Phase transitions in Artificial Inteligence

Gonçalo Oliveira

Instituto Superior Técnico

IST, Março 2024

Phase transitions (examples)

"Sudden changes of behavior": When a relevant function has a discontinuity in one of its derivatives.

- Gas-liquid.
- Ferromagnetism.
- Message/disease propagating in a network (or graph).

Examples from several areas of science/engineering, including AI.

- Neural network \Rightarrow function $f: \mathbb{R}^{N_{\text {in }}} \rightarrow \mathbb{R}^{N_{\text {out }}}$, which to an input associates an output. Schematically, for one layer

- For $b_{1} \in \mathbb{R}^{N_{i n}}, b_{2} \in \mathbb{R}^{N_{\text {out }}}$ and $A_{1} \in M_{N \times N_{N_{i n}}}, A_{2} \in M_{N_{\text {out }} \times N}$

$$
f(x)=A_{2} \sigma\left(A_{1} x+b_{1}\right)+b_{2} .
$$

- Neural network \Rightarrow function $f: \mathbb{R}^{N_{\text {in }}} \rightarrow \mathbb{R}^{N_{\text {out }}}$. An example with three layers:

$$
f(x)=A_{4} \sigma\left(A_{3} \sigma\left(A_{2} \sigma\left(A_{1} x+b_{1}\right)+b_{2}\right)+b_{3}\right)+b_{4} .
$$

- Neural network \Rightarrow function $f: \mathbb{R}^{N_{\text {in }}} \rightarrow \mathbb{R}^{N_{\text {out }}}$. For one layer

$$
f(x)=A_{2} \sigma\left(A_{1} x+b_{1}\right)+b_{2}
$$

with

$$
\sigma: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}
$$

a fixed function (activation function).

- The network can be taught pairs $\left\{\left(x_{i}, y_{i}\right)\right\}_{i \in l}$: Minimize

$$
\mathcal{L}(\mathbf{A}, \mathbf{b}):=\sum_{i \in I}\left(f\left(x_{i}\right)-y_{i}\right)^{2}
$$

with $\mathbf{A}=\left(A_{1}, A_{2}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}\right)$.

- Evolve $\mathbf{A}(t), \mathbf{b}(t)$ with $-\nabla \mathcal{L}$. Then, the values $f_{t}\left(x_{i}\right)$ evolve according to: ${ }^{1}$

$$
\frac{d}{d t}\left(f_{t}\left(x_{i}\right)-y_{i}\right)=-\sum_{j \in I} \Theta_{i j}\left(f_{t}\left(x_{j}\right)-y_{j}\right)
$$

for a matrix Θ known as Neural Tangent Kernel (NTK).

[^0]
Spectral gap and spectral ratio

- From the equation

$$
\frac{d}{d t}\left(f_{t}(X)-Y\right)=-\Theta\left(f_{t}(X)-Y\right)
$$

we find

$$
f_{t}(X)-Y=e^{-\Theta t}\left(f_{0}(X)-Y\right)
$$

- If

$$
\lambda_{\min }:=\text { smaller eigenvalue } \Theta
$$

we obtain

$$
\left|f_{t}(X)-Y\right| \lesssim e^{-\lambda_{\min } t}
$$

$\Longrightarrow \lambda_{\text {min }} \sim$ learning rate!

- If

$$
\lambda_{\max }:=\text { largest eigenvalue } \Theta
$$

$\Longrightarrow \frac{\lambda_{\max }}{\lambda_{\text {min }}} \sim$ stability of learning.

- Varying the network parameters ... phase transitions in $\lambda_{\min }$ e $\frac{\lambda_{\max }}{\lambda_{\min }}$.

Phase diagram for $\operatorname{tr} \Theta$ (L. Carvalho, J. Costa, J. Mourão, O.)

Phase diagram for the behavior of $\operatorname{tr} \Theta$ in wide and deep networks.

To do:

- Find relevant quantities to study.
- Learn techniques which can be used to establish the existence of phase transitions (Crandall-Rabinowitz theorem, Lyapunov-Schmidt reduction).
- Prove the existence of phase transitions in the problem at hand.
- Understand what is the best phase (for our goals).

Thank you!

[^0]: ${ }^{1}$ When $N \rightarrow+\infty$

