Orbifold data

as gaugeable non-invertible symmetries

Nils Carqueville

Universität Wien

based on joint work with Ilka Brunner, Catherine Meusburger, Vincentas Mulevičius, Daniel Plencner, Ana Ros Camacho, Ingo Runkel, Gregor Schaumann, Daniel Scherl, and Lukas Müller: arXiv:2307.06485 [math.QA]

overview: arXiv:2307.16674 [math-ph]

slides: https://carqueville.net/nils/orbdat.pdf

In a nutshell

Orbifold data ... are algebraic representations of Pachner moves

- ... are objects of a higher Morita category
- ... are special defects in defect TQFT
- ... are gaugeable (non-invertible) symmetries

... give rise to state sum models

In a nutshell

Orbifold data ... are algebraic representations of Pachner moves ... are objects of a higher Morita category ... are special defects in defect TQFT ... are gaugeable (non-invertible) symmetries ... give rise to state sum models

Theorem. Let \mathcal{T} be 3-category with duals. The higher Morita category \mathcal{T}_{orb} of orbifold data in \mathcal{T} has duals.

Theorem. Let \mathcal{Z} be 3d defect TQFT and $\mathcal{D}_{\mathcal{Z}}$ its 3-category with duals. From $(\mathcal{D}_{\mathcal{Z}})_{\mathrm{orb}}$ one obtains 3d **defect TQFT** $\mathcal{Z}_{\mathrm{orb}}$.

Applications.

- "Defect state sum models are orbifolds of the trivial defect TQFT."
- "Reshetikhin-Turaev defect TQFTs without thinking"
- "Douglas-Reutter 4-manifold invariants via orbifolds"

k-cells = higher modules and module maps

Closed TQFT

An *n*-dimensional closed oriented TQFT is symmetric monoidal functor

$$\operatorname{Bord}_{n,n-1}^{\operatorname{or}} \longrightarrow \mathcal{C}$$

Closed TQFT

An *n*-dimensional closed oriented TQFT is symmetric monoidal functor

$$\operatorname{Bord}_{n,n-1}^{\operatorname{or}} \longrightarrow \mathcal{C}$$

Classification.

- (1d closed oriented TQFTs) \cong (dualisable objects)
- (3d closed oriented TQFTs) \cong (J-algebras)
- (4d closed oriented TQFTs) \cong ??
- (2d closed oriented TQFTs) \cong (commutative Frobenius algebras)

Juhasz 2014

Defect TQFT

An *n*-dimensional defect TQFT is symmetric monoidal functor $\operatorname{Bord}_{n,n-1}^{\operatorname{def}}(\mathbb{D}) \longrightarrow \mathcal{C}$

depending on set of $\mbox{defect data}\ \mathbb D$ consisting of

- set D_n of "bulk theories"
- sets D_j of *j*-dimensional "defects" for $j \in \{0, 1, \dots, n-1\}$
- adjacency rules...

Defect TQFT

An *n*-dimensional defect TQFT is symmetric monoidal functor $\operatorname{Bord}_{n,n-1}^{\operatorname{def}}(\mathbb{D}) \longrightarrow \mathcal{C}$

depending on set of $\mbox{defect data}\ \mathbb D$ consisting of

- set D_n of "bulk theories"
- sets D_j of *j*-dimensional "defects" for $j \in \{0, 1, \dots, n-1\}$
- adjacency rules...

Non-full embedding $\operatorname{Bord}_{n,n-1}^{\operatorname{or}} \hookrightarrow \operatorname{Bord}_{n,n-1}^{\operatorname{def}}(\mathbb{D})$ for all $u \in D_n$

Davydov/Kong/Runkel 2011, Carqueville/Runkel/Schaumann 2017

Examples of 2d defect TQFTs

Trivial defect TQFT $\mathcal{Z}_{2}^{\text{triv}}$: $\text{Bord}_{2,1}^{\text{def}}(\mathbb{D}^{\text{triv}_{2}}) \longrightarrow \text{Vect}_{\Bbbk}$ $D_{2}^{\text{triv}_{2}} := \{\Bbbk\}$

$$D_1^{\operatorname{triv}_2} := \operatorname{Ob}(\operatorname{vect}_{\Bbbk}) \qquad \qquad \mathcal{Z}_2^{\operatorname{triv}}\left(\bigcup_{V_m}^{V_1} \right) := V_1 \otimes \cdots \otimes V_m$$

 $D_0^{\operatorname{triv}_2} := \operatorname{Mor}(\operatorname{vect}_{\Bbbk})$

$$\mathcal{Z}_2^{ ext{triv}}\Big(igstarrow \Big) := (ext{evaluate 0- und 1-strata as string diagrams in $ext{vect}_{oldsymbol{k}})$$$

Examples of 2d defect TQFTs

Trivial defect TQFT $\mathcal{Z}_{2}^{\text{triv}}$: $\text{Bord}_{2,1}^{\text{def}}(\mathbb{D}^{\text{triv}_{2}}) \longrightarrow \text{Vect}_{\Bbbk}$ $D_{2}^{\text{triv}_{2}} := \{\Bbbk\}$

$$D_1^{\operatorname{triv}_2} := \operatorname{Ob}(\operatorname{vect}_{\Bbbk}) \qquad \qquad \mathcal{Z}_2^{\operatorname{triv}}\left(\bigcirc_{V_m}^{V_1} \right) := V_1 \otimes \cdots \otimes V_m$$

 $D_0^{\operatorname{triv}_2} := \operatorname{Mor}(\operatorname{vect}_\Bbbk)$

$$\mathcal{Z}_2^{ ext{triv}}\Big(igcar{l}{l}\Big) := (ext{evaluate 0- und 1-strata as string diagrams in $ext{vect}_{\mathbb{k}})$$$

State sum models Z_2^{ss} :

separable symmetric Frobenius k-algebras and bimodules

B-twisted sigma models $\mathcal{Z}^{B\sigma}$:

Calabi-Yau manifolds and their derived categories

Landau–Ginzburg models \mathcal{Z}^{LG} :

isolated singularities and matrix factorisations

Theorem. For \mathcal{Z} : Bord^{def}_{2,1}(\mathbb{D}) $\longrightarrow \mathcal{C}$, there is pivotal 2-category $\mathcal{D}_{\mathcal{Z}}$ with – objects: elements of D_2

- 1-cells $X \colon u \longrightarrow v$ are lists of composable elements of D_1

$$v = t(x_{1}) \qquad \cdots \qquad s(x_{n-2}) \qquad t(x_{n-2}) \qquad t(x_{n}) = t(x_{n-1}) \qquad s(x_{n}) = u$$

$$- \operatorname{Hom}(X, Y) = \mathcal{Z} \begin{pmatrix} (y_{2}, \nu_{2}) & \cdots & (y_{m-1}, \nu_{m-1}) \\ (y_{1}, \nu_{1}) & (y_{m}, \nu_{m}) \\ (x_{1}, -\varepsilon_{1}) & (x_{n-1}, -\varepsilon_{n}) \\ (x_{2}, -\varepsilon_{2}) & \cdots & (x_{n-1}, -\varepsilon_{n-1}) \end{pmatrix}$$

$$- \operatorname{composition: "nair-of-parts with defects"}$$

Theorem. For \mathcal{Z} : Bord^{def}_{2,1}(\mathbb{D}) $\longrightarrow \mathcal{C}$, there is pivotal 2-category $\mathcal{D}_{\mathcal{Z}}$ with - objects: elements of D_2

- 1-cells $X: u \longrightarrow v$ are lists of composable elements of D_1

$$v = t(x_1) \xrightarrow{x_1 \dots x_{n-2}} s(x_{n-1}) = t(x_{n-2}) \xrightarrow{t(x_n) = t(x_{n-1})} s(x_n) = u$$

- Hom $(X, Y) = \mathcal{Z} \begin{pmatrix} (y_2, \nu_2) & \cdots & (y_{m-1}, \nu_{m-1}) \\ (y_1, \nu_1) & (y_m, \nu_m) \\ (x_1, -\varepsilon_1) & (x_2, -\varepsilon_2) & \cdots & (x_{n-1}, -\varepsilon_{n-1}) \end{pmatrix}$
- composition: "pair of pants with defects"

composition: pair-of-pants with defects

Examples. $\mathcal{D}_{\mathcal{Z}_{o}^{\mathrm{triv}}} \cong \mathrm{B} \operatorname{vect}_{\Bbbk}$ $\mathcal{D}_{\mathcal{Z}_2^{ss}} \cong ssFrob(vect_k) \cong (\mathcal{D}_{\mathcal{Z}_2^{triv}})^{\odot}_{orb}$ $\mathcal{D}_{\mathcal{Z}^{\mathrm{LG}}_{\mathrm{o}}} \cong \mathcal{LG}$

Davydov/Kong/Runkel 2011

Examples of 3d defect TQFTs

Reshetikhin–Turaev defect TQFT $\mathcal{Z}_{\mathcal{M}}^{\mathrm{RT}}$ for modular fusion category \mathcal{M} : $D_3^{\mathrm{RT}} := \{ \mathsf{commutative } \Delta \mathsf{-separable Frobenius algebras } A \mathsf{ in } \mathcal{M} \}$ $D_2^{\text{RT}} := \{\Delta \text{-sep. sym. Frobenius alg. } F \text{ with comp. bimodule structure}\}$ $D_1^{\mathrm{RT}} := \{ \text{multimodules } M \}$ $A_3 F_3$ $D_0^{\text{RT}} := \{ \text{multimodule maps} \}$ F_2 $A_2 F_1$ A_1

Trivial defect TQFT
$$\mathcal{Z}_{3}^{\text{triv}} \cong \mathcal{Z}_{\text{vect}_{\Bbbk}}^{\text{RT}} \Big|_{D_{3}^{\text{RT}} \longrightarrow \{\Bbbk\}}$$

Kapustin/Saulina 2010, Carqueville/Runkel/Schaumann 2017, Koppen/Mulevičius/Runkel/Schweigert 2021, Carqueville/Müller 2023

Theorem. For \mathcal{Z} : Bord^{def}_{3,2}(\mathbb{D}) $\longrightarrow \mathcal{C}$, there is 3-category with duals $\mathcal{D}_{\mathcal{Z}}$:

- objects: elements of D_3
- k-cells: (3 k)-fold cylinders over defect k-balls, $k \in \{1, 2\}$
- 3-cells: $\mathcal{Z}($ "defect 2-sphere")
- composition: "pair-of-pants with defects"
- duals: bending lines and surfaces

Theorem. For \mathcal{Z} : Bord^{def}_{3,2}(\mathbb{D}) $\longrightarrow \mathcal{C}$, there is 3-category with duals $\mathcal{D}_{\mathcal{Z}}$:

- objects: elements of D_3
- k-cells: (3 k)-fold cylinders over defect k-balls, $k \in \{1, 2\}$
- 3-cells: $\mathcal{Z}($ "defect 2-sphere")
- composition: "pair-of-pants with defects"
- duals: bending lines and surfaces

Theorem. For \mathcal{Z} : Bord^{def}_{3,2}(\mathbb{D}) $\longrightarrow \mathcal{C}$, there is 3-category with duals $\mathcal{D}_{\mathcal{Z}}$:

- objects: elements of D_3
- k-cells: (3 k)-fold cylinders over defect k-balls, $k \in \{1, 2\}$
- 3-cells: $\mathcal{Z}($ "defect 2-sphere")
- composition: "pair-of-pants with defects"
- duals: bending lines and surfaces

Examples.

$$\begin{array}{lll} \mathcal{D}_{\mathcal{Z}_{3}^{\mathrm{triv}}} &\cong \mathrm{B}\,\mathrm{ssFrob}(\mathrm{vect}_{\Bbbk}) &\cong \mathrm{B}\,\mathcal{D}_{\mathcal{Z}_{2}^{\mathrm{ss}}} \\ \mathcal{D}_{\mathcal{Z}_{3}^{\mathrm{ss}}} &\cong & \left(\mathcal{D}_{\mathcal{Z}_{3}^{\mathrm{triv}}}\right)_{\mathrm{orb}}^{\odot} \supset \mathrm{sFus}_{\Bbbk} \\ \mathcal{D}_{\mathcal{Z}_{\mathcal{M}}^{\mathrm{RT}}} &\cong & \left(\mathrm{B}\,\Delta\mathrm{ssFrob}(\mathcal{M})\right)\right)_{\mathrm{orb}} \end{array}$$

Carqueville/Meusburger/Schaumann 2016, Barrett/Meusburger/Schaumann 2012, Carqueville/Müller 2023

Examples of *n*-dimensional defect TQFTs

Euler defect TQFT $\mathcal{Z}_{\Psi}^{\text{eu}}$: $\operatorname{Bord}_{n,n-1}^{\operatorname{def}} \longrightarrow \operatorname{Vect}_{\Bbbk}$, where

 $\begin{array}{l} \operatorname{Bord}_{n,n-1}^{\operatorname{def}}\colon \mbox{ stratified bordisms without labels}\\ \Psi=(\psi_1,\ldots,\psi_n)\in (\Bbbk^\times)^n \end{array}$

$$\begin{split} \mathcal{Z}_{\Psi}^{\mathrm{eu}}(\text{object } E) &:= \mathbb{k} \\ \mathcal{Z}_{\Psi}^{\mathrm{eu}}(\text{bordism } M) &:= \prod_{j=1}^{n} \prod_{j \text{-strata } \sigma_{j} \subset M} \psi_{j}^{\chi(\sigma_{j}) - \frac{1}{2}\chi(\partial \sigma_{j})} \end{split}$$

Examples of *n*-dimensional defect TQFTs

Euler defect TQFT $\mathcal{Z}_{\Psi}^{\text{eu}}$: $\operatorname{Bord}_{n,n-1}^{\operatorname{def}} \longrightarrow \operatorname{Vect}_{\Bbbk}$, where

Bord^{def}_{n,n-1}: stratified bordisms without labels $\Psi = (\psi_1, \dots, \psi_n) \in (\mathbb{k}^{\times})^n$

$$\begin{aligned} \mathcal{Z}_{\Psi}^{\mathrm{eu}}(\mathsf{object}\ E) \ := \ \mathbb{k} \\ \mathcal{Z}_{\Psi}^{\mathrm{eu}}(\mathsf{bordism}\ M) \ := \ \prod_{j=1}^{n} \ \prod_{j \text{-strata}\ \sigma_j \subset M} \psi_j^{\chi(\sigma_j) - \frac{1}{2}\chi(\partial\sigma_j)} \end{aligned}$$

Euler completion \mathcal{Z}^{\odot} of any defect TQFT \mathcal{Z} satisfies $(\mathcal{Z}^{\odot})^{\odot} \cong \mathcal{Z}^{\odot} \qquad \mathcal{Z}^{\odot} \otimes \mathcal{Z}_{\Psi}^{eu} \cong \mathcal{Z}^{\odot}$

Euler completion $\mathcal{D}_{\mathcal{Z}}^{\odot} \cong \mathcal{D}_{\mathcal{Z}^{\odot}}$ of higher defect categories

Quinn 1995, Carqueville/Runkel/Schaumann 2017

Δ -separable symmetric Frobenius algebras

 $A \in \mathcal{C}$ with

such that

(A need not be commutative.)

Input: Δ -separable symmetric Frobenius \Bbbk -algebra (A, μ, Δ)

(1) Choose oriented triangulation t for every bordism Σ in Bord^{or}_{2,1}
(2) Decorate Poincaré dual graph with (k, A, μ, Δ):

(3) Obtain
$$\Sigma^{t,A}$$
 in $\operatorname{Bord}_{2,1}^{\operatorname{def}}(\mathbb{D}^{\operatorname{triv}})$ and define $\mathcal{Z}_A(\Sigma) = \mathcal{Z}_2^{\operatorname{triv}}(\Sigma^{t,A})$

Input: Δ -separable symmetric Frobenius \mathbb{C} -algebra (A, μ, Δ)

- (1) Choose oriented triangulation t for every bordism Σ in Bord₂
- (2) Decorate Poincaré-dual graph with $(\mathbb{C}, A, \mu, \Delta)$:

(3) Obtain $\Sigma^{t,A}$ in $Bord_2^{def}(\mathbb{D}^{triv})$ and define $\mathbb{Z}_A^{ss}(\Sigma) = \mathbb{Z}^{triv}(\Sigma^{t,A})$

Input: Δ -separable symmetric Frobenius \mathbb{C} -algebra (A, μ, Δ)

- (1) Choose oriented triangulation t for every bordism Σ in Bord₂
- (2) Decorate Poincaré-dual graph with $(\mathbb{C}, A, \mu, \Delta)$:

(3) Obtain $\Sigma^{t,A}$ in $\operatorname{Bord}_2^{\operatorname{def}}(\mathbb{D}^{\operatorname{triv}})$ and define $\mathbb{Z}_A^{\operatorname{ss}}(\Sigma) = \mathbb{Z}^{\operatorname{triv}}(\Sigma^{t,A})$

>

Input: Δ -separable symmetric Frobenius \Bbbk -algebra (A, μ, Δ)

(1) Choose oriented triangulation t for every bordism Σ in Bord^{or}_{2,1}
(2) Decorate Poincaré dual graph with (k, A, μ, Δ):

(3) Obtain
$$\Sigma^{t,A}$$
 in $\operatorname{Bord}_{2,1}^{\operatorname{def}}(\mathbb{D}^{\operatorname{triv}})$ and define $Z_A(\Sigma) = Z_2^{\operatorname{triv}}(\Sigma^{t,A})$

Theorem. Construction yields TQFT $\mathcal{Z}_A \colon \operatorname{Bord}_{2,1}^{\operatorname{or}} \longrightarrow \operatorname{Vect}_{\Bbbk}$.

Input: Δ -separable symmetric Frobenius \Bbbk -algebra (A, μ, Δ)

(1) Choose oriented triangulation t for every bordism Σ in $Bord_{2,1}^{or}$ (2) Decorate Poincaré dual graph with (\Bbbk, A, μ, Δ) :

(3) Obtain
$$\Sigma^{t,A}$$
 in Borddef(\mathbb{D}^{triv}) and define $\mathcal{Z}_A(\Sigma) = \mathcal{Z}_2^{\text{triv}}(\Sigma^{t,A})$

Theorem. Construction yields TQFT $\mathcal{Z}_A \colon \operatorname{Bord}_{2,1}^{\operatorname{or}} \longrightarrow \operatorname{Vect}_{\Bbbk}$.

Proof sketch: Defining properties of (A, μ, Δ) encode invariance under **Pachner moves** \implies independent of choice of triangulation:

Fukuma/Hosono/Kawai 1992, Lauda/Pfeiffer 2006

Input: Δ -separable symmetric Frobenius \Bbbk -algebra (A, μ, Δ)

(1) Choose oriented triangulation t for every bordism Σ in Bord^{or}_{2,1}
(2) Decorate Poincaré dual graph with (k, A, μ, Δ):

Theorem. Construction yields TQFT $\mathcal{Z}_A \colon \operatorname{Bord}_{2,1}^{\operatorname{or}} \longrightarrow \operatorname{Vect}_{\Bbbk}$.

No need to consider only algebras over k!

Orbifolds

Definition. Let \mathcal{Z} : Bord^{def}_{2,1}(\mathbb{D}) $\longrightarrow \mathcal{C}$ be defect TQFT. An orbifold datum for \mathcal{Z} is $\mathcal{A} \equiv (\mathcal{A}_2, \mathcal{A}_1, \mathcal{A}_0^+, \mathcal{A}_0^-)$:

such that (dual) Pachner moves become identities under \mathcal{Z} :

$$\mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right) \stackrel{!}{=} \mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right) \qquad \mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right) \stackrel{!}{=} \mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right)$$

Orbifolds

Definition. Let \mathcal{Z} : Bord^{def}_{2,1}(\mathbb{D}) $\longrightarrow \mathcal{C}$ be defect TQFT. An **orbifold datum** for \mathcal{Z} is $\mathcal{A} \equiv (\mathcal{A}_2, \mathcal{A}_1, \mathcal{A}_0^+, \mathcal{A}_0^-)$:

such that (dual) Pachner moves become identities under \mathcal{Z} :

$$\mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right) \stackrel{!}{=} \mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right) \qquad \mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right) \stackrel{!}{=} \mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right)$$

Definition & Theorem. Triangulation + \mathcal{A} -decoration + evaluation with $\mathcal{Z} = \mathcal{A}$ -orbifold TQFT $\mathcal{Z}_{\mathcal{A}} \colon \operatorname{Bord}_{2,1}^{\operatorname{or}} \longrightarrow \mathcal{C}$

Carqueville/Runkel 2012, Fröhlich/Fuchs/Runkel/Schweigert 2009

Algebraic characterisation of orbifolds

Theorem.

 $\text{2d defect TQFT } \mathcal{Z} \implies \text{pivotal 2-category } \mathcal{D}_{\mathcal{Z}} \\$

Lemma.

 $\{\text{orbifold data for } \mathcal{Z}\} \cong \{\Delta\text{-separable symmetric Frobenius algebras in } \mathcal{D}_{\mathcal{Z}}\}$

Algebraic characterisation of orbifolds

Theorem.

2d defect TQFT $\mathcal{Z} \implies$ pivotal 2-category $\mathcal{D}_{\mathcal{Z}}$

Lemma.

 $\left\{ \text{orbifold data for } \mathcal{Z} \right\} \cong \left\{ \Delta \text{-separable symmetric Frobenius algebras in } \mathcal{D}_{\mathcal{Z}} \right\}$

Examples.

– Δ -separable symmetric Frobenius algebras in $BVect_{\Bbbk}$

 $= \Delta \text{-separable symmetric Frobenius } \& \text{-algebras} \quad \textcircled{O} \\ \implies \mathcal{Z}_A = (\mathcal{Z}_2^{\text{triv}})_A \quad ("State sum models are orbifolds of the trivial TQFT.")$

- A *G***-action** in $\mathcal{D}_{\mathcal{Z}}$ is 2-functor $\rho \colon \mathrm{B}\underline{G} \longrightarrow \mathcal{D}_{\mathcal{Z}}$.

Lemma. $A_G := \bigoplus_{g \in G} \rho(g)$ is Δ -separable Frobenius algebra in $\mathcal{D}_{\mathcal{Z}}$.

$$\implies$$
 G-orbifolds are orbifolds:

Orbifolds unify gauging of symmetry groups and state sum models.

Davydov/Kong/Runkel 2011, Fröhlich/Fuchs/Runkel/Schweigert 2009, Brunner/Carqueville/Plencner 2014

There are many other orbifolds!

Orbifold completion of pivotal 2-category \mathcal{B} is pivotal 2-category \mathcal{B}_{orb} :

- objects: Δ -separable symmetric Frobenius algebras $A \in \mathcal{B}(\alpha, \alpha)$
- Hom categories = bimodule categories

Theorem. $\mathcal{B} \hookrightarrow \mathcal{B}_{\mathrm{orb}} \cong (\mathcal{B}_{\mathrm{orb}})_{\mathrm{orb}}$

There are many other orbifolds!

Orbifold completion of pivotal 2-category \mathcal{B} is pivotal 2-category \mathcal{B}_{orb} :

- objects: Δ -separable symmetric Frobenius algebras $A \in \mathcal{B}(\alpha, \alpha)$
- Hom categories = bimodule categories

Theorem. $\mathcal{B} \hookrightarrow \mathcal{B}_{\mathrm{orb}} \cong (\mathcal{B}_{\mathrm{orb}})_{\mathrm{orb}}$

Theorem & Definition. (Orbifold equivalence $\alpha \sim \beta$) If $X \in \mathcal{B}(\alpha, \beta)$ has invertible $\dim(X) \in \operatorname{End}(1_{\beta})$, then:

 $-A := X^{\dagger} \otimes X$ is *separable* symmetric Frobenius algebra in $\mathcal{B}(\alpha, \alpha)$ $-X : (\alpha, A) \rightleftharpoons (\beta, 1_{\beta}) : X^{\dagger}$ is adjoint equivalence in \mathcal{B}_{orb}

There are many other orbifolds!

Orbifold completion of pivotal 2-category \mathcal{B} is pivotal 2-category \mathcal{B}_{orb} :

- objects: Δ -separable symmetric Frobenius algebras $A \in \mathcal{B}(\alpha, \alpha)$
- Hom categories = bimodule categories

Theorem. $\mathcal{B} \hookrightarrow \mathcal{B}_{\mathrm{orb}} \cong (\mathcal{B}_{\mathrm{orb}})_{\mathrm{orb}}$

Theorem & Definition. (Orbifold equivalence $\alpha \sim \beta$) If $X \in \mathcal{B}(\alpha, \beta)$ has *invertible* dim $(X) \in \text{End}(1_{\beta})$, then: $-A := X^{\dagger} \otimes X$ is *separable* symmetric Frobenius algebra in $\mathcal{B}(\alpha, \alpha)$ $-X : (\alpha, A) \rightleftharpoons (\beta, 1_{\beta}) : X^{\dagger}$ is adjoint equivalence in \mathcal{B}_{orb}

Carqueville/Runkel 2012, Carqueville/Ros Camacho/Runkel 2013

Orbifold defect TQFT

Let $\mathcal{Z} \colon \operatorname{Bord}_{2,1}^{\operatorname{def}}(\mathbb{D}) \longrightarrow \mathcal{C}$ be defect TQFT. Get new defect data $\mathbb{D}^{\operatorname{orb}}$ with $D_j^{\operatorname{orb}} := \{(2-j)\text{-cells of } (\mathcal{D}_{\mathcal{Z}})_{\operatorname{orb}}\}.$

Orbifold defect TQFT

Let $\mathcal{Z} \colon \operatorname{Bord}_{2,1}^{\operatorname{def}}(\mathbb{D}) \longrightarrow \mathcal{C}$ be defect TQFT. Get new defect data $\mathbb{D}^{\operatorname{orb}}$ with $D_j^{\operatorname{orb}} := \{(2-j)\text{-cells of } (\mathcal{D}_{\mathcal{Z}})_{\operatorname{orb}}\}.$

Definition & Theorem. The orbifold defect TQFT

$$\mathcal{Z}_{\mathrm{orb}} \colon \mathrm{Bord}_{2,1}^{\mathrm{def}}(\mathbb{D}^{\mathrm{orb}}) \longrightarrow \mathcal{C}$$

is given by substratification:

Orbifold defect TQFT

Let \mathcal{Z} : Bord^{def}_{2,1}(\mathbb{D}) $\longrightarrow \mathcal{C}$ be defect TQFT. Get new defect data \mathbb{D}^{orb} with $D_j^{\text{orb}} := \{(2-j)\text{-cells of } (\mathcal{D}_{\mathcal{Z}})_{\text{orb}}\}.$

Definition & Theorem. The orbifold defect TQFT

$$\mathcal{Z}_{\mathrm{orb}} \colon \operatorname{Bord}_{2,1}^{\mathrm{def}}(\mathbb{D}^{\mathrm{orb}}) \longrightarrow \mathcal{C}$$

is given by substratification:

Example. Defect state sum models are Euler completed orbifolds of the trivial defect TQFT:

$$\mathcal{Z}_2^{\mathrm{ss}} \cong \left(\mathcal{Z}_2^{\mathrm{triv}}
ight)_{\mathrm{orb}}^{\odot}$$

Carqueville/Runkel 2012, Lauda/Pfeiffer 2005, Davydov/Kong/Runkel 2011, Mulevičius 2022

Orbifolds work

in any dimension \boldsymbol{n}

Pachner moves for *n*-dimensional triangulations

"Glue in the other side of $\partial \Delta^{n+1}$ ":

Theorem. If triangulated PL manifolds are PL isomorphic, then there exists a finite sequence of Pachner moves between them.

Pachner 1991 (for oriented variant, see Carqueville/Runkel/Schaumann 2017)

Orbifolds in any dimension n

An orbifold datum \mathcal{A} for $\mathcal{Z} \colon \operatorname{Bord}_{n,n-1}^{\operatorname{def}}(\mathbb{D}) \longrightarrow \mathcal{C}$ consists of

-
$$\mathcal{A}_{j} \in D_{j}$$
 for all $j \in \{1, \dots, n\}$,

- $\mathcal{A}_0^+, \mathcal{A}_0^- \in D_0,$
- such that (dual) "Pachner moves become identities"
 - compatibility:

 \mathcal{A}_j is allowed decoration of (n-j)-simplices dual to j-strata

triangulation invariance:

Let B, B' be A-decorated n-balls dual to two sides of a Pachner move. Then: Z(B) = Z(B').

n=2 is special case:

$$\mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right) = \mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right) \qquad \mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right) = \mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right)$$

Orbifolds in any dimension n

An orbifold datum \mathcal{A} for $\mathcal{Z} \colon \operatorname{Bord}_{n,n-1}^{\operatorname{def}}(\mathbb{D}) \longrightarrow \mathcal{C}$ consists of

-
$$\mathcal{A}_{j} \in D_{j}$$
 for all $j \in \{1, \dots, n\}$,

- $-\mathcal{A}_0^+, \mathcal{A}_0^- \in D_0,$
- such that (dual) "Pachner moves become identities"
 - compatibility:

 \mathcal{A}_j is allowed decoration of (n-j)-simplices dual to j-strata

triangulation invariance:

Let B, B' be A-decorated n-balls dual to two sides of a Pachner move. Then: Z(B) = Z(B').

n=2 is special case:

$$\mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right) = \mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right) \qquad \mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right) = \mathcal{Z}\left(\begin{array}{c} \\ \end{array}\right)$$

Definition & Theorem.

Triangulation + A-decoration + evaluation with $\mathcal{Z} = A$ -orbifold TQFT

$$\mathcal{Z}_{\mathcal{A}} \colon \operatorname{Bord}_{n,n-1}^{\operatorname{or}} \longrightarrow \mathcal{C}$$

Carqueville/Runkel/Schaumann 2017

3-dimensional orbifold data

Let ${\mathcal T}$ be 3-category with duals. An orbifold datum ${\mathcal A}$ in ${\mathcal T}$ is

Carqueville/Runkel/Schaumann 2017

Which 3-category \mathcal{T}_{orb} are orbifold data objects of?

Representations of 3-dimensional orbifold data

Let \mathcal{A} and \mathcal{A}' be orbifold data in \mathcal{T} . An \mathcal{A}' - \mathcal{A} -bimodule \mathcal{M} is

subject to pentagon axioms.

Representations of 3-dimensional orbifold data

Let \mathcal{A} and \mathcal{A}' be orbifold data in \mathcal{T} . An \mathcal{A}' - \mathcal{A} -bimodule \mathcal{M} is

Representations of 3-dimensional orbifold data

Let \mathcal{A} and \mathcal{A}' be orbifold data in \mathcal{T} . An \mathcal{A}' - \mathcal{A} -bimodule \mathcal{M} is

$\begin{array}{l} \textbf{3-dimensional orbifold completion} \\ (all \ \text{Hom 2-categories of } \mathcal{T} \ \text{must admit finite sifted 2-colimits that commute with composition}) \end{array}$

The **orbifold completion** T_{orb} of a 3-category with duals T has

- 1-cells: bimodules
- compositions: relative products (computed via (2-)idempotents)

such that (among other axioms)

Mulevičius/Runkel 2020, Carqueville/Mulevičius/Runkel/Schaumann/Scherl 2021, Carqueville/Müller 2023

- objects: orbifold data 2-cells: maps of bimodules
 - 3-cells: modifications

Theorem. \mathcal{T}_{orb} is 3-category with adjoints for 1- and 2-cells.

Proof:

etc.

Carqueville/Müller 2023, Décoppet 2022

Theorem. \mathcal{T}_{orb} is 3-category with adjoints for 1- and 2-cells.

For any defect TQFT $\mathcal{Z} \colon \operatorname{Bord}_{3,2}^{\operatorname{def}}(\mathbb{D}) \longrightarrow \mathcal{C}$, get $\mathbb{D}^{\operatorname{orb}}$ from $(\mathcal{D}_{\mathcal{Z}})_{\operatorname{orb}}$.

Definition & Theorem. The orbifold defect TQFT

$$\mathcal{Z}_{\mathrm{orb}} \colon \mathrm{Bord}_{3,2}^{\mathrm{def}}(\mathbb{D}^{\mathrm{orb}}) \longrightarrow \mathcal{C}$$

is given by substratification:

Theorem. \mathcal{T}_{orb} is 3-category with adjoints for 1- and 2-cells.

For any defect TQFT $\mathcal{Z} \colon \operatorname{Bord}_{3,2}^{\operatorname{def}}(\mathbb{D}) \longrightarrow \mathcal{C}$, get $\mathbb{D}^{\operatorname{orb}}$ from $(\mathcal{D}_{\mathcal{Z}})_{\operatorname{orb}}$.

Definition & Theorem. The orbifold defect TQFT

$$\mathcal{Z}_{\mathrm{orb}} \colon \mathrm{Bord}_{3,2}^{\mathrm{def}}(\mathbb{D}^{\mathrm{orb}}) \longrightarrow \mathcal{C}$$

is given by substratification:

Example. Defect state sum models are Euler completed orbifolds of the trivial defect TQFT:

$$\mathcal{Z}_3^{\mathrm{ss}} \cong \left(\mathcal{Z}_3^{\mathrm{triv}}\right)_{\mathrm{orb}}^{\odot}$$

Carqueville/Müller 2023, Kitaev/Kong 2011, Meusburger 2022

Example. Defect state sum models are Euler completed orbifolds of the trivial defect TQFT:

$$\mathcal{Z}_3^{\mathrm{ss}} \cong \left(\mathcal{Z}_3^{\mathrm{triv}}
ight)_{\mathrm{orb}}^{\odot}$$

Theorem. $sFus_{k} \subset (B ssFrob(Vect_{k}))_{orb}^{\odot}$

Example. Defect state sum models are Euler completed orbifolds of the trivial defect TQFT:

$$\mathcal{Z}_3^{\mathrm{ss}} \cong \left(\mathcal{Z}_3^{\mathrm{triv}}\right)_{\mathrm{orb}}^{\odot}$$

Theorem. sFus_k \subset $(B ssFrob(Vect_k))^{\odot}_{orb}$

Theorem. Let ${\mathcal M}$ be a modular fusion category. The 3-category in which

- objects are commutative $\Delta\text{-separable}$ Frobenius algebras in $\mathcal M,$
- 1-cells from B to A are $\Delta\mbox{-separable symmetric Frobenius algebras }F$ over (A,B),
- 2-cells from F to G are G-F-bimodules M over (A, B), and
- 3-cells are bimodule maps

is a subcategory of $(B\Delta ssFrob(\mathcal{M}))_{orb}.$

⇒ recover **defect Reshetikhin–Turaev theory** à la Koppen–Mulevičius–Runkel–Schweigert

Theorem. \mathcal{T}_{orb} is 3-category with adjoints for 1- and 2-cells.

Orbifold data are gaugeable (non-invertible) symmetries of defect TQFTs.

Theorem. \mathcal{T}_{orb} is 3-category with adjoints for 1- and 2-cells.

Orbifold data are gaugeable (non-invertible) symmetries of defect TQFTs.

Get *n*-dimensional trivial defect TQFT from $B\mathcal{D}_{\mathcal{Z}_{n-1}^{ss}}$.

n-dimensional defect state sum model is Euler completed orbifold of the trivial defect TQFT:

$$\mathcal{Z}_n^{\rm ss} = \left(\mathcal{Z}_n^{\rm triv}\right)_{\rm orb}^{\odot}$$

Recover Douglas–Reutter invariants for n = 4.

Carqueville/Müller 2023, Carqueville/Mulevičius/Müller 202x

Theorem. \mathcal{T}_{orb} is 3-category with adjoints for 1- and 2-cells.

Orbifold data are gaugeable (non-invertible) symmetries of defect TQFTs.

Get *n*-dimensional trivial defect TQFT from $B\mathcal{D}_{\mathcal{Z}_{n-1}^{ss}}$.

n-dimensional defect state sum model is Euler completed orbifold of the trivial defect TQFT:

$$\mathcal{Z}_n^{\rm ss} = \left(\mathcal{Z}_n^{\rm triv}\right)_{\rm orb}^{\odot}$$

Recover Douglas–Reutter invariants for n = 4.

Carqueville/Müller 2023, Carqueville/Mulevičius/Müller 202x

Theorem. \mathcal{T}_{orb} is 3-category with adjoints for 1- and 2-cells.

Orbifold data are gaugeable (non-invertible) symmetries of defect TQFTs.

Get *n*-dimensional trivial defect TQFT from $B\mathcal{D}_{\mathcal{Z}_{n-1}^{ss}}$.

n-dimensional defect state sum model is Euler completed orbifold of the trivial defect TQFT:

$$\mathcal{Z}_n^{\rm ss} = \left(\mathcal{Z}_n^{\rm triv}\right)_{\rm orb}^{\odot}$$

Recover Douglas–Reutter invariants for n = 4.

Carqueville/Müller 2023, Carqueville/Mulevičius/Müller 202x

$\mathcal{A}_{\mathcal{A}}$	<i>n</i> -dimensional orbifold TQFT $\mathcal{Z}_{\mathcal{A}}$	
A as module over itself		

n	input TQFT ${\mathcal Z}$	orbifold datum ${\cal A}$	output TQFT $\mathcal{Z}_{\mathcal{A}}$		
2 2	trivial defect TQFT trivial defect TQFT	$\mathbb{C}[G]$ sym. sep. Frob. \mathbb{C} -algebra	Dijkgraaf–Witten state sum model		
3 3 3	trivial defect TQFT trivial defect TQFT Reshetikhin–Turaev	vect ^G spherical fusion category many	Dijkgraaf–Witten state sum model (TVBW) Reshetikhin–Turaev		
4 4 4	trivial defect TQFT trivial defect TQFT trivial defect TQFT	2vect ^G modular fusion category	Dijkgraaf–Witten Crane–Yetter state sum model (DB)		
C/Runkel/Schaumann 2012–2018, C/Mulevičius/Müller 2023, TVBW = Turaev–Viro–Barrett–Westbury, DR = Douglas–Reutter					

Z	$\mathcal{A}_{\mathcal{A}}$	n -dimensional orbifold TQFT $\mathcal{Z}_{\mathcal{A}}$	
	${\mathcal A}$ as module over itself		

n	input TQFT $\mathcal Z$	orbifold datum ${\cal A}$	output TQFT $\mathcal{Z}_\mathcal{A}$
2	trivial defect TQFT	$\mathbb{C}[G]$	Dijkgraaf–Witten
2	trivial defect TQFT	sym. sep. Frob. \mathbb{C} -algebra	state sum model
2	Landau–Ginzburg	many	non-semisimple
2	tw. sigma models	some	non-semisimple
3	trivial defect TQFT	vect^G	Dijkgraaf–Witten
3	trivial defect TQFT	spherical fusion category	state sum model (TVBW)
3	Reshetikhin–Turaev	many	Reshetikhin–Turaev
3	Rozansky–Witten	more work needed	non-semisimple
4	trivial defect TQFT	$2 \mathrm{vect}^G$	Dijkgraaf–Witten
4	trivial defect TQFT	modular fusion category	Crane–Yetter
4 C/Runk	trivial defect TQFT el/Schaumann 2012–2018, C/Mule	<i>spherical</i> fusion 2-category vičius/Müller 2023, TVBW = Turaev-Viro-E	state sum model (DR) Barrett–Westbury, DR = Douglas–Reutter