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In a nutshell
Orbifold data . . . are algebraic representations of Pachner moves

. . . are objects of a higher Morita category

. . . are special defects in defect TQFT

. . . are gaugeable (non-invertible) symmetries

. . . give rise to state sum models
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Theorem. Let T be 3-category with duals. The higher Morita
category Torb of orbifold data in T has duals.

Theorem. Let Z be 3d defect TQFT and DZ its 3-category with
duals. From (DZ)orb one obtains 3d defect TQFT Zorb.

Applications.

– “Defect state sum models are orbifolds of the trivial defect TQFT.”

– “Reshetikhin–Turaev defect TQFTs without thinking”

– “Douglas–Reutter 4-manifold invariants via orbifolds”
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– “Defect state sum models are orbifolds of the trivial defect TQFT.”
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n-dim. defect TQFT n-category with 
       objects =  closed TQFTs 
       k-cells  =  (n-k)-dim. defects

objects  =  orbifold data
k-cells  = higher modules and module maps



Closed TQFT

An n-dimensional closed oriented TQFT is symmetric monoidal functor

Bordorn,n−1 −→ C
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Classification.

(1d closed oriented TQFTs) ∼= (dualisable objects)

(2d closed oriented TQFTs) ∼= (commutative Frobenius algebras)

(3d closed oriented TQFTs) ∼= (J-algebras)

(4d closed oriented TQFTs) ∼= ??

Juhasz 2014



Defect TQFT

An n-dimensional defect TQFT is symmetric monoidal functor

Borddefn,n−1(D) −→ C
depending on set of defect data D consisting of

– set Dn of “bulk theories”
– sets Dj of j-dimensional “defects” for j ∈ {0, 1, . . . , n− 1}
– adjacency rules. . .
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Davydov/Kong/Runkel 2011, Carqueville/Runkel/Schaumann 2017
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Non-full embedding Bordorn,n−1 ,−→ Borddefn,n−1(D) for all u ∈ Dn

Davydov/Kong/Runkel 2011, Carqueville/Runkel/Schaumann 2017



Examples of 2d defect TQFTs

Trivial defect TQFT Z triv
2 : Borddef2,1 (D

triv2) −→ Vectk
Dtriv2

2 :=
�
k
	

Dtriv2
1 := Ob(vectk) Z triv

2

� V1...
Vm

�
:= V1 ⊗ · · ·⊗ Vm

Dtriv2
0 := Mor(vectk)

Z triv
2

� �
:= (evaluate 0- und 1-strata as string diagrams in vectk)
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� V1...
Vm

�
:= V1 ⊗ · · ·⊗ Vm

Dtriv2
0 := Mor(vectk)

Z triv
2

� �
:= (evaluate 0- und 1-strata as string diagrams in vectk)

State sum models Zss
2 :

separable symmetric Frobenius k-algebras and bimodules

B-twisted sigma models ZBσ:
Calabi–Yau manifolds and their derived categories

Landau–Ginzburg models ZLG:
isolated singularities and matrix factorisations



Higher categories from defect TQFTs

Theorem. For Z : Borddef2,1 (D) −→ C, there is pivotal 2-category DZ with

– objects: elements of D2

– 1-cells X : u −→ v are lists of composable elements of D1

xnxn−1xn−2x1

s(xn) = ut(xn)= t(xn−1)s(xn−1)= t(xn−2). . .v = t(x1)

– Hom(X,Y ) = Z
 

(y1, ν1)

(y2, ν2)
. . .

(ym−1, νm−1)

(ym, νm)

(x1,−ε1)
(x2,−ε2) . . . (xn−1,−εn−1)

(xn,−εn)

!

– composition: “pair-of-pants with defects”

Davydov/Kong/Runkel 2011
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– composition: “pair-of-pants with defects”

Examples. DZtriv
2

∼= Bvectk

DZss
2

∼= ssFrob(vectk) ∼=
�
DZtriv

2

�⊙
orb

DZLG
2

∼= LG
Davydov/Kong/Runkel 2011



Examples of 3d defect TQFTs

Reshetikhin–Turaev defect TQFT ZRT
M for modular fusion category M:

DRT
3 :=

�
commutative ∆-separable Frobenius algebras A in M

	

DRT
2 :=

�
∆-sep. sym. Frobenius alg. F with comp. bimodule structure

	

DRT
1 :=

�
multimodules M

	

DRT
0 :=

�
multimodule maps

	

M

F2

F3

F1A2

A3

A1

Trivial defect TQFT Z triv
3

∼= ZRT
vectk

���
DRT

3 −→{k}

Kapustin/Saulina 2010, Carqueville/Runkel/Schaumann 2017, Koppen/Mulevičius/Runkel/Schweigert 2021, Carqueville/Müller 2023



Higher categories from defect TQFTs

Theorem. For Z : Borddef3,2 (D) −→ C, there is 3-category with duals DZ :

– objects: elements of D3

– k-cells: (3− k)-fold cylinders
over defect k-balls, k ∈ {1, 2}

– 3-cells: Z(“defect 2-sphere”)

– composition: “pair-of-pants with
defects”

– duals: bending lines and surfaces

Carqueville/Meusburger/Schaumann 2016
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Examples. DZtriv
3

∼= BssFrob(vectk) ∼= BDZss
2

DZss
3

∼=
�
DZtriv

3

�⊙
orb

⊃ sFusk

DZRT
M

∼=
�
B∆ssFrob(M))

�
orb

Carqueville/Meusburger/Schaumann 2016, Barrett/Meusburger/Schaumann 2012, Carqueville/Müller 2023



Examples of nnn-dimensional defect TQFTs

Euler defect TQFT Zeu
Ψ : Borddefn,n−1 −→ Vectk, where

Borddefn,n−1: stratified bordisms without labels
Ψ = (ψ1, . . . ,ψn) ∈ (k×)n

Zeu
Ψ (object E) := k

Zeu
Ψ (bordism M) :=

nY

j=1

Y

j-strataσj ⊂M

ψ
χ(σj)− 1

2
χ(∂σj)

j

Quinn 1995, Carqueville/Runkel/Schaumann 2017
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ψ
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2
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Euler completion Z⊙ of any defect TQFT Z satisfies
�
Z⊙�⊙ ∼= Z⊙ Z⊙ ⊗ Zeu

Ψ
∼= Z⊙

Euler completion D⊙
Z
∼= DZ⊙ of higher defect categories

Quinn 1995, Carqueville/Runkel/Schaumann 2017



∆∆∆-separable symmetric Frobenius algebras

A ∈ C with

µ = : A⊗A −→ A : � −→ A

∆ = : A −→ A⊗A : A −→ �

such that

= = = = = =

= = =

(A need not be commutative.)



State sum models

Input: ∆-separable symmetric Frobenius k-algebra (A, µ,∆)

(1) Choose oriented triangulation t for every bordism Σ in Bordor2,1
(2) Decorate Poincaré dual graph with (k, A, µ,∆):

k k
A

k k

kA A

A

µ k k

kA A

A

∆

(3) Obtain Σt,A in Borddef2,1(D
triv) and define ZA(Σ) = Z triv

2 (Σt,A)

Fukuma/Hosono/Kawai 1992, Lauda/Pfeiffer 2006
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(2) Decorate Poincaré dual graph with (k, A, µ,∆):

k k
A

k k

kA A

A

µ k k

kA A

A

∆

(3) Obtain Σt,A in Borddef2,1(D
triv) and define ZA(Σ) = Z triv

2 (Σt,A)

Theorem. Construction yields TQFT ZA : Bordor2,1 −→ Vectk.

Fukuma/Hosono/Kawai 1992, Lauda/Pfeiffer 2006



State sum models

Input: ∆-separable symmetric Frobenius k-algebra (A, µ,∆)

(1) Choose oriented triangulation t for every bordism Σ in Bordor2,1
(2) Decorate Poincaré dual graph with (k, A, µ,∆):
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∆

(3) Obtain Σt,A in Borddef2,1(D
triv) and define ZA(Σ) = Z triv

2 (Σt,A)

Theorem. Construction yields TQFT ZA : Bordor2,1 −→ Vectk.

Proof sketch: Defining properties of (A, µ,∆) encode invariance under
Pachner moves =⇒ independent of choice of triangulation:

2-2←→ 1-3←→

←→ ←→

Fukuma/Hosono/Kawai 1992, Lauda/Pfeiffer 2006



State sum models

Input: ∆-separable symmetric Frobenius k-algebra (A, µ,∆)

(1) Choose oriented triangulation t for every bordism Σ in Bordor2,1
(2) Decorate Poincaré dual graph with (k, A, µ,∆):

k k
A

k k

kA A

A

µ k k

kA A

A

∆

(3) Obtain Σt,A in Borddef2,1(D
triv) and define ZA(Σ) = Z triv

2 (Σt,A)

Theorem. Construction yields TQFT ZA : Bordor2,1 −→ Vectk.

No need to consider only algebras over k!



Orbifolds

Definition. Let Z : Borddef2,1 (D) −→ C be defect TQFT.

An orbifold datum for Z is A ≡ (A2,A1,A+
0 ,A−

0 ):

A2

A2 ∈ D2

A1

A2 A2

A1 ∈ D1

A2 A2

A2A1 A1

A1

A+
0

A+
0 ∈ D0

A2 A2

A2A1 A1

A1

A−
0

A−
0 ∈ D0

such that (dual) Pachner moves become identities under Z:

Z
 !

!
= Z

 !
Z
 !

!
= Z

 !

Carqueville/Runkel 2012, Fröhlich/Fuchs/Runkel/Schweigert 2009
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0 ∈ D0

such that (dual) Pachner moves become identities under Z:

Z
 !

!
= Z

 !
Z
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!
= Z

 !

Definition & Theorem.
Triangulation + A-decoration + evaluation with Z = A-orbifold TQFT

ZA : Bordor2,1 −→ C
Carqueville/Runkel 2012, Fröhlich/Fuchs/Runkel/Schweigert 2009



Algebraic characterisation of orbifolds

Theorem.
2d defect TQFT Z =⇒ pivotal 2-category DZ

Lemma.�
orbifold data for Z

	 ∼=
�
∆-separable symmetric Frobenius algebras in DZ

	

Davydov/Kong/Runkel 2011



Algebraic characterisation of orbifolds

Theorem.
2d defect TQFT Z =⇒ pivotal 2-category DZ

Lemma.�
orbifold data for Z

	 ∼=
�
∆-separable symmetric Frobenius algebras in DZ

	

Examples.

– ∆-separable symmetric Frobenius algebras in BVectk
= ∆-separable symmetric Frobenius k-algebras ,

=⇒ ZA = (Z triv
2 )A (“State sum models are orbifolds of the trivial TQFT.”)

– A GGG-action in DZ is 2-functor ρ : BG −→ DZ .

Lemma. AG :=
L

g∈G ρ(g) is ∆-separable Frobenius algebra in DZ .

=⇒ G-orbifolds are orbifolds: ZG = ZAG
,

Orbifolds unify gauging of symmetry groups and state sum models.

Davydov/Kong/Runkel 2011, Fröhlich/Fuchs/Runkel/Schweigert 2009, Brunner/Carqueville/Plencner 2014



There are many other orbifolds!

Orbifold completion of pivotal 2-category B is pivotal 2-category Borb:

– objects: ∆-separable symmetric Frobenius algebras A ∈ B(α,α)
– Hom categories = bimodule categories

Theorem. B ,−→ Borb
∼= (Borb)orb

Carqueville/Runkel 2012 see also Douglas/Reutter 2018, Gaiotto/Johnson-Freyd 2019
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Orbifold completion of pivotal 2-category B is pivotal 2-category Borb:

– objects: ∆-separable symmetric Frobenius algebras A ∈ B(α,α)
– Hom categories = bimodule categories

Theorem. B ,−→ Borb
∼= (Borb)orb

Theorem & Definition. (Orbifold equivalence α ∼ β)
If X ∈ B(α,β) has invertible dim(X) ∈ End(1β), then:

– A := X† ⊗X is separable symmetric Frobenius algebra in B(α,α)
– X : (α, A) −−→←−− (β, 1β) :X† is adjoint equivalence in Borb

Carqueville/Runkel 2012 see also Douglas/Reutter 2018, Gaiotto/Johnson-Freyd 2019



There are many other orbifolds!

Orbifold completion of pivotal 2-category B is pivotal 2-category Borb:

– objects: ∆-separable symmetric Frobenius algebras A ∈ B(α,α)
– Hom categories = bimodule categories

Theorem. B ,−→ Borb
∼= (Borb)orb

Theorem & Definition. (Orbifold equivalence α ∼ β)
If X ∈ B(α,β) has invertible dim(X) ∈ End(1β), then:

– A := X† ⊗X is separable symmetric Frobenius algebra in B(α,α)
– X : (α, A) −−→←−− (β, 1β) :X† is adjoint equivalence in Borb

Example. B = DZLG =⇒ ∼

A11 E6

etc.

Carqueville/Runkel 2012, Carqueville/Ros Camacho/Runkel 2013



Orbifold defect TQFT

Let Z : Borddef2,1 (D) −→ C be defect TQFT.

Get new defect data Dorb with Dorb
j :=

�
(2− j)-cells of (DZ)orb

	
.

Carqueville/Runkel 2012
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.

Definition & Theorem.
The orbifold defect TQFT

Zorb : Borddef2,1 (D
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is given by substratification:
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X

Y
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A1 A′
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Example. Defect state sum models are Euler completed orbifolds of the
trivial defect TQFT:

Zss
2

∼=
�
Z triv
2

�⊙
orb

Carqueville/Runkel 2012, Lauda/Pfeiffer 2005, Davydov/Kong/Runkel 2011, Mulevičius 2022



Orbifolds work
in any dimension n



Pachner moves for n-dimensional triangulations

“Glue in the other side of ∂∆n+1”:

n = 2 :
2-2←→ 1-3←→

n = 3 :
2-3←→ 1-4←→

Theorem. If triangulated PL manifolds are PL isomorphic, then there
exists a finite sequence of Pachner moves between them.

Pachner 1991 (for oriented variant, see Carqueville/Runkel/Schaumann 2017)



Orbifolds in any dimension n

An orbifold datum A for Z : Borddefn,n−1(D) −→ C consists of

– Aj ∈ Dj for all j ∈ {1, . . . , n},
– A+

0 ,A−
0 ∈ D0,

– such that (dual) “Pachner moves become identities”
▶ compatibility:

Aj is allowed decoration of (n− j)-simplices dual to j-strata
▶ triangulation invariance:

Let B,B′ be A-decorated n-balls dual to two sides of a Pachner move.

Then: Z(B) = Z(B′) .

n = 2 is special case:

Z
 !

= Z
 !

Z
 !

= Z
 !

Carqueville/Runkel/Schaumann 2017
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Then: Z(B) = Z(B′) .
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Z
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 !

Z
 !

= Z
 !

Definition & Theorem.
Triangulation + A-decoration + evaluation with Z = A-orbifold TQFT

ZA : Bordorn,n−1 −→ C
Carqueville/Runkel/Schaumann 2017



3-dimensional orbifold data

Let T be 3-category with duals. An orbifold datum A in T is

A2

A3

A3

A2 A2

A2

A1

A1

A+
0

A1
A1

A1

A1

A−
0

A1

A1 A1

such that

A+
0

A+
0

=

A+
0

A+
0

A+
0

etc. (see next slide)

Carqueville/Runkel/Schaumann 2017





Which 3-category Torb
are orbifold data objects of?



Representations of 3-dimensional orbifold data

Let A and A′ be orbifold data in T . An A′-A-bimodule M is

A3
A3

A′
3

M
M

A2 A′
3

A3

A′
3

M A′
2

M

A′
1

αl
M

αm
M αr

M

A1

subject to pentagon axioms.

Johnson-Freyd/Scheimbauer 2015, Carqueville/Müller 2023
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subject to pentagon axioms. A map of A′-A-bimodules F : M −→ M′ is
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A modification ξ : F −→ F ′ is ξ : F −→ F ′ such that
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3-dimensional orbifold completion

The orbifold completion Torb of a 3-category with duals T has
– objects: orbifold data
– 1-cells: bimodules

– 2-cells: maps of bimodules
– 3-cells: modifications

– compositions: relative products (computed via (2-)idempotents)

(all Hom 2-categories of T must admit finite sifted 2-colimits that commute with composition)

such that (among other axioms)
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Mulevičius/Runkel 2020, Carqueville/Mulevičius/Runkel/Schaumann/Scherl 2021, Carqueville/Müller 2023



3-dimensional orbifold completion

Theorem. Torb is 3-category with adjoints for 1- and 2-cells.

Proof:

etc.

Carqueville/Müller 2023, Décoppet 2022



3-dimensional orbifold completion

Theorem. Torb is 3-category with adjoints for 1- and 2-cells.

For any defect TQFT Z : Borddef3,2 (D) −→ C, get Dorb from (DZ)orb.

Definition & Theorem. The orbifold defect TQFT

Zorb : Borddef3,2 (D
orb) −→ C

is given by substratification:

Zorb







= Z
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Example. Defect state sum models are Euler completed orbifolds of the
trivial defect TQFT:

Zss
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�
Z triv
3

�⊙
orb
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3-dimensional orbifold completion

Example. Defect state sum models are Euler completed orbifolds of the
trivial defect TQFT:

Zss
3

∼=
�
Z triv
3

�⊙
orb

Theorem. sFusk ⊂
�
B ssFrob(Vectk)

�⊙
orb

Theorem. Let M be a modular fusion category. The 3-category in which

– objects are commutative ∆-separable Frobenius algebras in M,
– 1-cells from B to A are ∆-separable symmetric Frobenius algebras F

over (A,B),
– 2-cells from F to G are G-F -bimodules M over (A,B), and
– 3-cells are bimodule maps

is a subcategory of (B∆ssFrob(M))orb.

=⇒ recover defect Reshetikhin–Turaev theory à la

Koppen–Mulevičius–Runkel–Schweigert

Carqueville/Müller 2023, Meusburger 2022



Summary and outlook

Theorem. Torb is 3-category with adjoints for 1- and 2-cells.
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Orbifold data are gaugeable (non-invertible) symmetries of defect TQFTs.
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Orbifold data are gaugeable (non-invertible) symmetries of defect TQFTs.

Get n-dimensional trivial defect TQFT from BDZss
n−1

.

n-dimensional defect state sum model is Euler completed orbifold of
the trivial defect TQFT:

Zss
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�
Z triv
n

�⊙
orb

Recover Douglas–Reutter invariants for n = 4.

Carqueville/Müller 2023, Carqueville/Mulevičius/Müller 202x
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Btop

(n − 1)-dim.

n-dimensional symmetry TQFT Bphys

(n − 1)-dim.

Freed/Moore/Teleman 2022



AA

A as module
over itself

n-dimensional orbifold TQFT ZA

Carqueville/Runkel 2012, Carqueville/Runkel/Schaumann 2017



AA

A as module
over itself

n-dimensional orbifold TQFT ZA

n input TQFT Z orbifold datum A output TQFT ZA

2 trivial defect TQFT C[G] Dijkgraaf–Witten
2 trivial defect TQFT sym. sep. Frob. C-algebra state sum model
2 Landau–Ginzburg many. . .
2 tw. sigma models some. . .

3 trivial defect TQFT vectG Dijkgraaf–Witten
3 trivial defect TQFT spherical fusion category state sum model (TVBW)

3 Reshetikhin–Turaev many. . . Reshetikhin–Turaev
3 Rozansky–Witten more work needed. . .

4 trivial defect TQFT 2vectG Dijkgraaf–Witten
4 trivial defect TQFT modular fusion category Crane–Yetter
4 trivial defect TQFT spherical fusion 2-category state sum model (DR)

C/Runkel/Schaumann 2012–2018, C/Mulevičius/Müller 2023, TVBW = Turaev–Viro–Barrett–Westbury, DR = Douglas–Reutter



Z AA

A as module
over itself

n-dimensional orbifold TQFT ZA

n input TQFT Z orbifold datum A output TQFT ZA

2 trivial defect TQFT C[G] Dijkgraaf–Witten
2 trivial defect TQFT sym. sep. Frob. C-algebra state sum model
2 Landau–Ginzburg many. . . non-semisimple

2 tw. sigma models some. . . non-semisimple

3 trivial defect TQFT vectG Dijkgraaf–Witten
3 trivial defect TQFT spherical fusion category state sum model (TVBW)

3 Reshetikhin–Turaev many. . . Reshetikhin–Turaev
3 Rozansky–Witten more work needed. . . non-semisimple

4 trivial defect TQFT 2vectG Dijkgraaf–Witten
4 trivial defect TQFT modular fusion category Crane–Yetter
4 trivial defect TQFT spherical fusion 2-category state sum model (DR)

C/Runkel/Schaumann 2012–2018, C/Mulevičius/Müller 2023, TVBW = Turaev–Viro–Barrett–Westbury, DR = Douglas–Reutter


