant;

m is ergodic with respect to T .

Given ψ : [0, 1]→ R, we can define a continuous function in T2 by
φ(x , y) = ψ(y). By the B. E. T. for ergodic invariant measures:

lim
n→∞

1

n

n∑
k=1

φ(Pk) = lim
n→∞

1

n

n∑
k=1

φ(T k(x , y))

=

∫
T2

φdm

=

∫ 1

0
ψ(τ)dτ

for m-almost every (x , y) ∈ T2, and thus for Lebesgue almost every
(β, γ) ∈ R2, as desired.

Carllos Eduardo de Holanda Application of Ergodic Theory to Number Theory



And one more application: Continued Fractions

Definition 9.

We define the Gauss transformation T : [0, 1)→ [0, 1) by

T (x) =

{
1
x mod 1 if x 6= 0,
0 if x = 0;
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Continued Fractions

Given an irrational number x ∈ (0, 1), we can define positive integers

nj(x) =

⌊
1

T j−1(x)

⌋
(4)

for each j ∈ N.
Since

T j(x) = T (T j−1(x)) =
1

T j−1(x)
− nj(x),

we obtain

T j−1(x) =
1

nj(x) + T j(x)

for each j ∈ N.
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Continued Fractions

Therefore,

x =
1

n1(x) + T (x)
=

1

n1(x) + 1
n2(x)+T 2(x)

=
1

n1(x) + 1
n2(x)+

1
n3(x)+T3(x)

and so on. Furthermore, we can prove that the sequence

1

n1(x)
,

1

n1(x) + 1
n2(x)

,
1

n1(x) + 1
n2(x)+

1
n3(x)

, ...

converges to x . So we simply write

x =
1

n1(x) + 1
n2(x)+···

(5)

The right-hand side of (11) is what we call continued fraction of x .
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Continued Fractions

What is the frequency with which an integer k ∈ N occurs in
the sequence n1(x), n2(x), ...?

Translation to the language of Ergodic Theory: It follows that

nj(x) = k ⇐⇒ T j−1(x) ∈
(

1

k + 1
,

1

k

]
.

Therefore, given an irrational number x ∈ (0, 1), the frequency with
which k ∈ N appears in the sequence n1(x), n2(x), ... is given by

ηk(x) := lim
n→∞

1

n
card{j ∈ {1, ..., n} : nj(x) = k}

= lim
n→∞

1

n

n∑
j=0

χ( 1
k+1

, 1
k

](T j−1(x)),

whenever this limit exists.
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Continued Fractions

We want to show that ηk(x) is well defined for Lebesgue almost
every x ∈ (0, 1). We start by defining an appropriate measure.

Definition 10.

The Gauss measure is the probability measure µ in [0, 1) defined by

µ(A) =
1

log 2

∫
A

dx

1 + x

for each measurable set A ⊂ [0, 1).

We note that

m(A)

2 log 2
≤ µ(A) ≤ m(A)

log 2
, where m is the Lebesgue measure.

Carllos Eduardo de Holanda Application of Ergodic Theory to Number Theory



Continued Fractions

µ is absolutely continuous with respect to m and vice-versa. That
is, the Gauss measure is equivalent to Lebesgue measure.

We have the following properties:

Proposition 11.

1 The Gauss transformation preserves the Gauss measure;
2 The Gauss measure is ergodic with respect to Gauss

transformation.

Now, one more time we can apply the B. E. T. for invariant ergodic
measures.
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Continued Fractions

Then, it follows that

ηk(x) = lim
n→∞

1

n

n∑
j=0

χ( 1
k+1

, 1
k

](T j−1(x))

=

∫
[0,1)

χ( 1
k+1

, 1
k

]dµ
=

1

log 2

∫ 1\k

1\(k+1)

dx

1 + x

=
1

log 2
log

(k + 1)2

k(k + 2)

for µ-almost every x ∈ [0, 1). So, we actually have a formula for the
frequency!!!

For example, the frequency with which k = 1 occurs is given by
η1(x) = 1

log 2 log 4
3 ≈ 0.415.
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Continued Fractions

Since d
dx

(
log (x+1)2

x(x+2)

)
= − 1

x(x+1)(x+2) < 0 for x > 0, all frequen-

cies ηk(x) are distinct and

η1(x) > η2(x) > η3(x) > · · ·

for µ-almost every x ∈ [0, 1).

Carllos Eduardo de Holanda Application of Ergodic Theory to Number Theory



References

1 L. Barreira. Ergodic Theory, Hyperbolic Dynamics and
Dimension Theory, Springer, 2012.

2 K. Dajani, C. Kraaikamp. Ergodic Theory of Numbers, The
Mathematical Association of America, 2002.

3 K. Oliveira, M. Viana. Fundamentos da Teoria Ergódica,
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