

Spectral Networks and G₂

Sebastian Schulz

Johns Hopkins University sschulz5@jhu.edu

based on joint work with Andy Neitzke

Sebastian Schulz

Spectral Networks and G₂

Nonabelian Hodge Correspondence

Let us fix:

- a (compact) Riemann surface C;
- a complex reductive Lie group G (e.g. GL_n , SL_n , G_2).

To this data one can associate three different moduli spaces:

1 $\mathcal{M}_{H} = \mathcal{M}_{H}(G, C)$ - the moduli space of (stable) *G*-Higgs bundles;

2 $\mathcal{M}_{dR} = \mathcal{M}_{dR}(G, C)$ - the moduli space of (irreducible) **flat** *G*-**bundles**;

3 $\mathcal{M}_{B} = \mathcal{M}_{B}(G, C)$ - the **character variety** of representations Hom $(\pi_{1}C, G)$.

Nonabelian Hodge Correspondence

To this data one can associate three different moduli spaces:

- **(1)** \mathcal{M}_{H} the moduli space of (polystable) *G*-**Higgs bundles**;
- 2 \mathcal{M}_{dR} the moduli space of (irreducible) **flat** *G*-**bundles**;
- **3** \mathcal{M}_{B} the **character variety** of representations Hom $(\pi_{1}C, G)$.

These spaces are all diffeomorphic:

$$\begin{split} \mathcal{M}_{dR} &\to \mathcal{M}_B \text{ by taking holonomies;} \\ \mathcal{M}_B &\to \mathcal{M}_{dR} \text{ by solving a Riemann-Hilbert problem.} \end{split}$$

Nonabelian Hodge Correspondence

To this data one can associate three different moduli spaces:

- **1** \mathcal{M}_{H} the moduli space of (polystable) *G*-**Higgs bundles**;
- 2 \mathcal{M}_{dR} the moduli space of (irreducible) **flat** *G*-**bundles**;
- **③** \mathcal{M}_{B} the **character variety** of representations Hom $(\pi_{1}C, G)$.

The Nonabelian Hodge Correspondence asserts that there is a \mathbb{C}^* -family of diffeomorphisms

 $\mathsf{NHC}^\zeta:\mathcal{M}_\mathsf{H}\to\mathcal{M}_\mathsf{dR}$

obtained by solving **Hitchin's equations** - a difficult PDE. Part of the motivation for this work is to describe these diffeomorphisms more explicitly.

Sebastian Schulz

Nonabelianization of Higgs bundles

The standard treatment of Higgs bundles inherently abelianizes them. Recall

$$\mathcal{M}_{\mathsf{H}} = \left\{ (\boldsymbol{P}, \varphi) : \boldsymbol{P} \text{ principal } \boldsymbol{G} - \mathsf{bundle}, \varphi \in H^0(\boldsymbol{C}, \mathsf{ad} \ \boldsymbol{P} \otimes \mathcal{K}_{\boldsymbol{C}} \right\} / \sim .$$

There is also a vector bundle version: E.g. for $\operatorname{GL}_n(\mathbb{C})$ or $\operatorname{SL}_n(\mathbb{C})$ one considers holomorphic vector bundles \mathcal{E} of rank n and $\varphi : \mathcal{E} \to \mathcal{E} \otimes K_C$.

Abelianization associates to this the **spectral curve** $\Sigma \subset \text{Tot}(K_C)$ of eigenvalues of φ and a line bundle $\mathcal{L} \to \Sigma$ of *eigenvectors*, i.e. such that

$$\pi_*\mathcal{L}=\mathcal{E}.$$

The spectral correspondence

The Hitchin integrable system

Nonabelianization of flat connections

One could try the same for flat *G*-bundles: Take a line bundle *L* on the cover $\pi : \Sigma \to C$ together with an abelian (i.e. \mathbb{C}^* -) connection ∇^{ab} . Then *hope* that the pushforward $\pi_*(L, \nabla^{ab})$ is a flat bundle on *C*.

This works well *away* from **ramification points** r of π . But around r, there is necessarily nontrivial monodromy and the construction needs to be modified. A **spectral network** captures the combinatorics of these modifications.

All of the above holds for **non-compact surfaces** with the appropriate definitions/modifications. Indeed, this is the setup I will describe.

So here's the plan:

- **1** Review Higgs bundles and their relation to flat connections, Stokes phenomena, cluster varieties etc. for $SL_2(\mathbb{C})$ and $SL_3(\mathbb{C})$;
- Explain nonabelianization in this context;
- 3 Describe current progress for G₂.

The setup

The "easiest" Higgs bundles are those in the **Hitchin section** \mathcal{H} :

$$\mathcal{E} = \mathcal{K}_C^{1/2} \oplus \mathcal{K}_C^{-1/2}, \; arphi = egin{pmatrix} 0 & q_2 \ 1 & 0 \end{pmatrix},$$

where $1 \in \text{Hom}(K_C^{1/2}, K_C^{-1/2} \otimes K_C) \simeq \mathcal{O}$ and $q_2 \in H^0(C, K_c^2)$.

Recall that there are also diffeomorphisms

- $NHC^1 : \mathcal{H} \rightarrow Teich(C)$, the Teichmüller space of C, and
- the *conformal limit* $C\mathcal{L}_{\hbar} : \mathcal{H} \to Op_{C}$, the space of *opers*.

$SL_2(\mathbb{C})$ -opers

Opers are global versions of the Schrödinger equation

$$\left[-\hbar^2\partial_z^2+P_2(z)
ight]\psi(z)=0.$$

Converting it into a linear differential operator yields a rank 2 vector bundle that is holomorphically

$$0 \to K_C^{1/2} \to E_\hbar \to K_C^{-1/2} \to 0$$

with connection (in a distinguished trivialization)

$$abla_{\hbar,q_2} = d + \hbar^{-1} \begin{pmatrix} 0 & q_2 \\ 1 & 0 \end{pmatrix} dz.$$

Sebastian Schulz

Example: The Airy function

The easiest example is given by the **Airy equation**

$$\psi'' + z\psi = \mathbf{0}$$

in the complex plane. In its two-dimensional space of entire solutions is a line of solutions, spanned by the **Airy function** Ai(z), distinguished by

 $\lim_{z\to\infty^+}\operatorname{Ai}(z)=0.$

Asymptotically, for $|\arg(z)| < 2\pi/3$, around $z = \infty$,

$$\operatorname{Ai}(z) \sim \frac{1}{2\sqrt{\pi}z^{1/4}} \exp(-\frac{2}{3}z^{3/2}) \left(1 - \frac{5}{48z^{3/2}} + \frac{385}{4608z^3} + \dots\right).$$

Sebastian Schulz

Spectral Networks and G₂

The Airy function

$$\operatorname{Ai}(z) \sim \frac{1}{2\sqrt{\pi}z^{1/4}} \exp(-\frac{2}{3}z^{3/2}) \left(1 - \frac{5}{48z^{3/2}} + \frac{385}{4608z^3} + \dots\right).$$

Meanwhile, all other solutions obey the following, including the distinguished *Bairy functon* Bi(z):

$$\psi(z)\sim \exp(+rac{2}{3}z^{3/2})$$

as $z \to \infty^+$. So once $\arg(z) > \pi/3$, the Airy function seizes to be the exponentially declining solution. This is known as the **Stokes phenomenon**.

Sebastian Schulz

A simple turning point

Sebastian Schulz

Spectral Networks and G₂

A simple turning point

Sebastian Schulz

Two turning points

Repairing modifications

Cluster coordinates

Given a polynomial P_2 of degree k, the space of solutions is parametrized by the (k + 2) asymptotic lines $L_1, \ldots, L_{k+2} \in \mathbb{CP}^1$ up at simultaneous action by $SL_2(\mathbb{C})$, hence by a collection of cross-ratios.

In fact, there is some extra reality hidden in this. The Hitchin equations on ${\cal H}$ reduce to studying harmonic maps

 $g: \mathbb{C} \to \mathrm{SL}_2(\mathbb{R})/\mathrm{SO}_2 \simeq \mathbb{D}^2.$

The asymptotic geometry is governed by (convex) (k + 2)-gons in the boundary \mathbb{RP}^1 [Han-Tam-Treibergs-Wan, Fock-Goncharov, Gaiotto-Moore-Neitzke].

Sebastian Schulz

Setup

For $\mathrm{SL}_3(\mathbb{C})$ the Hitchin section is given by

(

$$egin{aligned} \mathcal{E} &= \mathcal{K}_C \oplus \mathcal{O} \oplus \mathcal{K}_C^{-1}, arphi = egin{pmatrix} 0 & q_2 & q_3 \ 1 & 0 & q_2 \ 0 & 1 & 0 \end{pmatrix}, \ q_2 &\in \mathcal{H}^0(\mathcal{C}, \mathcal{K}_C^2), \ q_3 \in \mathcal{H}^0(\mathcal{C}, \mathcal{K}_C^3). \end{aligned}$$

We will mostly be interested in the case $q_2 = 0$ because then the harmonic metric becomes diagonal. For $C = \mathbb{C}$ and $q_3 = P_3(z)dz^3$, the Hitchin equations reduce to studying harmonic maps

$$g:\mathbb{C}
ightarrow \mathrm{SL}_3(\mathbb{R})/\mathrm{SO}_3\simeq \mathbb{H}^3.$$

Sebastian Schulz

Spectral Networks and G₂

Convex Polygons

Let

$$\mathcal{MC}_k := \left\{ q_3 = P_3(z) dz^3 : P_3 \text{ is a polynomial of degree } k \right\} / \operatorname{Aut}(\mathbb{C}),$$
$$\mathcal{MP}_n := \left\{ \operatorname{convex} n - \operatorname{gons in} \mathbb{RP}^2 \right\} / \operatorname{SL}_3(\mathbb{R}).$$

Theorem [Dumas-Wolf '14]

There is a homeomorphism $\mathcal{MC}_k \to \mathcal{MP}_{k+3}$.

A new phenomenon

Simple zero of a cubic differential

Two simple zeroes of a cubic differential

Line decompositions and $Gr_3(5)$

Setup

For $G_2(\mathbb{C})$ the Hitchin section is given by

$$\begin{split} \mathcal{E} &= \mathcal{K}_C^3 \oplus \mathcal{K}_C^2 \oplus \mathcal{K}_C \oplus \mathcal{O} \oplus \mathcal{K}_C^{-1} \oplus \mathcal{K}_C^{-2} \oplus \mathcal{K}_C^{-3}, \varphi = \varphi(q_2, q_6), \\ q_2 &\in \mathcal{H}^0(\mathcal{C}, \mathcal{K}_C^2), \ q_3 \in \mathcal{H}^0(\mathcal{C}, \mathcal{K}_C^3). \end{split}$$

Again, we are interested mostly in the case $q_2 = 0$. For $C = \mathbb{C}$ and $q_6 = P_6(z)dz^6$, the Hitchin equations reduce to studying harmonic maps

$$g: \mathbb{C} \to \mathrm{G_2}'/\mathrm{SU_3},$$

where G_2' is the split real form of $G_2(\mathbb{C})$.

Sebastian Schulz

G_2 with q_2 turned on

G₂ Spectral Networks

G₂ Spectral Networks

So what does the asymptotic geometry look like? An **annihilator polygon** is a cyclically ordered set $S = (x_1, ..., x_p)$ of points $x_i \in \text{Ein}^{2,3}$, the projectivized light cone in $\mathbb{R}^{3,4}$, such that $(x_i, x_{i+1}) = 0^1$ and

$$\operatorname{Ann}(x_i) := \{ y \in \operatorname{Im} \mathbb{O}' : x_i y = 0 \} = x_{i-1} \oplus x_i \oplus x_{i+1}.$$
(1)

G₂

Example: The weight space decomposition for G_2' gives an annihilator hexagon.

Theorem [Evans '22]

Given a sextic differential $q_6 = P_6 dz^6$, where P_6 is a polynomials of degree k, the harmonic map construction produces an annihilator k + 6-gon.

Problem: Neither injectivity nor surjectivity of this map is known.

¹In particular, $ax_i + bx_{i+1}$ is null for all $a, b \in \mathbb{R}$.

Sebastian Schulz

Spectral Networks and G₂

We [Neitzke-S.] construct cluster coordinates X_{γ} on the space of polynomial sextic differentials and compute their cluster transformations.

Theorem [Neitzke-S. '24]

The image of the harmonic map construction is characterized by the property that $\mathcal{X}_{\gamma} > \mathbf{0}$.

Thank you!

Sebastian Schulz