· Trop(Y) = alymp- directions along which Y $S(Y) = \alpha y$ mp. directions along which Y
(approacher infinity (exponentially). also called Logarithmic limit set. $Ex.$ $T = (C^*)^2$ $y = \{x+y+1=0\}$ ine $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = (4) \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 1 \times 19 + 1 = 01 \rightarrow 100$ directions along which

oncher infinity (export)

thmic limit set.
 $y = \{x + y + 1 = 0\}$
 $\frac{1}{2}$

frop(y)

setties : $|\Sigma| = \text{trop}(y)$ Relation with toric varieties: $|\Sigma| = \text{trop}(y)$ lation with toric vanieties: $|\Sigma|$ = trop(y)
 X_{Σ} is the "smallest" toric variety s.t. $\overline{Y} \subset X_{\Sigma}$ X_E is the "small
is compact/complete is compact/complete. P {3 pts} $(0:0:1) (0:1:0) (1:0:0)$. Some properties of amoebas: - Log_t (Y) closed. (3 pts)
0:0:1) (0 - Every Comp. Comp. of $\mathbb{R}^n\setminus L_{\mathfrak{A}_t}(\gamma)$ is convers - Ronkin function -> Convex function & affine on each $Log_{t}(y)$ Closed.
Every Comm. Comp. of $\mathbb{R}^{n} \setminus Log_{t}(y)$ is convert.
Ronkin function \rightarrow Convert function & affine on each function & affine on each
Conn- Comp. of the amoeba moeba.
Complement. Extension to non-abelian case · 6= 6Ln(K) K ⁼ Will max, coup sulgp

· More generally one can consider ^a <u>reductive</u> reductive More generally
alg. gp. 6 / C
g. G= GL_n(C) alg. gp. 6/C. e. alg. gp. G / C .
g. $G = GL_n(C)$, SL_n(C), SO_n(C), Sp_{2n}(C),.. . Eliyashev: Geo of generalized amoebas (2016). alg. $gp. G / C$.
 $e.g. G = GL_n(C)$, $SL_n(C)$, $SO_n(C)$, $Sp_{2n}(C)$, ...
 \cdot Eliyashev: Geo. of generalized amoebas (2016).

I don't know the relation with the previous construction · 6x6 - ⁶ Cartan decoup. describes KxK-orbit space of 6. . More generally one

alg. gp. $G = GL_n(C)$,

e.g. $G = GL_n(C)$,

. Eliyasher: Geo.

I don't know the

. $G \times G$ G (

. $G \times G$ G (

. $G \times G$ T V variety Cane G V TUX Nome nothing to do with sphere!

variety Some from sph. harmonics Name nome sph. functionics Def. Vancety TMX

Vancety Comer

X is a spherical G-vaniety if a Borel subga
har a denne orbit. compact has a dense orbit. Smooth Compact has
Smooth Smooth
For Symp. geo : Grax C DIV) $\langle \cdot, \cdot \rangle$ K-in Hermitian product on I ^⑳ Kahler form induced from <1 - 7 co Kahler form induce $-X$ sph. iff X multi-free K -space (Symp. reds = pt.) - $*$ k^X \cong Kirwan polytope = $M(X) \cap t^*$ Book
D. Timasher

$$
G \cap G_{H} = homog. space
$$
\n
$$
S_{12}(C) / T
$$
\n
$$
G_{16} \cap G = (G * G) / G_{diag} = \{(9,9)\}
$$
\n
$$
S_{1n}(C) / S_{Gn}(C) = \text{Spra of quadrics}
$$
\n
$$
G_{H} = \sum_{\text{unip-tanh}} \{[e^{i\pi t}]\}
$$
\n
$$
G_{H} = \sum_{\text{unip-tanh}} \{[e^{i\pi t}]\}
$$
\n
$$
G_{H} = \{1\}
$$
\n
$$
G_{H} = \{1\}
$$
\n
$$
G_{H} = \{1\}
$$
\n
$$
K_{H} = \{1\}
$$
\n
$$
K_{H
$$

 $G^{0}G/H$ Sph. homog. space (G-equiv. Comportifications ~ Luna-Vust theory) $\nu^{\Omega}: (K^*)^n \longrightarrow \mathbb{Q}^n \longrightarrow \nu^{\Omega}: G/H^{(K)} \longrightarrow V_{G/H}^c \subset \mathcal{Q}_{G/H}$ Co-simplicial $V_{G_H^+} = \{G_{-i\mathbf{w}}, \mathbf{wL}, \mathbf{v}: \mathfrak{C}(G_H^+)\rightarrow\mathfrak{Q}\}$ Batyrev: describe $K\setminus G/H$ Stated in [BHHK] Batyrev's Conj: KJG/H is a stratified manifold with Corners where the boundary strata are in natural bijection with the faces of the val. Come $V_{G/H}$ & one Can recover K-stabilizer of each strata os the mox. Comp. subap. in the satellite subap. of or. BCV)
X M Kirwon polytope Tonic Case: $\begin{CD} \begin{picture}(180,10) \put(0,0){\line(1,0){15}} \put(15,0){\line(1,0){15}} \put(15,$ Question: Can we define a sph. Log. map which extends the above dingram to G/H in place of T?

 $G_{H} \xrightarrow{?} \mathbb{R}^{r} = Q_{G_{H}}$
parametrizing K-orbit? Akhiezer's sph. Functions $\lambda \in \Lambda_{G_{\mathcal{H}}}$ = wt. of B-eigen functions in $\mathbb{C}(G_{\mathcal{H}})$. $\subset \Lambda_G$ wt lattice $\frac{1}{2}$ 6 lattice of G/H . Suppose G/H quari-affine - C[G/H] multi-free G-module **A. D. VX** V C C[GH] {fri] orth normal banis with K-inv. for V_1 Herm. prod. $\frac{1}{\sqrt{2\pi}}$ d $(x) = \sum |f^{y(i)}(x)|^2$ Normalize ϕ_{λ} by requiring $\phi_{\lambda}(\text{eH}) = 1$. (Akhierer) $rac{P_{top.}}{P_{top.}}$ (c[GH]. $\overline{C[G_{H}]}$)^K = $\bigoplus_{\lambda \in \Lambda_{G_{H.}}^{+}} C \uparrow \chi$. [BHHK] ϕ_{λ} , $\lambda \in \Lambda_{GM}^{+}$ separate K-orbits in G_{H} . Prop. + offer properties.

 \cdot \lceil = { λ , \cdot ..., λ ; } gen. Λ $_{G/\mathcal{H}}^{\star}$ as a monoid/semigp. \Rightarrow We Propose: $\begin{array}{ccc}\n\text{sLog} & \text{s} & \text{s} & \text{on the edge of the right,} \\
\hline\n\text{SLog} & \text{Sy} & \text{Sy} & \text{Sy} & \text{Sy} & \text{Sy} \\
\hline\n\text{Sy} & \text{s} & \text{s} & \text{s} & \text{s} \\
\text{Sy} & \text{s} & \text{s} & \text{s} & \text{s} \\
\text{slog} & \text{s} & \text{s} & \text{s} & \text{s} \\
\text{Sy} & \text{s} & \text{s} & \text{s} & \text{s} \\
\text{Sy} & \text{s} & \text{s} & \text{s} & \text{s} \\$. We prove some partial results in regard to slog_{T,t} e.g. lim slog_{rit} G_H) G_H .
We expect equality to hold

4.1. Two small examples with $G = SL_2(\mathbb{C})$.

4.1.1. The case of $X = SL_2(\mathbb{C})/T = (\mathbb{P}^1 \times \mathbb{P}^1) \setminus \Delta$. Let $G = SL_2(\mathbb{C})$ and let $H = T$, the maximal (diagonal) torus of G. Consider the action of G on \mathbb{P}^1 by left multiplication, and the corresponding diagonal action of G on $\mathbb{P}^1 \times \mathbb{P}^1$. Then it is not hard to see that the stabilizer of the point $x_0 = (1:0],[0:1]) \in \mathbb{P}^1 \times \mathbb{P}^1$ is precisely T, and that the orbit of x_0 under the G-action is $\mathbb{P}^1 \times \mathbb{P}^1 \setminus \Delta$, where Δ denotes the diagonal copy of \mathbb{P}^1 in the direct product. The compact group K is $SU(2)$ in this case. The (diagonal) action of $SU(2)$ on $\mathbb{P}^1 \times \mathbb{P}^1$ has moment map

$$
\Phi([z],[w])=\frac{i}{2}\left(\frac{zz^*}{||z||^2}+\frac{ww^*}{||w||^2}\right)-\left(\frac{i}{4||z||^2}\text{tr}(zz^*)+\frac{i}{4||w||^2}\text{tr}(ww^*)\right)\cdot I_{2\times 2}\in \mathfrak{su}(2)^*
$$

where ([z], [w]) are homogeneous coordinates on $\mathbb{P}^1 \times \mathbb{P}^1$ (so z, w are considered as elements of \mathbb{C}^2) and $I_{2\times 2}$ denotes the 2×2 identity matrix. Composing this with the map which quotients by the coadjoint action of $SU(2)$ on $\mathfrak{su}(2)^*$, i.e., the so-called "sweeping map" $\mathfrak{su}(2)^* \to \mathbb{R}_{>0} = \mathfrak{su}(2)/SU(2)$, yields that the Kirwan map $\mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{R}_{\geq 0}$ is given by

$$
([z],[w])\longmapsto \frac{1}{2}\sqrt{\left(\frac{|z_1|^2}{\|z\|^2}+\frac{|w_1|^2}{\|w\|^2}-1\right)^2+\left(\frac{|z_1|^2|z_2|^2}{\|z\|^4}+\frac{2{\rm Re}(z_1\overline{w}_1\overline{z}_2w_2)}{\|z\|^2\|w\|^2}+\frac{|w_1|^2|w_2|^2}{\|w\|^4}\right)}
$$

The Kirwan polytope (i.e. the image of $\mathbb{P}^1 \times \mathbb{P}^1$ under the above map) is the interval $[0, \frac{1}{2}]$ and the image of the diagonal is straightforwardly computed to be $\frac{1}{2}$, so the distinguished K-orbit (the diagonal) corresponds to the boundary value.

There is also another natural parametrization of K-orbits which can be described in terms of the angle between two complex lines in \mathbb{C}^2 . More specifically, given $([z],[w]) \in \mathbb{P}^1 \times \mathbb{P}^1$ where $z, w \in \mathbb{C}^2 \setminus \{0\}$, we may define

$$
\rho([z],[w]):=1-\frac{|\langle z,w\rangle|^2}{\|z\|^2\|w\|^2},
$$

where $\langle z, w \rangle$ is the standard Hermitian product on \mathbb{C}^2 . Geometrically, ρ is the quantity $\sin^2(\theta)$ where θ is the angle between the two complex lines spanned by z and w , or equivalently, the spherical distance between two distinct points $p, q \in \mathbb{P}^1 = S^2$ if we represent p, q by complex vectors $z, w \in \mathbb{C}^2$ with $||z|| = ||w|| = 1$. It turns out that $\rho([z],[w]) = \rho([z'],[w'])$ if and only if the two pairs $([z],[w]),([z'],[w'])$ are in the same $K = SU(2)$ -orbit, so the function ρ provides a parametrization of K-orbits in G/T . It follows from the Cauchy-Schwarz inequality that the image of ρ is the interval (0,1). Thus, composing ρ with $-\log$, i.e. $(|z|, |w|) \longrightarrow -\log(\rho([z], |w|))$, we obtain an identification of the K-orbit space with the valuation cone (which in this case is $\mathbb{R}_{>0}$).

Finally, there is also our spherical function ϕ_2 corresponding to the irreducible representation of $SL_2(\mathbb{C})$ of highest weight 2 in $\mathbb{C}[\operatorname{SL}_2(\mathbb{C})/T]$. This can be computed to be

$$
b_2([z], [w]) = \frac{1}{|z_1w_2 - z_2w_1|^2} \left(|z_1w_1|^2 + \frac{1}{2}|z_1w_2 + w_1z_2|^2 + |z_2w_2|^2 \right).
$$

One can show that $\phi_2([z],[w]) \geq 1/2$. On the other hand, $\phi_2([1:1),(-1:1)) = 1/2$. This shows that the image of ϕ_2 is $[1/2, \infty)$. Hence we have a parametrization of the K-orbits by the points in this interval. One can obtain a parametrization of the K-orbit space by $\mathbb{R}_{\geq 0}$ (the valuation cone) by taking the limit, as $t \to 0$. of the image of $-\log_{1}(\phi_{2})$.

The above computations show that, in this case, we have three parametrizations of the space of K-orbits $SU(2)\backslash SL_2(\mathbb{C})/T$ by (half open) intervals in R, namely: the spherical function ϕ_2 above, the Kirwan map computed above, and the map ρ as above.

4.1.2. The case of $X = SL_2(\mathbb{C})/N(T)$. As in the last section, we take $G = SL_2(\mathbb{C})$ but this time we take $H = N(T)$. In this situation we have $N(T)/T \cong \mathbb{Z}/2\mathbb{Z}$ so there is a natural map $SL_2(\mathbb{C})/T \to SL_2(\mathbb{C})/N(T)$. The homogeneous space $SL_2(\mathbb{C})/N(T)$ can be identified with $\mathbb{P}^2 \setminus Q$ where Q is a smooth conic, as follows: consider the map $Sym^1(\mathbb{C}^2) \times Sym^1(\mathbb{C}^2) \to Sym^2(\mathbb{C}^2)$ given by multiplication. Note that $Sym^1(\mathbb{C}^2) \cong \mathbb{C}^2$ and $\text{Sym}^2(\mathbb{C}^2) \cong \mathbb{C}^3$. This product map induces a morphism $(\mathbb{P}^1 \times \mathbb{P}^1) \setminus \Delta \to \mathbb{P}^2 \setminus Q$, where Q is the smooth conic defined by the vanishing of the discriminant on $\text{Sym}^2(\mathbb{C}^2) \cong \mathbb{C}^3$. One sees that the natural projection $SL_2(\mathbb{C})/T \to SL_2(\mathbb{C})/N(T)$ is then identified with $(\mathbb{P}^1 \times \mathbb{P}^1) \setminus \Delta \to \mathbb{P}^2 \setminus Q$. The non-identity element in the quotient $N(T)/T \cong \mathbb{Z}/2\mathbb{Z}$ corresponds to the involution on $\mathbb{P}^1 \times \mathbb{P}^1$ exchanging the two factors. This