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© Introduction: DT-invariants



Motivation from Physics

o General Relativity:

Gravity = Geometry of a 4-dim. spacetime M*

@ Other Forces?: Kaluza-Klein (1920's)

Gravity + Electromagnetic force in 4-dim = Geometry of a 5-dim.
spacetime M* x St

@ Other Forces? Candelas-Horowitz-Strominger-Witten

In string theory, spacetime = M* x Y where Y is a
Calabi-Yau-manifold of real dim. 6 (complex dimension 3).

Principle

Physical forces in 4-dim are consequence of the geometric and topological
properties of the extra dimensions in'Y .




CY varieties

@ Y a Calabi-Yau variety of dimension 3 over C, ie, wy ~ Oy.

@ Example: The Fermat quintic

Xs = {x0 + x5 +x3 +x; + x5 =0} C P¢

)/

or more generally, any smooth quintic in P4, wy ~ O(5 -4 —1) ~ Oy
C



Worldsheets

Paths/interactions of string-particles through a spacetime M* x Y, define
2-dimensional real surfaces (1-dimensional algebraic curves) of genus g in
Y.

Path-integrals ~» summing over all possible such curves.



Counting algebraic curves in a Calabi-Yau

e Counting parametrized curves f : C — Y (GW-invariants)

Mg n(Y,5) quasi-smooth, Vol = f[ﬁ (v.9) € Q
g,n )
moduli space of stable maps
@ Counting embedded curves C C Y:

Hilbcodim2(Y) not quasi-smooth, Vol X

e Counting ideal sheaves /c € Coh(Y') (DT-invariants)

S/

f virt. class

MCoh(Y)* quasi-smooth , Vol =
—_————

—_——
Moduli of coherent sheaves CY + Serre duality+ stability



Behrend approach to DT-invariants

Observation(Thomas): Serre duality + CY condition imposes a symme-
try on the obstruction theory of M Coh(Y')*:

{15terderdef. of E € Coh(Y)} ~ {Obstructions to def. of E € Coh(Y)}"
Theorem (K. Behrend)
There is a uniquely defined function vgeprend : M Coh(Y)t — Z such that

Vol(MCoh(Y)t) = /

= Zn'X(VBehrend = n)
[MCOh( y)st]wr o

Behind the scenes: This extra symmetry is a shadow of a (-1)-shifted
symplectic form on MCoh(Y)* [Pantev-Toén-Vaquié-Vezzosi|.

In this talk: DT-theory <+ (-1)-shifted symplectic derived geometry
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Derived geometry
Example: U a smooth k-scheme with a function f : U — Aj.

The derived critical locus X = dCrit(f) is the derived intersection

X := dCrit(f) —— U

S

U ° . THu

Ox = OU ®%T*U OU

Tangent information distributed through multiple cohomological degrees:

coh.deg -1 0 1

Hess( f)

[0 ——Ty —1Ly] = Tx

Example: (U, f) = (A!,x3) dCrit = Spec k[x]/(f' = 3x?)



Derived Geometry

Example: In this talk we care about the moduli space of coherent sheaves
on a Calabi-Yau 3-fold, with all its derived information

X = MCoh(Y)*
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Shifted Symplectic Geometry

(] TX = ]L}é
@ X Smooth, Lx = Q}< = Classical 1-forms.

e n-shifted 2-forms = {Ox — Lx ALx[n]} = {Tx A Tx — Ox[n]}

de Rham diff. DR(X) := [0x — %~ Lx — %~ Lx ALx — > ..]

[Connes, Toén-Vezzosi|: dg should not be understood as an internal
differential but rather as the action of an extra operator € of degree 1

@ n-shifted closed 2-forms: Need homotopy dg(w) ~ 0



Shifted Symplectic Geometry

Definition (Pantev-Toén-Vaquié-Vezzosi)

An n-shifted symplectic form on X is a n-shifted closed 2-form such that
its underlying 2-form Tx A Tx — Ox|[n] is non-degenerate , ie, induces an

equivalence
TX = ]Lx[n]

e X = T*A! = A2 has 0-shifted symplectic form given by w = dx A dy .

@ X = Perf the derived stack classifying perfect complexes has a
2-shifted symplectic form.

Te pert = REnd(E)[1] ~ E ® EV[1]
Te pert ATE perr ~ E® EV[1]] ® E® EV[1] — O[2] evaluation map

e (PTVV) Y a CY of dimension 3 over k. Then X := Map(\\;, Perf)

3
is (2-3=-1)-symplectic. In particular,

MCoh®*(Y) C Map(Y, Perf) is -1-symplectic (= Behrend Symmetry)



Shifted Symplectic Geometry

Theorem (Pantev-Toen-Vaquié-Vezzosi)

If M is a classical symplectic manifold (0-shifted) and L1 and Ly are
Lagrangians, then the derived intersection

I_1 X],l\‘/l L2

is (—1)-shifted symplectic.




Shifted Symplectic Geometry

Example: The derived critical locus X = dCrit(f) is a Lagrangian inter-
section:

= dCrit(f) —— U

L

0

U————T"U

coh.deg -1 0 1
Hess(f)
v—=Ly = Tx
H(f)" .
Ty ——=1Ly = Lx

symmetry of the Hessian = Tx ~ Lx[—1] is a (-1)-shifted symplectic
structure on X.



Joyce's approach to DT-invariants
All examples are locally of this form:

Theorem (Brav-Bussi-Joyce (Darboux Lemma))

Let X be a (—1)-symplectic derived scheme. Then Zariski locally X is
symplectomorphic to a derived critical locus dCrit(U, f) with U smooth.

Consequence: Locally on X it makes sense to analyse the singularities of
the function f on U via the perverse sheaf of vanishing cycles

Pu.r € Pervgcrie(r)(U) = Perv(dCrit(f)) = Perv(Crit(f))
Problem: Ambiguity in the choice of local presentations:
dCrit(Al, x3) = Spec k[x]/(3x?) ~ Spec k[x, y]/(3x2,2y) = dCrit(A%, x3 + y?)

P(a1x3) and P2 3,2y non-canonically isomorphic.



Joyce's approach to DT-invariants

Theorem (Brav-Bussi-Dupont-Joyce-Szendroi (BBDJS))

Let X be a (—1)-symplectic derived scheme. Assume that there exists a
line bundle L together with an equivalence L @ L ~ det(Tx) (aka
orientation data). Then:

@ The locally defined perverse sheaves of vanishing cycles Py ¢ glue to
a globally defined perverse sheaf P € Perv(X).

@ X(P) = VBehrend computing locally the Euler characteristic of
vanishing cycles of f. Gives back DT-counting.

Proof: Glue by hand using local presentations of the underlying classical
scheme as classical critical loci.

@ method does not see the full derived structure.
@ strategy works for perverse sheaves because:

» they form a 1-category (no higher homotopies needed to glue).
» they have the A'-homotopy invariance property.
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Motivic DT and categorification

Different invariants capture vanishing cycles of f on U:

Vur € Motives < — — — — — — — dgcats?Per 5 MF (U, f)

CY Blanc-Toén-R -Vezzosi, Pippi . . ) o
Ayoub Motivic Van. Cycles Orlov/Eisenbud cat. of singularities. B-type D-branes (Kapustin-Li)

Realization
HP
Efimov, Sabbah

Py € Perv

MF: Up := f~1(0), M € Coh(Up), infinite resolution by projective
modules becomes eventually 2-periodic [Serre-Auslander-Buchsbaum-
Eisenbud]

i > F>Q—-F—=>Q —-P,— ..o Po=>P =Py M
EMF(U,f) €Perf(Up)




Motivic DT and categorification

Gluing Problem: Given a (-1)-symplectic derived scheme X, can we
glue the Darboux locally defined dg-categories MF (U, f) as a sheaf of
dg-categories on X7 Is Joyce's orientation data enough?

Rmk: Version of the gluing problem for the Fukaya category (Seidel,
Kontsevich, Nadler, Shende, Ganatra, Pardon,...).

Complications: The gluing no longer takes place in a 1-category but
in an oco-category. Complicated coherences are required. Need a gluing
mechanism.
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Moduli of Darboux Coordinates

Classical Picture: X a classical symplectic manifold, then locally X is of

symplectomorphic to some T*M (Darboux's lemma). We can analyse the
moduli of such Darboux parametrizations:

Darbx : S C X open — {M smooth manifold, S ~ T*M symplectic}

The data of a symplectomorphism S ~ T*M in particular implies:

@ The fibers of the projection S ~ T*M — M define a smooth
Lagrangian foliation ¥ on S (ie, Wiipers = 0).

@ The symplectic form on S is exact ie, there exists a 1-form «
(Liouville form on T*M) with dg(a) = w.

We call such (F, ) a Darboux datum on S.



Moduli of Darboux Coordinates

(-1)-shifted geometry: These notions make sense thanks to the work of
Toén-Vezzosi on derived foliations.

Theorem (Pantev-Toén)

S a (—1)-symplectic derived scheme. Then the following data are
equivalent:

@ Darboux data on S, ie a globally defined smooth derived Lagrangian
foliation F on S + an exact structure .

@ the data of a smooth formal scheme U, a function f on U and a
symplectomorphism S ~ dCrit(U, f)

Classical Picture: Darboux dataon S < [SC T*M — M].
(—1)- picture : Darboux data on S < [S ~ dCrit(U, f) — UJ.

Idea: U := S/J the formal leaf space. f = exact struct. - isotropic struct.




The Darboux Stack

Example: (@,x3) gives Darboux data

dCrit(x3) = Spec(k[x]/(3x2)) — Al
Construction (Gluing Moduli of Darboux coordinates)
The assignment:

S — X étale — {(«, F) : Exact structure o + smooth Lag. fol. ¥ on S}

defines a hypercomplete stack on the small étale site of a n-shifted
symplectic derived scheme X. We call it the Darboux stack Darbx .

Remark: Darby := x LagFol¥"

Comment: In the case where X is (—2)-symplectic, this recovers the
local data used by Borisov-Joyce and Oh-Thomas to glue DT-invariants
for Calabi-Yau 4-folds.



The Darboux Stack

Construction

The Behrend’s function, MF and Joyce's construction have Darby as a
natural domain, and define natural transformations of sheaves on the

small étale site of X:

v : Darbx(S) > (U, f) — dim(vanishing cycles of f) € Zx(S) :=7Z

P : Darbx(S) > (U, f) — Py s € Pervx(S) := Perv(S)~

MF : Darbx(S) > (U, f) — MF(U, f) € dgcaty?<(S) := (dgcat2’e")™

categorical crystals
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Action of Quadratic Bundles

Ambiguity Problem: in the choice of local presentations:
dCrit(Al, x3) = Spec k[x]/(3x?) = Spec k[x, y]/(3x?,2y) = dCrit(A%, x> + y?)

Definition

Quadyr(S) :={(Q, q) : (loc. trivial) quadratic vector bundles on Sy}

Construction (Moduli of Quadratic bundles)
X a (—1)-symplectic derived scheme. Then:

@ The assignment S/X étale — Quadyr(S) defines a sheaf of monoids
Quadyx,, on Xe for the sum of quadratic bundles.

e Quadx,,(S) acts on Darbx(S),

dCrit(U, f) ~ S ~ dCrit(U X Q. f+q)
dR
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Recovering the perverse gluing of BBDJS:

Fact: (M, q) € Quadx_,(S) then det(M) is a 2-torsion over S,
ie, det(M)? ~ Os. This follows from the non-degeneracy of the Hessian.

Construction

X a (—1)-symplectic derived scheme. Then:

e det: Quadx, — By x = Ker (BGpm x > BG, x) is a map of
monoids.

@ P: Darbx — Pervx comes with homotopy coherent data rendering
the actions compatible on both sides

Quadyx,, O Darbx — Pervx O Bpuo
(on the right the action of By is defined by BBDJS).




Recovering the perverse gluing of BBDJS:

Al-invariance: Two A!-homotopic isomorphisms of Darboux charts

U Z V induce the same morphism of perverse sheaves.

~

Construction (Foliations up to integrable homotopy)

evy

Darb' = Colim ( Darb"%, ., —_= Darbx)

Proposition (Universal Property)

The map P : Darbx — Pervx descends to the quotient

Darbx / Quadx . Pervx /Bjio x

7
—
~
—
—
—

Darbf%1 / Quadng




Recovering the perverse gluing of BBDJS:

Theorem (Hennion-Holstein-R )

Let X be a (—1)-shifted symplectic derived scheme with a fixed exact
structure « (always exists by a theorem of Deligne). Then,

1
Darbiy **/ Quadf%jR ~ xx, ie, the quotient is contractible.




Recovering the perverse gluing of BBDJS:

Corollary (Hennion-Holstein-R. as a reformulation of BBDJS )

Let X be a (—1)-shifted symplectic derived scheme with a fixed exact
structure « (always exists by a theorem of Deligne).

Then there exists a canonical factorization

Darb$ / Quadyx, _P Pervx /B x

/7
—
~
—
~
=

Ala Al
Darby "/ Quady , ~ *x

Here xx is the final object of the étale topos of X. In other words, the
gluing of the perverse sheaves Py r is always well-defined in the quotient:

P :%x — Pervx/Bua x




Recovering the perverse gluing of BBDJS:

Remark
The composition

xx — Pervx /Bl x — *x/Buox = BBpa x

is the class in H*(X,Z/2Z) of the bundle classifying square roots of
det(Tx).

An orientation data of BBDJS corresponds precisely to the choice of a
null-homotopy of this composition

Pervy ——— *xx

-
-
7 i pullback J{

* X %) PervX/B,uZX — BB,UZ,X

Such a null-homotopy provides a lifting through the fiber product and
defines a well-defined glued perverse sheaf P o ce : *x — Pervx.




Gluing MF:

Fact: (M, q) € Quadx,.(S) then MF(M, q) has a structure of 2-torsion
over Syr. This is a consequence of

Preygel-Thom-Sebastiani followed by Knorrer periodicity

MF(M, q) ® MF(M,q) ~ MF(M x M, g8 —q) ~ MF(S4r,0)

Construction
X a (—1)-symplectic derived scheme. Then:

2per,2—tor ,
® MF: Quadx,, — Az"""" " is a map of monoids.

@ MF : Darbyx — dgcati’;:r comes with homotopy coherent data
rendering the actions compatible on both sides

2per 2per,2—tor
Quadx , O Darbx — dgcathR O AszR

On the right the action of AZ)2<5 :r’%tor is given by tensor products of

dg-categories.




Gluing MF:

Work in progress (Hennion-Holstein-R. )

X a (-1)-shifted symplectic derived scheme with an exact structure.
There exists a factorization of morphisms of étale sheaves:

@ MF 2per 2per,2—tor
Darb / Quadx,,, ——— dgcaty ' [Azy[ "
J/ - 7

—

DarbX /Qua XdR o~ ok x

Definition

A categorical orientation data is a trivialization of the composition

*y — Dafbx/Quadde N dgca 2P6r/AZ)2<56r2 tor N BAZ)2<per,27tor




Gluing MF:

Corollary

Let X be a (—1)-shifted symplectic derived scheme. Assume X is
equipped categorical orientation data. Then the locally defined categories
MF(U, f) glue as a sheaf of 2-periodic dg-categories on X as a result of

2per
dgca X r

*X
=
~
_ - l pullback
-

-
= 2 2per,2—t 2per,2—t
X = dgeatihe [AZLT T —— B AL




New Orientation data

The orientation data of BBDJS is (a priori) not enough to glue MF. A
categorical orientation provides new obstruction classes coming from the
fibration sequence

2per,2—tor 2per 2per
AszR — AszR Z) AszR

o mo(AZPE ) ~ 1L)27 x /27 — {MF (+,0), MF(A!, x?)}}.

o m(AZLS ) ~ 7,/27 ~ {Id, [1]}
BBDJS

° 7T2(Az)2<5:r’27tor) = 7./27 ~ Ker(z? : C* — C*)

° Wn(Azf(i:r,Z—tor) —0n > 3'



Thank you for your time.
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