On the existence of symplectic barriers Joint with Richard Hind and Yaron Ostrover

Pazit Haim-Kislev

Tel-Aviv University

May, 2024

Pazit Haim-Kislev On the existence of symplectic barriers

イロト イヨト イヨト

э

When can we symplectically embed U into V?

ヘロト 人間 とくほ とくほ とう

э

When can we symplectically embed U into V?

Gromov – 1985: $B^{2n}(R)$ can by symplectically embedded into $Z(r) = \{(x_1, y_1, \dots, x_n, y_n) : x_1^2 + y_1^2 \le r^2\}$ if and only if $R \le r$.

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

When can we symplectically embed U into V?

Gromov – 1985: $B^{2n}(R)$ can by symplectically embedded into $Z(r) = \{(x_1, y_1, \dots, x_n, y_n) : x_1^2 + y_1^2 \le r^2\}$ if and only if $R \le r$.

Katok – 1973: For any compact X and any $\varepsilon > 0$ there exists a symplectic map φ such that $Vol(\varphi(X) \setminus Z(1)) < \varepsilon$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Gromov – 1985: Two copies of $B^{2n}(R)$ can be symplectically embedded into $B^{2n}(1)$ such that $\varphi_1(B^{2n}(R)) \cap \varphi_2(B^{2n}(R)) = \emptyset$ if and only if $R < 1/\sqrt{2}$.

イロト イボト イヨト イヨト

Gromov – 1985: Two copies of $B^{2n}(R)$ can be symplectically embedded into $B^{2n}(1)$ such that $\varphi_1(B^{2n}(R)) \cap \varphi_2(B^{2n}(R)) = \emptyset$ if and only if $R < 1/\sqrt{2}$.

Gromov – 1985, McDuff-Plterovich – 1994, Karshon – 1994, Traynor – 1995, Biran – 1997:

In dimension 2n = 4:

Number of balls	2	3	4	5	6	7	8	\geq 9
Percentage of volume	$\frac{1}{2}$	$\frac{3}{4}$	1	$\frac{4}{5}$	$\frac{24}{25}$	<u>63</u> 64	$\frac{288}{289}$	1

In dimension $2n \ge 6$:

For $2 \le k \le 2^n$ balls, the percentage of the volume that can be filled is $\frac{k}{2^n}$. For $k = m^n$ for some $m \in \mathbb{N}$ there is a full packing.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A normalized symplectic capacity on \mathbb{R}^{2n} is a map c from subsets $U \subset \mathbb{R}^{2n}$ to $[0, \infty]$ with the following properties.

- If $U \subseteq V$, $c(U) \leq c(V)$,
- $c(\phi(U)) = c(U)$ for any symplectomorphism $\phi : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$,

•
$$c(\alpha U) = \alpha^2 c(U)$$
 for $\alpha > 0$,

•
$$c(B^{2n}(r)) = c(B^2(r) \times \mathbb{C}^{n-1}) = \pi r^2.$$

・ロット (四) (日) (日) (日)

A normalized symplectic capacity on \mathbb{R}^{2n} is a map c from subsets $U \subset \mathbb{R}^{2n}$ to $[0, \infty]$ with the following properties.

- If $U \subseteq V$, $c(U) \leq c(V)$,
- $c(\phi(U)) = c(U)$ for any symplectomorphism $\phi : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$,

•
$$c(\alpha U) = \alpha^2 c(U)$$
 for $\alpha > 0$,

•
$$c(B^{2n}(r)) = c(B^2(r) \times \mathbb{C}^{n-1}) = \pi r^2.$$

Gromov's width: $\underline{c}(U) = \sup\{\pi r^2 : \exists B^{2n}(r) \xrightarrow{\text{Symp}} U\}$ Cylindrical capacity: $\overline{c}(U) = \inf\{\pi r^2 : \exists U \xrightarrow{\text{Symp}} B^2(r) \times \mathbb{C}^{n-1}\}$

イロト 不得 トイヨト イヨト 二日

A normalized symplectic capacity on \mathbb{R}^{2n} is a map c from subsets $U \subset \mathbb{R}^{2n}$ to $[0, \infty]$ with the following properties.

• If
$$U \subseteq V$$
, $c(U) \leq c(V)$,

•
$$c(\phi(U)) = c(U)$$
 for any symplectomorphism $\phi : \mathbb{R}^{2n} \to \mathbb{R}^{2n}$,

•
$$c(\alpha U) = \alpha^2 c(U)$$
 for $\alpha > 0$,

•
$$c(B^{2n}(r)) = c(B^2(r) \times \mathbb{C}^{n-1}) = \pi r^2.$$

Gromov's width: $\underline{c}(U) = \sup\{\pi r^2 : \exists B^{2n}(r) \xrightarrow{\text{Symp}} U\}$ Cylindrical capacity: $\overline{c}(U) = \inf\{\pi r^2 : \exists U \xrightarrow{\text{Symp}} B^2(r) \times \mathbb{C}^{n-1}\}$ Every normalized capacity c satisfies $\underline{c}(U) \leq c(U) \leq \overline{c}(U)$. For ellipsoids: $c(E(a_1, a_2, ..., a_n)) = \min_{1 \leq i \leq n} \pi a_i^2$.

イロト 不得 トイヨト イヨト 二日

For
$$A \subset TM$$
, $A^{\omega} := \{ v \in TM : \omega(u, v) = 0 \ \forall u \in A \}.$

Pazit Haim-Kislev On the existence of symplectic barriers

ヘロト 人間 とくほ とくほ とう

For
$$A \subset TM$$
, $A^{\omega} := \{ v \in TM : \omega(u, v) = 0 \ \forall u \in A \}.$

K is called isotropic if $TK \subseteq TK^{\omega}$. *K* is called coisotropic if $TK^{\omega} \subseteq TK$. *K* is called Lagrangian if $TK = TK^{\omega}$, i.e. dim $K = \frac{1}{2} \dim M$ and $\omega|_{TK} = 0$.

For
$$A \subset TM$$
, $A^{\omega} := \{ v \in TM : \omega(u, v) = 0 \ \forall u \in A \}.$

K is called isotropic if $TK \subseteq TK^{\omega}$. *K* is called coisotropic if $TK^{\omega} \subseteq TK$. *K* is called Lagrangian if $TK = TK^{\omega}$, i.e. dim $K = \frac{1}{2} \dim M$ and $\omega|_{TK} = 0$.

 $\begin{array}{rcl} \mbox{Periodic points in} & \leftrightarrow & \mbox{Intersection points between} \\ \mbox{Hamiltonian dynamics} & & \mbox{Lagrangian submanifolds} \end{array}$

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

For
$$A \subset TM$$
, $A^{\omega} := \{ v \in TM : \omega(u, v) = 0 \ \forall u \in A \}.$

K is called isotropic if $TK \subseteq TK^{\omega}$. *K* is called coisotropic if $TK^{\omega} \subseteq TK$. *K* is called Lagrangian if $TK = TK^{\omega}$, i.e. dim $K = \frac{1}{2} \dim M$ and $\omega|_{TK} = 0$.

Periodic points in↔Intersection points betweenHamiltonian dynamicsLagrangian submanifolds

Weinstein – 1981: "Everything is a Lagrangian submanifold".

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

イロト イポト イヨト イヨト

э

Biran – 2001: If $B^{2n}(R) \stackrel{\varphi}{\hookrightarrow} \mathbb{CP}^n$ with $R > \frac{1}{\sqrt{2}}$ then $\varphi(B^{2n}(R)) \cap \mathbb{RP}^n \neq \emptyset$.

イロト イポト イヨト イヨト 三日

Biran - 2001: If $B^{2n}(R) \stackrel{\varphi}{\hookrightarrow} \mathbb{CP}^n$ with $R > \frac{1}{\sqrt{2}}$ then $\varphi(B^{2n}(R)) \cap \mathbb{RP}^n \neq \emptyset$. In other words $\underline{c}(\mathbb{CP}^n \setminus \mathbb{RP}^n) = \frac{\pi}{2}$.

イロト イヨト イヨト

Biran – 2001: If $B^{2n}(R) \stackrel{\varphi}{\hookrightarrow} \mathbb{CP}^n$ with $R > \frac{1}{\sqrt{2}}$ then $\varphi(B^{2n}(R)) \cap \mathbb{RP}^n \neq \emptyset$. In other words $\underline{c}(\mathbb{CP}^n \setminus \mathbb{RP}^n) = \frac{\pi}{2}$. Moreover, \exists Lagrangian $\Sigma \subset \mathbb{CP}^n$ with $\underline{c}(\mathbb{CP}^n \setminus \Sigma)$ arbitrarily small.

Biran – 2001: If $B^{2n}(R) \stackrel{\varphi}{\hookrightarrow} \mathbb{CP}^n$ with $R > \frac{1}{\sqrt{2}}$ then $\varphi(B^{2n}(R)) \cap \mathbb{RP}^n \neq \emptyset$. In other words $\underline{c}(\mathbb{CP}^n \setminus \mathbb{RP}^n) = \frac{\pi}{2}$. Moreover, \exists Lagrangian $\Sigma \subset \mathbb{CP}^n$ with $\underline{c}(\mathbb{CP}^n \setminus \Sigma)$ arbitrarily small. Biran-Cornea – 2009: $\underline{c}(\mathbb{CP}^n \setminus \mathbb{T}_{clif}^n) = \frac{n\pi}{n+1}$.

イロト 不得 トイヨト イヨト 二日

Biran – 2001: If $B^{2n}(R) \stackrel{\varphi}{\hookrightarrow} \mathbb{CP}^n$ with $R > \frac{1}{\sqrt{2}}$ then $\varphi(B^{2n}(R)) \cap \mathbb{RP}^n \neq \emptyset$. In other words $\underline{c}(\mathbb{CP}^n \setminus \mathbb{RP}^n) = \frac{\pi}{2}$. Moreover, \exists Lagrangian $\Sigma \subset \mathbb{CP}^n$ with $\underline{c}(\mathbb{CP}^n \setminus \Sigma)$ arbitrarily small. Biran-Cornea – 2009: $\underline{c}(\mathbb{CP}^n \setminus \mathbb{T}^n_{\text{clif}}) = \frac{n\pi}{n+1}$. Brendel-Schlenk – 2022: Some Lagrangian Pinwheels in \mathbb{CP}^2 are barriers.

イロト 不得 トイヨト イヨト 二日

How much one needs to remove from the ball $B^{2n}(1)$ so that it symplectically embeds into $Z^{2n}(r)$?

イロト イヨト イヨト

э

How much one needs to remove from the ball $B^{2n}(1)$ so that it symplectically embeds into $Z^{2n}(r)$?

$$\overline{c}(K) = \inf \{ \pi R^2 : K \xrightarrow{symp} Z(R) = B^2(R) \times \mathbb{C}^{n-1} \}$$

イロト イヨト イヨト

э

How much one needs to remove from the ball $B^{2n}(1)$ so that it symplectically embeds into $Z^{2n}(r)$?

$$\overline{c}(K) = \inf\{\pi R^2 : K \xrightarrow{symp} Z(R) = B^2(R) \times \mathbb{C}^{n-1}\}$$

Sackel-Song-Varolgunes-Zhu – 22': $\overline{c}(B^4(1) \setminus \{y_1 = y_2 = 0\}) = \frac{\pi}{2}$.

How much one needs to remove from the ball $B^{2n}(1)$ so that it symplectically embeds into $Z^{2n}(r)$?

$$\overline{c}(K) = \inf\{\pi R^2 : K \xrightarrow{symp} Z(R) = B^2(R) imes \mathbb{C}^{n-1}\}$$

Sackel-Song-Varolgunes-Zhu – 22': $\overline{c}(B^4(1) \setminus \{y_1 = y_2 = 0\}) = \frac{\pi}{2}$. Brendel – 22': $\overline{c}(B^4(1) \setminus \Omega) \leq \frac{\pi}{3}$ for some Lag. submanifold Ω .

イロト イヨト イヨト

How much one needs to remove from the ball $B^{2n}(1)$ so that it symplectically embeds into $Z^{2n}(r)$?

$$\overline{c}(K) = \inf\{\pi R^2 : K \xrightarrow{symp} Z(R) = B^2(R) \times \mathbb{C}^{n-1}\}$$

Sackel-Song-Varolgunes-Zhu – 22': $\overline{c}(B^4(1) \setminus \{y_1 = y_2 = 0\}) = \frac{\pi}{2}$. Brendel – 22': $\overline{c}(B^4(1) \setminus \Omega) \leq \frac{\pi}{3}$ for some Lag. submanifold Ω . Opshtein-Schlenk – In progress: $\forall \delta > 0, \exists \Omega$ Lag. such that $\overline{c}(B^4(1) \setminus \Omega) < \delta$.

イロト イボト イヨト イヨト

How much one needs to remove from the ball $B^{2n}(1)$ so that it symplectically embeds into $Z^{2n}(r)$?

$$\overline{c}(K) = \inf\{\pi R^2 : K \xrightarrow{symp} Z(R) = B^2(R) \times \mathbb{C}^{n-1}\}$$

Sackel-Song-Varolgunes-Zhu – 22': $\overline{c}(B^4(1) \setminus \{y_1 = y_2 = 0\}) = \frac{\pi}{2}$. Brendel – 22': $\overline{c}(B^4(1) \setminus \Omega) \leq \frac{\pi}{3}$ for some Lag. submanifold Ω . Opshtein-Schlenk – In progress: $\forall \delta > 0, \exists \Omega$ Lag. such that $\overline{c}(B^4(1) \setminus \Omega) < \delta$.

All of these barriers are Lagrangian!

イロト イヨト イヨト

Rigidity	Flexibility
Lagrangian barriers	McDuff-Polterovich – 1994:
	$\underline{c}(\mathbb{CP}^n\setminus\Omega)=\pi$ for Ω
	closed complex submanifolds.

・ロト ・四ト ・ヨト ・ヨト

Flexibility for non Lagrangians

Rigidity	Flexibility
Lagrangian barriers	McDuff-Polterovich – 1994:
	$\underline{c}(\mathbb{CP}^n\setminus\Omega)=\pi$ for Ω
	closed complex submanifolds.
Lagrangian intersection theory:	Laudenbach-Sikorav – 1994,
Arnold–Givental conjecture,	Polterovich – 1995, Gürel – 2008:
Floer homology, etc.	A closed nowhere coisotropic
	submanifold which is topologically
	displaceable is also
	displaceable by an Hamiltonian
	diffeomorphism.

・ロト ・四ト ・ヨト ・ヨト

Flexibility for non Lagrangians

Rigidity	Flexibility
Lagrangian barriers	McDuff-Polterovich – 1994:
	$\underline{c}(\mathbb{CP}^n\setminus\Omega)=\pi$ for Ω
	closed complex submanifolds.
Lagrangian intersection theory:	Laudenbach-Sikorav – 1994,
Arnold–Givental conjecture,	Polterovich – 1995, Gürel – 2008:
Floer homology, etc.	A closed nowhere coisotropic
	submanifold which is topologically
	displaceable is also
	displaceable by an Hamiltonian
	diffeomorphism.
Chekanov – 1999:	Usher – 2012:
Lagrangian Hofer distance	Hofer distance vanishes on
is nondegenerate.	nowhere coisotropic submanifolds

Flexibility for non Lagrangians

Rigidity	Flexibility
Lagrangian barriers	McDuff-Polterovich – 1994:
	$\underline{c}(\mathbb{CP}^n\setminus\Omega)=\pi$ for Ω
	closed complex submanifolds.
Lagrangian intersection theory:	Laudenbach-Sikorav – 1994,
Arnold–Givental conjecture,	Polterovich – 1995, Gürel – 2008:
Floer homology, etc.	A closed nowhere coisotropic
	submanifold which is topologically
	displaceable is also
	displaceable by an Hamiltonian
	diffeomorphism.
Chekanov – 1999:	Usher – 2012:
Lagrangian Hofer distance	Hofer distance vanishes on
is nondegenerate.	nowhere coisotropic submanifolds

Abbondandolo-Schlenk – 2017:

"...The Lagrangian submanifolds are (together with energy surfaces) the most interesting submanifolds of symplectic manifolds for several reasons. One reason is that these are the submanifolds that exhibit "symplectic rigidity"..."

< ロ > < 同 > < 回 > < 回 > < □ > <

For every $\delta > 0$ there exists a symplectic codimension 2 submanifold Σ such that

 $\overline{c}(B^{2n}(1) \setminus \Sigma) < \delta$

• This means that if $\varphi: B^{2n}(r) \xrightarrow{\text{Symp}} B^{2n}(1)$ with $\pi r^2 > \delta$, then $\varphi(B^{2n}(r)) \cap \Sigma \neq \emptyset$.

イロト 不得 トイヨト イヨト 三日

For every $\delta > 0$ there exists a symplectic codimension 2 submanifold Σ such that

$$\overline{c}(B^{2n}(1) \setminus \Sigma) < \delta$$

- This means that if $\varphi: B^{2n}(r) \xrightarrow{\text{Symp}} B^{2n}(1)$ with $\pi r^2 > \delta$, then $\varphi(B^{2n}(r)) \cap \Sigma \neq \emptyset$.
- Main point: Lagrangians are not the only barriers. Nowhere coisotropic submanifolds are not always "flexible".

For every $\delta > 0$ there exists a symplectic codimension 2 submanifold Σ such that

$$\overline{c}(B^{2n}(1) \setminus \Sigma) < \delta$$

- This means that if $\varphi: B^{2n}(r) \xrightarrow{\text{Symp}} B^{2n}(1)$ with $\pi r^2 > \delta$, then $\varphi(B^{2n}(r)) \cap \Sigma \neq \emptyset$.
- Main point: Lagrangians are not the only barriers. Nowhere coisotropic submanifolds are not always "flexible".
- For the standard *J*, removing *J*-holomorphic submanifolds doesn't reduce the capacity.

For every $\delta > 0$ there exists a symplectic codimension 2 submanifold Σ such that

$$\overline{c}(B^{2n}(1)\setminus\Sigma)<\delta$$

- This means that if $\varphi: B^{2n}(r) \xrightarrow{\text{Symp}} B^{2n}(1)$ with $\pi r^2 > \delta$, then $\varphi(B^{2n}(r)) \cap \Sigma \neq \emptyset$.
- Main point: Lagrangians are not the only barriers. Nowhere coisotropic submanifolds are not always "flexible".
- For the standard *J*, removing *J*-holomorphic submanifolds doesn't reduce the capacity.

Idea of the proof

 $\Sigma_{\varepsilon} := \bigcup \{ (z_1, z_2, \dots, z_n) \in \mathbb{C}^n : z_n \in \varepsilon \mathbb{Z}^2 \}$ - a set of complex codim-2 hyperplanes.

イロト イボト イヨト イヨト

э

Idea of the proof

 $\Sigma_{\varepsilon} := \bigcup \{ (z_1, z_2, \dots, z_n) \in \mathbb{C}^n : z_n \in \varepsilon \mathbb{Z}^2 \}$ - a set of complex codim-2 hyperplanes.

• For any convex D, find an embedding of $D \setminus N(\Sigma_{\varepsilon})$ into $(1 + \varepsilon')A^{L}D$ where $A^{L}(z_{1}, \ldots, z_{n}) \rightarrow (z_{1}, \ldots, z_{n-1}, Lz_{n})$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Idea of the proof

 $\Sigma_{\varepsilon} := \bigcup \{ (z_1, z_2, \dots, z_n) \in \mathbb{C}^n : z_n \in \varepsilon \mathbb{Z}^2 \}$ - a set of complex codim-2 hyperplanes.

- For any convex D, find an embedding of $D \setminus N(\Sigma_{\varepsilon})$ into $(1 + \varepsilon')A^{L}D$ where $A^{L}(z_{1}, \ldots, z_{n}) \rightarrow (z_{1}, \ldots, z_{n-1}, Lz_{n})$.
- Find a symplectic V such that $c(A^L V B^{2n}(1))$ is small.

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・
$\Sigma_{\varepsilon} := \bigcup \{ (z_1, z_2, \dots, z_n) \in \mathbb{C}^n : z_n \in \varepsilon \mathbb{Z}^2 \}$ - a set of complex codim-2 hyperplanes.

- For any convex D, find an embedding of $D \setminus N(\Sigma_{\varepsilon})$ into $(1 + \varepsilon')A^{L}D$ where $A^{L}(z_{1}, \ldots, z_{n}) \rightarrow (z_{1}, \ldots, z_{n-1}, Lz_{n})$.
- Find a symplectic V such that $c(A^L V B^{2n}(1))$ is small.
- $B^{2n}(r) \hookrightarrow B^{2n} \setminus V^{-1}(\Sigma_{\varepsilon}) \implies \pi r^2 < c(A^L V B^{2n}(1))$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\Sigma_{\varepsilon} := \bigcup \{ (z_1, z_2, \dots, z_n) \in \mathbb{C}^n : z_n \in \varepsilon \mathbb{Z}^2 \}$ - a set of complex codim-2 hyperplanes.

- For any convex D, find an embedding of $D \setminus N(\Sigma_{\varepsilon})$ into $(1 + \varepsilon')A^{L}D$ where $A^{L}(z_{1}, \ldots, z_{n}) \rightarrow (z_{1}, \ldots, z_{n-1}, Lz_{n})$.
- Find a symplectic V such that $c(A^L V B^{2n}(1))$ is small.
- $B^{2n}(r) \hookrightarrow B^{2n} \setminus V^{-1}(\Sigma_{\varepsilon}) \implies \pi r^2 < c(A^L V B^{2n}(1))$

Lemma (Eliashberg)

For every $A \in GL(2n)$ such that $A^*\omega \neq \lambda \omega$, and for every a > 0, there exist $U, V \in Sp(2n)$ such that

$$JAV = \begin{pmatrix} a & 0 & & 0 \\ 0 & a & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$$

Invoking the lemma for A^L , we get that $UA^LVB^{2n}(1) \subseteq Z(a)$ and

$$c(A^L V B^{2n}(1)) \le \pi a^2$$

For any convex D, find an embedding of $D \setminus N(\Sigma_{\varepsilon})$ into $A^L D_{\varepsilon} \subseteq (1 + \varepsilon') A^L D$.

$$\Sigma_{\varepsilon} := \bigcup \{ (z_1, z_2, \ldots, z_n) \in \mathbb{C}^n : z_n \in \varepsilon \mathbb{Z}^2 \}.$$

イロト イヨト イヨト

э

For any convex D, find an embedding of $D \setminus N(\Sigma_{\varepsilon})$ into $A^{L}D_{\varepsilon} \subseteq (1 + \varepsilon')A^{L}D.$ $\Sigma_{\varepsilon} := \bigcup \{(z_{1}, z_{2}, \dots, z_{n}) \in \mathbb{C}^{n} : z_{n} \in \varepsilon \mathbb{Z}^{2}\}.$

 G_{α} - squares with vertices in $\varepsilon \mathbb{Z}^2$.

$$D_{\varepsilon} := \bigcup_{\alpha} \{ (z_1, \ldots, z_{n-1}) : \exists z_n \in G_{\alpha} \text{ s.t. } (z_1, \ldots, z_n) \in D \} \times G_{\alpha}.$$

$$\begin{split} \psi &: \mathbb{R}^2 \setminus \mathsf{N}(\varepsilon \mathbb{Z}^2) \to \mathbb{R}^2 \\ \mathsf{Id} &\times \psi(D \setminus \mathsf{N}(\Sigma_{\varepsilon})) \subseteq \mathsf{A}^L D_{\varepsilon} \\ \psi(\mathsf{G}_{\alpha}) \subseteq \mathsf{L}\mathsf{G}_{\alpha} \\ \mathsf{det}(\psi) &= 1 \end{split}$$

$$\begin{split} \psi &: \mathbb{R}^2 \setminus \mathcal{N}(\varepsilon \mathbb{Z}^2) \to \mathbb{R}^2 \\ \mathcal{I}d &\times \psi(D \setminus \mathcal{N}(\Sigma_{\varepsilon})) \subseteq \mathcal{A}^L D_{\varepsilon} \\ \psi(\mathcal{G}_{\alpha}) \subseteq \mathcal{L}\mathcal{G}_{\alpha} \\ \det(\psi) &= 1 \end{split}$$

Pazit Haim-Kislev On the existence of symplectic barriers

 Σ - a finite collection of parallel codim 2 hyperplanes. n_1, n_2 - unit normals to the hyperplanes in Σ .

 Σ - a finite collection of parallel codim 2 hyperplanes. n_1, n_2 - unit normals to the hyperplanes in Σ . Based on the inequality $c(B^{2n}(1) \setminus V^{-1}\Sigma_{\varepsilon}) \leq (1 + \varepsilon')^2 c(A^L V B^{2n}(1))$, one can try to add more and more hyperplanes to Σ in order to reduce $c(B^{2n}(1) \setminus \Sigma)$. We want to quantify the infimum of the capacity in this process.

$$g(t) := rac{1}{\pi} \inf_{\omega(n_1,n_2)=t} \{ c(B^{2n}(1) \setminus \Sigma) \}.$$

 Σ - a finite collection of parallel codim 2 hyperplanes. n_1, n_2 - unit normals to the hyperplanes in Σ . Based on the inequality $c(B^{2n}(1) \setminus V^{-1}\Sigma_{\varepsilon}) \leq (1 + \varepsilon')^2 c(A^L V B^{2n}(1))$, one can try to add more and more hyperplanes to Σ in order to reduce $c(B^{2n}(1) \setminus \Sigma)$. We want to quantify the infimum of the capacity in this process.

$$g(t) := rac{1}{\pi} \inf_{\omega(n_1,n_2)=t} \{ c(B^{2n}(1) \setminus \Sigma) \}.$$

By taking $L \to \infty$, we get $g(t) \le t$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$g(t) \ge \sqrt{2\left(rac{1}{t^2} - 1
ight)\left(\sqrt{1 - t^2} - 1
ight) + 1} \ge t - 0.07$$

ヘロト ヘ団ト ヘヨト ヘヨト

э

$$g(t) \ge \sqrt{2\left(\frac{1}{t^2} - 1\right)\left(\sqrt{1 - t^2} - 1\right) + 1} \ge t - 0.07$$

Theorem (H-K, Hind, Ostrover)

$$\frac{1}{\pi}\inf_{\omega(n_1,n_2)=t}\{c_{HZ}(B^{2n}(1)\setminus\Sigma)\}=t.$$

Pazit Haim-Kislev On the existence of symplectic barriers

ヘロト ヘロト ヘビト ヘビト

э

Instead of investigating the complicated body $B^{2n}(1) \setminus \Sigma$, we will embed an "easier" convex body inside it.

イロト 不得 トイヨト イヨト 二日

Instead of investigating the complicated body $B^{2n}(1) \setminus \Sigma$, we will embed an "easier" convex body inside it. *H* - subspace with Kähler angle *t*,

$$A := V(H \cap B^{2n}(1)), W := A + \{(0, \ldots, 0, z)\}.$$

Instead of investigating the complicated body $B^{2n}(1) \setminus \Sigma$, we will embed an "easier" convex body inside it. H - subspace with Kähler angle t, $A := V(H \cap B^{2n}(1)), W := A + \{(0, ..., 0, z)\}.$ Push the hyperplanes in $V\Sigma \subset VB^{2n}(1)$ close to $\partial(VB^{2n}(1) \cap W)$ using a Hamiltonian isotopy.

Instead of investigating the complicated body $B^{2n}(1) \setminus \Sigma$, we will embed an "easier" convex body inside it. H - subspace with Kähler angle t, $A := V(H \cap B^{2n}(1)), W := A + \{(0, ..., 0, z)\}.$ Push the hyperplanes in $V\Sigma \subset VB^{2n}(1)$ close to $\partial(VB^{2n}(1) \cap W)$ using a Hamiltonian isotopy.

We get
Claim:
$$c(B^{2n}(1) \setminus \Sigma) \ge c(VB^{2n}(1) \cap W)$$

Gromov width of $VB^{2n}(1) \cap W$

(ロ) (部) (E) (E) (E)

Gromov width of $VB^{2n}(1) \cap W$

•
$$B^{2n}(\sqrt{t}) \subseteq W$$
, $B^{2n}(\sqrt{\frac{t}{1+\sqrt{1-t^2}}}) \subseteq VB^{2n}(1)$.

•
$$B^{2n}(t) \subseteq V^{-1}W$$
.

Pazit Haim-Kislev On the existence of symplectic barriers

(ロ) (部) (E) (E) (E)

Gromov width of $VB^{2n}(1) \cap W$

•
$$B^{2n}(\sqrt{t}) \subseteq W$$
, $B^{2n}(\sqrt{\frac{t}{1+\sqrt{1-t^2}}}) \subseteq VB^{2n}(1)$.

•
$$B^{2n}(t) \subseteq V^{-1}W$$
.

• $B^{2n}(\sqrt{f(t)}) \subseteq U(VB^{2n}(1) \cap W)$ for f(t) as before.

イロト イヨト イヨト

э

Gromov width of $VB^{2n}(1) \cap W$

•
$$B^{2n}(\sqrt{t}) \subseteq W$$
, $B^{2n}(\sqrt{\frac{t}{1+\sqrt{1-t^2}}}) \subseteq VB^{2n}(1)$.

•
$$B^{2n}(t) \subseteq V^{-1}W$$
.

• $B^{2n}(\sqrt{f(t)}) \subseteq U(VB^{2n}(1) \cap W)$ for f(t) as before.

- We prove that $c_{HZ}(VB^{2n}(1)\cap W)=\pi t$.
- We conjecture that $\underline{c}(VB^{2n}(1) \cap W) = \pi t$.

$g(t) \geq t - 0.07$

Proof of the claim

1. Enough to push $\Sigma_0 \cap W$ ($\Sigma_0 := V\Sigma$) close to $\partial(VB^{2n}(1) \cap W)$ using a Hamiltonian isotopy.

2. Pushing separately along lines in $\pi_{z_n} VB^{2n}(1)$.

イロト 不得 トイヨト イヨト 二日

Proof of the claim

1. Enough to push $\Sigma_0 \cap W$ ($\Sigma_0 := V\Sigma$) close to $\partial(VB^{2n}(1) \cap W)$ using a Hamiltonian isotopy.

2. Pushing separately along lines in $\pi_{z_n} VB^{2n}(1)$.

Note that for $W_{\nu} = A \oplus \{\lambda \nu : \lambda > \delta\}$, one has $\partial(W_{\nu} \cap VB^{2n}(1)) \subset \partial(W \cap VB^{2n}(1))$.

イロト イボト イヨト イヨト

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

3. Define a Hamiltonian to push the hyperplanes: for p = x + yJv, $\langle x, Jv \rangle = 0, y \in \mathbb{R}$ put $H(p) = -\alpha(x)y$, with a cut-off outside a small nbhd of l_v .

Capacity via Hamiltonian dynamics

Ekeland, Hofer, Zehnder, Viterbo – 1989-1990: For a Hamiltonian function H and a level set c such that $\Sigma := \{x : H(x) \le c\}$ is convex, the minimal action of a periodic Hamiltonian solution on $\partial \Sigma := \{x : H(x) = c\}$ coincides with several symplectic capacities denoted $c_{EHZ}(\Sigma)$.

イロト 不得 トイヨト イヨト 二日

Capacity via Hamiltonian dynamics

Ekeland, Hofer, Zehnder, Viterbo – 1989-1990: For a Hamiltonian function H and a level set c such that $\Sigma := \{x : H(x) \le c\}$ is convex, the minimal action of a periodic Hamiltonian solution on $\partial \Sigma := \{x : H(x) = c\}$ coincides with several symplectic capacities denoted $c_{EHZ}(\Sigma)$.

・ 戸 ト ・ ヨ ト ・ ヨ ト

For simplicity, assume 2n = 4. We need to prove that the action of closed characteristics on the boundary of $B^4(1) \cap V^{-1}W$ is $\geq \pi t$.

イロト イポト イヨト イヨト

< 同 > < 国 > < 国 >

 Loops contained in ∂B⁴(1) are of action π.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Loops contained in ∂B⁴(1) are of action π.
- Loops contained in $\partial V^{-1}W$ are of action πt .

- Loops contained in ∂B⁴(1) are of action π.
- Loops contained in $\partial V^{-1}W$ are of action πt .
- For loops that alternate between them, (after a unitary transformation) the projection to the *z*₂-plane is

A (10) × (10)

 $c(B^{2n}(1) \setminus H) = \pi \frac{1+t}{2}$ for a codimension 2 hyperplane H with $\omega(n_1, n_2) = t$, and any capacity c.

 $c(B^{2n}(1) \setminus H) = \pi \frac{1+t}{2}$ for a codimension 2 hyperplane H with $\omega(n_1, n_2) = t$, and any capacity c.

• This answers a question by Sackel-Song-Varolgunes-Zhu, where the case *t* = 0 is proven.

イロト 不得 トイヨト イヨト 二日

 $c(B^{2n}(1) \setminus H) = \pi \frac{1+t}{2}$ for a codimension 2 hyperplane H with $\omega(n_1, n_2) = t$, and any capacity c.

- This answers a question by Sackel-Song-Varolgunes-Zhu, where the case *t* = 0 is proven.
- The lower bound is based on constructing a specific embedding.

イロト 不得 トイヨト イヨト 二日

 $c(B^{2n}(1) \setminus H) = \pi \frac{1+t}{2}$ for a codimension 2 hyperplane H with $\omega(n_1, n_2) = t$, and any capacity c.

- This answers a question by Sackel-Song-Varolgunes-Zhu, where the case *t* = 0 is proven.
- The lower bound is based on constructing a specific embedding.
- For the upper bound, we prove that for every symplectic embedding of a compact subset K inside B²ⁿ(1) \ H, there exists a symplectic embedding of K inside B²ⁿ(√1+t) \ L, where L is the Lagrangian spanned by (0, i), and (1,0).

 $c(B^{2n}(1) \setminus H) = \pi \frac{1+t}{2}$ for a codimension 2 hyperplane H with $\omega(n_1, n_2) = t$, and any capacity c.

- This answers a question by Sackel-Song-Varolgunes-Zhu, where the case *t* = 0 is proven.
- The lower bound is based on constructing a specific embedding.
- For the upper bound, we prove that for every symplectic embedding of a compact subset K inside $B^{2n}(1) \setminus H$, there exists a symplectic embedding of K inside $B^{2n}(\sqrt{1+t}) \setminus L$, where L is the Lagrangian spanned by (0, i), and (1, 0).
- Dynamical interpretation: removing *H* creates short-cuts for closed characteristics.
Idea of the proof $H = \langle (s, 0, t, 0), (0, 0, 0, 1) \rangle$, $s^2 + t^2 = 1$. $H \cap B^4(1)$:

・ 戸 ト ・ ヨ ト ・ ヨ ト

If $K \cap \{y_1 = 0\}$ doesn't intersect $\partial E \cap \{x_2 \ge 0\}$, we can displace K from the subspace H.

We take the Hamiltonian to be y_1 with a cut-off outside H.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

If $K \cap \{y_1 = 0\}$ doesn't intersect $\partial E \cap \{x_2 \ge 0\}$, we can displace K from the subspace H.

We take the Hamiltonian to be y_1 with a cut-off outside H.

Note that the line $\partial E \cap \{x_2 \ge 0\}$ divides the disc into a region with area $\pi \frac{1+t}{2}$. We can embed $B^4(\sqrt{\frac{1+t}{2}})$ in $B^4(1) \setminus \partial E \cap \{x_2 \ge 0\}$ using a specific 2-dim area preserving map.

Single hyperplane - upper bound

Suppose that K doesn't intersect H.

In the 3-dim subspace $y_1 = 0$, *H* divides the space into two parts.

We use two different 2-dim area preserving maps to push the projection of both parts to x_2 , y_2 away from *L*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Single hyperplane - upper bound

Suppose that K doesn't intersect H.

In the 3-dim subspace $y_1 = 0$, *H* divides the space into two parts.

We use two different 2-dim area preserving maps to push the projection of both parts to x_2 , y_2 away from *L*.

< ロ > < 同 > < 回 > < 回 > < □ > <

Single hyperplane - upper bound

Suppose that K doesn't intersect H.

In the 3-dim subspace $y_1 = 0$, *H* divides the space into two parts.

We use two different 2-dim area preserving maps to push the projection of both parts to x_2 , y_2 away from *L*.

