

Spectral Networks and G²

Sebastian Schulz

Johns Hopkins University *sschulz5@jhu.edu*

based on joint work with Andy Neitzke

Sebastian Schulz [Spectral Networks and](#page-29-0) G₂ April 24, 2024 1/30

Nonabelian Hodge Correspondence

Let us fix:

- a (compact) Riemann surface *C*;
- a complex reductive Lie group *G* (e.g. GL*n*, *SLn*, G2).

To this data one can associate three different moduli spaces:

 \bigcirc $\mathcal{M}_{\rm H} = \mathcal{M}_{\rm H}(G, C)$ - the moduli space of (stable) *G*-Higgs bundles;

2 $M_{\text{dB}} = M_{\text{dB}}(G, C)$ - the moduli space of (irreducible) **flat** *G*-bundles;

 Θ $M_B = M_B(G, C)$ - the **character variety** of representations Hom $(\pi_1 C, G)$.

Nonabelian Hodge Correspondence

To this data one can associate three different moduli spaces:

- ¹ M^H the moduli space of (polystable) *G*-**Higgs bundles**;
- 2 M_{dB} the moduli space of (irreducible) **flat** *G*-bundles;
- $\mathbf{3}$ $M_{\rm B}$ the **character variety** of representations Hom(π ₁*C*, *G*).

These spaces are all diffeomorphic:

 $M_{\rm dB} \rightarrow M_{\rm B}$ by taking holonomies; $M_{\rm B} \rightarrow M_{\rm dB}$ by solving a Riemann-Hilbert problem.

Nonabelian Hodge Correspondence

To this data one can associate three different moduli spaces:

- ¹ M^H the moduli space of (polystable) *G*-**Higgs bundles**;
- 2 M_{dB} the moduli space of (irreducible) **flat** *G*-bundles;
- $\mathbf{3}$ M_{B} the **character variety** of representations Hom($\pi_1 C$, *G*).

The **Nonabelian Hodge Correspondence** asserts that there is a ℂ*-family of diffeomorphisms

 $\mathsf{NHC}^\zeta:\mathcal{M}_\mathsf{H}\to\mathcal{M}_\mathsf{dR}$

obtained by solving **Hitchin's equations** - a difficult PDE. Part of the motivation for this work is to describe these diffeomorphisms more explicitly.

Nonabelianization of Higgs bundles

The standard treatment of Higgs bundles inherently **abelianizes** them. Recall

 $\begin{array}{ccc} \text{(C)} & & \text{SL}_3 \end{array}$ $\begin{array}{ccc} \text{(C)} & & \text{SL}_3 \end{array}$

$$
\mathcal{M}_H = \left\{ (P, \varphi): P \text{ principal } G-\text{bundle}, \varphi \in H^0(C, \text{ad }P \otimes K_C \right\} / \sim.
$$

There is also a *vector bundle version*: E.g. for GL*n*(C) or SL*n*(C) one considers *holomorphic* vector bundles \mathcal{E} of rank *n* and $\varphi : \mathcal{E} \to \mathcal{E} \otimes K_C$.

Abelianization associates to this the **spectral curve** $\Sigma \subset \text{Tot}(K_C)$ of eigenvalues of φ and a line bundle $\mathcal{L} \to \Sigma$ of *eigenvectors*, i.e. such that

$$
\pi_*\mathcal{L}=\mathcal{E}.
$$

[Motivation](#page-1-0) [SL](#page-9-0)_{[2](#page-11-0)}

[\(](#page-21-0)C[\)](#page-22-0) *[G](#page-24-0)*[2](#page-25-0) [Summary](#page-29-0)

The spectral correspondence

The Hitchin integrable system

Nonabelianization of flat connections

One could try the same for flat *G*-bundles: Take a line bundle *L* on the cover $\pi:\Sigma\to \pmb{C}$ together with an abelian (i.e. \mathbb{C}^* -) connection $\nabla^{\sf ab}.$ Then *hope* that the pushforward $\pi_*(L, \nabla^{ab})$ is a flat bundle on *C*.

This works well *away* from **ramification points** r of π . But around r , there is necessarily nontrivial monodromy and the construction needs to be modified. A **spectral network** captures the combinatorics of these modifications.

All of the above holds for **non-compact surfaces** with the appropriate definitions/modifications. Indeed, this is the setup I will describe.

So here's the plan:

- 1 Review Higgs bundles and their relation to flat connections, Stokes phenomena, cluster varieties etc. for $SL_2(\mathbb{C})$ and $SL_3(\mathbb{C})$;
- 2 Explain nonabelianization in this context;
- \bullet Describe current progress for G_2 .

The setup

The "easiest" Higgs bundles are those in the **Hitchin section** H :

$$
\mathcal{E} = \mathcal{K}_C^{1/2} \oplus \mathcal{K}_C^{-1/2}, \ \varphi = \begin{pmatrix} 0 & q_2 \\ 1 & 0 \end{pmatrix},
$$

where 1 \in Hom($\mathcal{K}^{1/2}_C$ $C^{1/2}, K_C^{-1/2}\otimes K_C)\simeq \mathcal{O}$ and $q_2\in H^0(C,K_c^2).$

Recall that there are also diffeomorphisms

- $\bullet\,$ NHC 1 : $\mathcal{H}\rightarrow \mathsf{Teich}(C)$, the Teichmüller space of C , and
- the *conformal limit* $\mathcal{CL}_\hbar : \mathcal{H} \to \mathsf{Op}_C$, the space of *opers*.

 $SL_2(\mathbb{C})$ -opers

Opers are global versions of the Schrödinger equation

$$
\left[-\hbar^2\partial_z^2+P_2(z)\right]\psi(z)=0.
$$

Converting it into a linear differential operator yields a rank 2 vector bundle that is holomorphically

$$
0 \to K_C^{1/2} \to E_\hbar \to K_C^{-1/2} \to 0
$$

with connection (in a distinguished trivialization)

$$
\nabla_{\hbar,q_2}=d+\hbar^{-1}\begin{pmatrix}0&q_2\\1&0\end{pmatrix}dz.
$$

Sebastian Schulz [Spectral Networks and](#page-0-0) G₂ April 24, 2024 11/30

Example: The Airy function

The easiest example is given by the **Airy equation**

$$
\psi'' + z\psi = 0
$$

in the complex plane. In its two-dimensional space of entire solutions is a line of solutions, spanned by the **Airy function** Ai(*z*), distinguished by

 $\lim_{z \to \infty^+}$ Ai $(z) = 0$.

Asymptotically, for $|\arg(z)| < 2\pi/3$, around $z = \infty$,

$$
\text{Ai}(z) \sim \frac{1}{2\sqrt{\pi}z^{1/4}} \text{exp}\left(-\frac{2}{3}z^{3/2}\right) \left(1 - \frac{5}{48z^{3/2}} + \frac{385}{4608z^3} + \dots\right).
$$

The Airy function

$$
\text{Ai}(z) \sim \frac{1}{2\sqrt{\pi}z^{1/4}}\text{exp}(-\frac{2}{3}z^{3/2})\bigg(1-\frac{5}{48z^{3/2}}+\frac{385}{4608z^3}+\dots\bigg).
$$

Meanwhile, all other solutions obey the following, including the distinguished *Bairy functon* Bi(*z*):

$$
\psi(z)\sim \exp(+\frac{2}{3}z^{3/2})
$$

as $z \to \infty^+$. So once arg(z) > $\pi/3$, the Airy function seizes to be the exponentially declining solution. This is known as the **Stokes phenomenon**.

A simple turning point

A simple turning point

 G_2 G_2 G_2 **G**₂ [Summary](#page-29-0)

Two turning points

Cluster coordinates

Given a polynomial P_2 of degree k , the space of solutions is parametrized by the $(k + 2)$ asymptotic lines $L_1, \ldots, L_{k+2} \in \mathbb{CP}^1$ up at simultaneous action by $SL_2(\mathbb{C})$, hence by a collection of cross-ratios.

In fact, there is some extra reality hidden in this. The Hitchin equations on $\mathcal H$ reduce to studying harmonic maps

 $g:\mathbb{C}\rightarrow \mathrm{SL}_2(\mathbb{R})/\mathrm{SO}_2\simeq \mathbb{D}^2.$

The asymptotic geometry is governed by (convex) $(k+2)$ -gons in the boundary \mathbb{RP}^1 [Han-Tam-Treibergs-Wan, Fock-Goncharov, Gaiotto-Moore-Neitzke].

Setup

For $SL_3(\mathbb{C})$ the Hitchin section is given by

$$
\mathcal{E}= \mathcal{K}_C \oplus \mathcal{O} \oplus \mathcal{K}_C^{-1}, \varphi= \begin{pmatrix} 0 & q_2 & q_3 \\ 1 & 0 & q_2 \\ 0 & 1 & 0 \end{pmatrix},
$$

$$
q_2 \in H^0(C, \mathcal{K}_C^2), \ q_3 \in H^0(C, \mathcal{K}_C^3).
$$

We will mostly be interested in the case $q_2 = 0$ because then the harmonic metric becomes diagonal. For $C=\mathbb{C}$ and $q_3=P_3(z)dz^3$, the Hitchin equations reduce to studying harmonic maps

$$
g:\mathbb{C}\to\mathrm{SL}_3(\mathbb{R})/\mathrm{SO}_3\simeq\mathbb{H}^3.
$$

Sebastian Schulz [Spectral Networks and](#page-0-0) G₂ April 24, 2024 19/30

Convex Polygons

Let

$$
\mathcal{MC}_k := \left\{ q_3 = P_3(z)dz^3 : P_3 \text{ is a polynomial of degree } k \right\} / \text{Aut}(\mathbb{C}),
$$

$$
\mathcal{MP}_n := \left\{ \text{convex } n - \text{gons in } \mathbb{RP}^2 \right\} / \text{SL}_3(\mathbb{R}).
$$

Theorem [Dumas-Wolf '14]

There is a homeomorphism $MC_k \to MP_{k+3}$.

Sebastian Schulz [Spectral Networks and](#page-0-0) G₂ April 24, 2024 20/30

A new phenomenon

Simple zero of a cubic differential

Two simple zeroes of a cubic differential

 G_2 G_2 G_2 [Summary](#page-29-0)
 G_2 Summary

Line decompositions and $Gr₃(5)$

Setup

For $G_2(\mathbb{C})$ the Hitchin section is given by

$$
\mathcal{E} = K_C^3 \oplus K_C^2 \oplus K_C \oplus \mathcal{O} \oplus K_C^{-1} \oplus K_C^{-2} \oplus K_C^{-3}, \varphi = \varphi(q_2, q_6),
$$

$$
q_2 \in H^0(C, K_C^2), q_3 \in H^0(C, K_C^3).
$$

Again, we are interested mostly in the case $q_2 = 0$. For $C = \mathbb{C}$ and $q_6 = P_6(z) dz^6$, the Hitchin equations reduce to studying harmonic maps

$$
g:\mathbb{C}\to \mathrm{G_2}'/\mathrm{SU}_3,
$$

where $\mathrm{G_2}'$ is the split real form of $\mathrm{G_2}(\mathbb{C}).$

G² with *q*² turned on

G₂ Spectral Networks

G₂ Spectral Networks

So what does the asymptotic geometry look like? An **annihilator polygon** is a cyclically ordered set $S = (x_1, \ldots, x_p)$ of points $x_i \in \mathsf{Ein}^{2,3}$, the projectivized light cone in $\mathbb{R}^{3,4}$, such that $(x_i, x_{i+1}) = \mathsf{0}^1$ and

 $\begin{array}{ccc} \text{(C)} & & \text{SL}_3 \end{array}$ $\begin{array}{ccc} \text{(C)} & & \text{SL}_3 \end{array}$

$$
Ann(x_i) := \{ y \in Im \, \mathbb{O}' : x_i y = 0 \} = x_{i-1} \oplus x_i \oplus x_{i+1}.
$$
 (1)

Example: The weight space decomposition for G₂' gives an annihilator hexagon.

Theorem [Evans '22]

Given a sextic differential $q_6 = P_6 d z^6$, where P_6 is a polynomials of degree k , the harmonic map construction produces an annihilator $k + 6$ -gon.

Problem: Neither injectivity nor surjectivity of this map is known.

 1 In particular, $ax_i + bx_{i+1}$ is null for all $a,b \in \mathbb{R}.$

Sebastian Schulz [Spectral Networks and](#page-0-0) G₂ April 24, 2024 29/30

[\(](#page-21-0)C[\)](#page-22-0) *[G](#page-24-0)*[2](#page-25-0) [Summary](#page-29-0)

We [Neitzke-S.] construct cluster coordinates \mathcal{X}_γ on the space of polynomial sextic differentials and compute their cluster transformations.

Theorem [Neitzke-S. '24]

The image of the harmonic map construction is characterized by the property that $\mathcal{X}_{\gamma} > 0$.

Thank you!