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Symplectic embeddings

Question

When can we symplectically embed U into V ?

Gromov – 1985: B2n(R) can by symplectically embedded into
Z (r) = {(x1, y1, . . . , xn, yn) : x21 + y21 ≤ r2} if and only if R ≤ r .

Symp(R2n)
↪−−−−−→

R r ⇐⇒ R ≤ r

Katok – 1973: For any compact X and any ε > 0 there exists a
symplectic map ϕ such that Vol(ϕ(X ) \ Z (1)) < ε.
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Symplectic packing

Gromov – 1985: Two copies of B2n(R) can be symplectically
embedded into B2n(1) such that ϕ1(B2n(R)) ∩ ϕ2(B2n(R)) = ∅ if
and only if R < 1/

√
2.

Gromov – 1985, McDuff-Plterovich – 1994, Karshon – 1994,
Traynor – 1995, Biran – 1997:

In dimension 2n = 4:
Number of balls 2 3 4 5 6 7 8 ≥ 9

Percentage of volume 1
2

3
4 1 4

5
24
25

63
64

288
289 1

In dimension 2n ≥ 6:
For 2 ≤ k ≤ 2n balls, the percentage of the volume that can be
filled is k

2n .
For k = mn for some m ∈ N there is a full packing.
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Symplectic capacities

A normalized symplectic capacity on R2n is a map c from subsets
U ⊂ R2n to [0,∞] with the following properties.

If U ⊆ V , c(U) ≤ c(V ),

c(φ(U)) = c(U) for any symplectomorphism φ : R2n → R2n,

c(αU) = α2c(U) for α > 0,

c(B2n(r)) = c(B2(r)× Cn−1) = πr2.

Gromov’s width: c(U) = sup{πr2 : ∃B2n(r)
Symp
↪−−−→ U}

Cylindrical capacity: c̄(U) = inf{πr2 : ∃U
Symp
↪−−−→ B2(r)× Cn−1}

Every normalized capacity c satisfies c(U) ≤ c(U) ≤ c̄(U).

For ellipsoids: c(E (a1, a2, . . . , an)) = min1≤i≤n πa
2
i .
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Lagrangian submanifolds

Definition

For A ⊂ TM, Aω := {v ∈ TM : ω(u, v) = 0 ∀u ∈ A}.

K is called isotropic if TK ⊆ TKω.
K is called coisotropic if TKω ⊆ TK .
K is called Lagrangian if TK = TKω, i.e. dimK = 1

2 dimM and
ω|TK = 0.

Periodic points in ←→ Intersection points between
Hamiltonian dynamics Lagrangian submanifolds

Weinstein – 1981: “Everything is a Lagrangian submanifold”.
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Barriers

Barrier – Obstruction to symplectic embeddings - a submanifold
the embedding must intersect.

Biran – 2001: If B2n(R)
ϕ
↪−→ CPn with R > 1√

2
then

ϕ(B2n(R)) ∩ RPn 6= ∅. In other words c(CPn \ RPn) = π
2 .

Moreover, ∃ Lagrangian Σ ⊂ CPn with c(CPn \Σ) arbitrarily small.

Biran-Cornea – 2009: c(CPn \ Tn
clif) = nπ

n+1 .

Brendel-Schlenk – 2022: Some Lagrangian Pinwheels in CP2 are
barriers.
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Cylindrical capacity

Question

How much one needs to remove from the ball B2n(1) so that it
symplectically embeds into Z 2n(r)?

c(K ) = inf{πR2 : K
symp
↪−−−→ Z (R) = B2(R)× Cn−1}

Sackel-Song-Varolgunes-Zhu – 22’: c(B4(1) \ {y1 = y2 = 0}) = π
2 .

Brendel – 22’: c(B4(1) \ Ω) ≤ π
3 for some Lag. submanifold Ω.

Opshtein-Schlenk – In progress: ∀δ > 0,∃Ω Lag. such that
c(B4(1) \ Ω) < δ.

All of these barriers are Lagrangian!
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Flexibility for non Lagrangians

Rigidity Flexibility
Lagrangian barriers McDuff-Polterovich – 1994:

c(CPn \ Ω) = π for Ω
closed complex submanifolds.

Lagrangian intersection theory: Laudenbach-Sikorav – 1994,
Arnold–Givental conjecture, Polterovich – 1995, Gürel – 2008:

Floer homology, etc. A closed nowhere coisotropic
submanifold which is topologically

displaceable is also
displaceable by an Hamiltonian

diffeomorphism.
Chekanov – 1999: Usher – 2012:

Lagrangian Hofer distance Hofer distance vanishes on
is nondegenerate. nowhere coisotropic submanifolds

Abbondandolo-Schlenk – 2017:
“...The Lagrangian submanifolds are (together with energy surfaces) the most
interesting submanifolds of symplectic manifolds for several reasons. One reason is
that these are the submanifolds that exhibit “symplectic rigidity”...”
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Theorem (H-K, Hind, Ostrover)

For every δ > 0 there exists a symplectic codimension 2
submanifold Σ such that

c(B2n(1) \ Σ) < δ

This means that if ϕ : B2n(r)
Symp
↪−−−→ B2n(1) with πr2 > δ,

then ϕ(B2n(r)) ∩ Σ 6= ∅.

Main point: Lagrangians are not the only barriers. Nowhere
coisotropic submanifolds are not always “flexible”.

For the standard J, removing J-holomorphic submanifolds
doesn’t reduce the capacity.

Quantifying the upper bound on c(B2n(1) \ Σ) and discuss its
sharpness.
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Idea of the proof

Σε :=
⋃
{(z1, z2, . . . , zn) ∈ Cn : zn ∈ εZ2} - a set of complex

codim-2 hyperplanes.

For any convex D, find an embedding of D \ N(Σε) into
(1 + ε′)ALD where AL(z1, . . . , zn)→ (z1, . . . , zn−1, Lzn).
Find a symplectic V such that c(ALVB2n(1)) is small.
B2n(r) ↪→ B2n \ V−1(Σε) =⇒ πr2 < c(ALVB2n(1))

V B2n(1) \ Σε

ALV B2n(1)

φ(B2n(r)) ⊂ B2n(1) \ V −1Σε
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Idea of the proof

Lemma (Eliashberg)

For every A ∈ GL(2n) such that A∗ω 6= λω, and for every a > 0,
there exist U,V ∈ Sp(2n) such that

UAV =


a 0
0 a

0

* *


Invoking the lemma for AL, we get that UALVB2n(1) ⊆ Z (a) and

c(ALVB2n(1)) ≤ πa2
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Idea of the proof

For any convex D, find an embedding of D \ N(Σε) into
ALDε ⊆ (1 + ε′)ALD.

Σε :=
⋃
{(z1, z2, . . . , zn) ∈ Cn : zn ∈ εZ2}.

Gα - squares with vertices in εZ2.

Dε :=
⋃
α

{(z1, . . . , zn−1) : ∃zn ∈ Gα s.t. (z1, . . . , zn) ∈ D} × Gα.

z2

z1

Gα

D
Dε
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Idea of the proof

ψ : R2 \ N(εZ2)→ R2

Id × ψ(D \ N(Σε)) ⊆ ALDε
ψ(Gα) ⊆ LGα
det(ψ) = 1

ψ

ε
εL
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Dependence on ω(n1, n2)

Σ - a finite collection of parallel codim 2 hyperplanes.
n1, n2 - unit normals to the hyperplanes in Σ.

Based on the inequality
c(B2n(1) \ V−1Σε) ≤ (1 + ε′)2c(ALVB2n(1)),
one can try to add more and more hyperplanes to Σ in order to
reduce c(B2n(1) \ Σ). We want to quantify the infimum of the
capacity in this process.

g(t) :=
1

π
inf

ω(n1,n2)=t
{c(B2n(1) \ Σ)}.

By taking L→∞, we get g(t) ≤ t.
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Dependence on ω(n1, n2)

Theorem (H-K, Hind, Ostrover)

g(t) ≥

√
2

(
1

t2
− 1

)(√
1− t2 − 1

)
+ 1 ≥ t − 0.07

Theorem (H-K, Hind, Ostrover)

1

π
inf

ω(n1,n2)=t
{cHZ (B2n(1) \ Σ)} = t.
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Idea of the proof for the lower bounds

Instead of investigating the complicated body B2n(1) \ Σ, we will
embed an “easier” convex body inside it.

H - subspace with Kähler angle t,
A := V (H ∩ B2n(1)), W := A + {(0, . . . , 0, z)}.
Push the hyperplanes in VΣ ⊂ VB2n(1) close to ∂(VB2n(1) ∩W )
using a Hamiltonian isotopy.

W

VB2n(1)

We get
Claim: c(B2n(1) \ Σ) ≥ c(VB2n(1) ∩W )
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Idea of the proof for the lower bounds

Gromov width of VB2n(1) ∩W

B2n(
√
t) ⊆W , B2n(

√
t

1+
√
1−t2 ) ⊆ VB2n(1).

B2n(t) ⊆ V−1W .

B2n(
√

f (t)) ⊆ U(VB2n(1) ∩W ) for f (t) as before.

We prove that cHZ (VB2n(1) ∩W ) = πt.

We conjecture that c(VB2n(1) ∩W ) = πt.
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g(t) ≥ t − 0.07

Proof of the claim
1. Enough to push Σ0 ∩W (Σ0 := VΣ) close to ∂(VB2n(1) ∩W ) using
a Hamiltonian isotopy.

2. Pushing separately along lines in πznVB
2n(1).

lv

ΠznΣ0

ΠznV B(1)
vJv

Note that for Wv = A⊕ {λv : λ > δ}, one has

∂(Wv ∩ VB2n(1)) ⊂ ∂(W ∩ VB2n(1)).
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g(t) ≥ t − 0.07

0

δ

λv

α = 0

α = 1

zn = z0 ∈ ΠznΣ0

3. Define a Hamiltonian to push the hyperplanes: for p = x + yJv ,

〈x , Jv〉 = 0, y ∈ R put H(p) = −α(x)y , with a cut-off outside a small

nbhd of lv .
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Capacity via Hamiltonian dynamics

Ekeland, Hofer, Zehnder, Viterbo – 1989-1990: For a Hamiltonian
function H and a level set c such that Σ := {x : H(x) ≤ c} is
convex, the minimal action of a periodic Hamiltonian solution on
∂Σ := {x : H(x) = c} coincides with several symplectic capacities
denoted cEHZ (Σ).

n

Jn

γ
D

∂Σ

A(γ) = Areaω(D)
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Calculating the HZ capacity

For simplicity, assume 2n = 4. We need to prove that the action of
closed characteristics on the boundary of B4(1) ∩ V−1W is ≥ πt.

Part of the boundary is in ∂B4(1), and other part is in ∂V−1W .

Loops contained in ∂B4(1) are of
action π.

Loops contained in ∂V−1W are of
action πt.

For loops that alternate between
them, (after a unitary transformation)
the projection to the z2-plane is

θ1

θ2

θ3

θ4

θ̃1

θ̃2
θ̃3

θ̃4

τ1

τ2

τ3

τ4
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Single hyperplane

Theorem (H-K, Hind, Ostrover)

c(B2n(1) \ H) = π 1+t
2 for a codimension 2 hyperplane H with

ω(n1, n2) = t, and any capacity c .

This answers a question by Sackel-Song-Varolgunes-Zhu,
where the case t = 0 is proven.

The lower bound is based on constructing a specific
embedding.

For the upper bound, we prove that for every symplectic
embedding of a compact subset K inside B2n(1) \ H, there
exists a symplectic embedding of K inside B2n(

√
1 + t) \ L,

where L is the Lagrangian spanned by (0, i), and (1, 0).

Dynamical interpretation: removing H creates short-cuts for
closed characteristics.
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Single hyperplane - lower bound

Idea of the proof
H = 〈(s, 0, t, 0), (0, 0, 0, 1)〉, s2 + t2 = 1. H ∩ B4(1):

−s s

E

x1, y1 x2, y2

If K ∩ {y1 = 0} doesn’t intersect ∂E ∩ {x2 ≥ 0}, we can displace K from
the subspace H.
We take the Hamiltonian to be y1 with a cut-off outside H.

Note that the line ∂E ∩ {x2 ≥ 0} divides the disc into a region with area

π 1+t
2 . We can embed B4(

√
1+t
2 ) in B4(1) \ ∂E ∩ {x2 ≥ 0} using a

specific 2-dim area preserving map.
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Single hyperplane - upper bound

Suppose that K doesn’t intersect H.
In the 3-dim subspace y1 = 0, H divides the space into two parts.
We use two different 2-dim area preserving maps to push the projection of both
parts to x2, y2 away from L.

x2, y2

x2, y2

D(1)
D(1 + t)

D(1)
D(1 + t)

Projection of left part (purple) has area π 1+t
2

=⇒ area preserving map
pushing to left half disc of radius

√
1 + t. Similarly for the right part.

Remains to define a cut-off near H between these maps without pushing other
parts of K into {y1 = 0}. For this we use the “extra room” in the x1, y1 disc.
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Thank you!
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